Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites
At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompati...
Gespeichert in:
Datum: | 2011 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | Russian |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2011
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/111698 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites / R.A. Lyubushkin, O.N. Ivanov,V.P. Chuev, A.A. Buzov // Вопросы атомной науки и техники. — 2011. — № 6. — С. 175-178. — Бібліогр.: 12 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111698 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1116982017-01-14T03:03:03Z Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites Lyubushkin, R.A. Ivanov, O.N. Chuev, V.P. Buzov, A.A. Физика и технология конструкционных материалов At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. Y₂O₃-stabilized tetragonal zirconia polycrystalline (YTZ/Al₂O₃) and CeO₂-stabilized tetragonal zirconia polycrystalline (CZA) ceramics with high-performance were prepared for dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering method. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the density of full sintered ceramics suggest that the material is relatively suitable for dental restoration. В даний час кераміка на основі діоксиду цирконію набуває великої популярності в стоматологічному протезуванні зважаючи на виняткові механічні та косметичні (прозорість і колір природних зубів) властивості, біоінертність. Композиційна кераміка Y₀.₁Zr₀.₉O₂/Al₂O₃-CeO₂ була синтезована зворотним співосадженням з водних розчинів і компактуванням методом холодного ізостатичного пресування та поетапного спікання на повітрі. Охарактеризовано властивості вихідного порошку методами БЕТ, просвічуючої мікроскопії і диференціальної скануючої калориметрії. Вивчено мікроструктуру, фазовий склад, мікротвердість і міцність на стискання консолідованого Y₀.₁Zr₀.₉O₂/Al₂O₃-CeO₂. В настоящее время керамика на основе диоксида циркония приобретает большую популярность в стоматологическом протезировании ввиду исключительных механических и косметических (прозрачность и цвет естественных зубов) свойств, биоинертности. Композиционная керамика Y₀.₁Zr₀.₉O₂/Al₂O₃-CeO₂ была синтезирована обратным соосаждением из водных растворов, компактирована методом холодного изостатического прессования и спечена пошагово на воздухе. Охарактеризованы свойства исходного порошка методами БЭТ, просвечивающей микроскопии и дифференциальной сканирующей калориметрии. Изучена микроструктура, фазовый состав, микротвердость и прочность на сжатие консолидированного Y₀.₁Zr₀.₉O₂/Al₂O₃-CeO₂. 2011 Article Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites / R.A. Lyubushkin, O.N. Ivanov,V.P. Chuev, A.A. Buzov // Вопросы атомной науки и техники. — 2011. — № 6. — С. 175-178. — Бібліогр.: 12 назв. — рос. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/111698 621.315.592 ru Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
Russian |
topic |
Физика и технология конструкционных материалов Физика и технология конструкционных материалов |
spellingShingle |
Физика и технология конструкционных материалов Физика и технология конструкционных материалов Lyubushkin, R.A. Ivanov, O.N. Chuev, V.P. Buzov, A.A. Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites Вопросы атомной науки и техники |
description |
At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. Y₂O₃-stabilized tetragonal zirconia polycrystalline (YTZ/Al₂O₃) and CeO₂-stabilized tetragonal zirconia polycrystalline (CZA) ceramics with high-performance were prepared for dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering method. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the density of full sintered ceramics suggest that the material is relatively suitable for dental restoration. |
format |
Article |
author |
Lyubushkin, R.A. Ivanov, O.N. Chuev, V.P. Buzov, A.A. |
author_facet |
Lyubushkin, R.A. Ivanov, O.N. Chuev, V.P. Buzov, A.A. |
author_sort |
Lyubushkin, R.A. |
title |
Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites |
title_short |
Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites |
title_full |
Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites |
title_fullStr |
Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites |
title_full_unstemmed |
Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites |
title_sort |
fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2011 |
topic_facet |
Физика и технология конструкционных материалов |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111698 |
citation_txt |
Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites / R.A. Lyubushkin, O.N. Ivanov,V.P. Chuev, A.A. Buzov // Вопросы атомной науки и техники. — 2011. — № 6. — С. 175-178. — Бібліогр.: 12 назв. — рос. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT lyubushkinra fabricationandpropertiesofyttriaceriadopedzirconiaaluminiaceramiccomposites AT ivanovon fabricationandpropertiesofyttriaceriadopedzirconiaaluminiaceramiccomposites AT chuevvp fabricationandpropertiesofyttriaceriadopedzirconiaaluminiaceramiccomposites AT buzovaa fabricationandpropertiesofyttriaceriadopedzirconiaaluminiaceramiccomposites |
first_indexed |
2025-07-08T02:33:25Z |
last_indexed |
2025-07-08T02:33:25Z |
_version_ |
1837044341679325184 |
fulltext |
УДК 621.315.592
FABRICATION AND PROPERTIES OF YTTRIA, CERIA DOPED
ZIRCONIA-ALUMINIA CERAMIC COMPOSITES
R.A. Lyubushkin, O.N. Ivanov, V.P. Chuev*, A.A. Buzov*
Joint Research Centre «Diagnostics of structure and properties of nanomaterials»,
Belgorod State National Research University, Belgorod, Russia;
*Experimental Plant «VladMiva», JSC, Belgorod, Russia
E-mail: Ivanov.Oleg@bsu.edu.ru
At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clin-
ically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based
ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest
its suitability for posterior fixed partial dentures. Y O -stabilized tetragonal zirconia polycrystalline (YTZ2 3 /Al2O3)
and CeO -stabilized tetragonal zirconia polycrystalline (2 CZA) ceramics with high-performance were prepared for
dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering me-
thod. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the
density of full sintered ceramics suggest that the material is relatively suitable for dental restoration.
INTRODUCTION
At present, zirconia-based ceramics are gaining pop-
ularity in dentistry, particularly in fixed prosthodontics.
Сlinically, it is important that ceramic restorations re-
produce the translucency and color of natural teeth [1].
At ambient pressure, unalloyed zirconia can assume
three crystallographic forms depending on the tempera-
ture. At room temperature and upon heating up to
1170 °C, the symmetry is monoclinic (P21/c). The
structure is tetragonal (P42/nmc) between 1170 and
2370 °C and cubic (Fm3m) above 2370 °C and up to the
melting point [2, 3]. The transformation from the tetra-
gonal (t) phase to the monoclinic (m) phase upon cool-
ing is accompanied by a substantial increase in volume
(~ 4.5 %), sufficient to lead to catastrophic failure. This
transformation is reversible and begins at ~950 °C on
cooling. Alloying pure zirconia with stabilizing oxides
such as CaO, MgO,Y2O3 or CeO2 allows the retention of
the tetragonal structure at room temperature and there-
fore the control of the stress-induced t→m transforma-
tion, efficiently arresting crack propagation and leading
to high toughness [1, 4, 5].
Zirconia based ceramics is a high performance mate-
rial with excellent biocompatibility and mechanical
properties, which suggest its suitability for posterior
fixed partial dentures. Y O -stabilized tetragonal zircon-
nia polycrystalline (YTZ
2 3
/Al2O3) and CeO -stabilized
tetragonal zirconia polycrystalline (
2
CZA) ceramics with
high-performance were prepared for dental application
by use the wet chemical route, consolidated by cold
isostatic pressing, and two-step sintering method. Physi-
cal and mechanical properties test results show that the
bending strength, fracture toughness, and the density of
full sintered ceramics suggest that the material is rela-
tively suitable for dental restoration.
EXPERIMENTAL PROCEDURE
Aqueous solutions of Al(NO3)3·9H2O,
ZrO(NO
The specific surface area of the final powders is de-
termined by the BET surface area analysis and is calcu-
lated as 79 m3)2 ·4H2O, Y(NO3)3·6H2O and (NH4)2Ce(NO3)6
were used as the starting materials. The mixed hydrogel
was obtained by adding 1:1 NH3 solution to the mixed
aqueous solution maintained at 25 °C with continuous
stirring. The viscosity of the batch gradually increased
and finally set to gel at pH 8.7. The gels were then aged
at room temperature for 48 h. After aging, the gel was
repeatedly washed with boiled distilled water to remove
extraneous impurities and filtered. The filtered cake was
dried at 40 °C for 48 h. The synthesized specimens were
characterized for specific average surface area (BET)
TriStar II 3020, DTA/TG (SDT Q600) and TEM
(JEM 2010). The dried gel was calcined in a muffle
furnace at 700 °C for 4 h in air. Samples were cold isos-
tatic pressed at 300 MPa for 3 minutes. Subsequently
two-step sintering methods were adapted for the sam-
ples. In the first step, a slow thermal debinding profile
with a very slow heating rate (1 K min−1 to 600 °C held
for 2 hours; and 5 K min−1 to 1100 °C held for 2 hours
and 5 K min−1 to room temperature) was carried out in
Nabertherm Furnace in an atmosphere environment. In
the second step, the samples were sintered in air at
1350 °C for 2 hours, followed by 5 K min−1 cooling
down to room temperature. Sinterability was evaluated
through the shrinkage, density value. The percent shrin-
kage measures the dimensional change of a sintered
body from a green body, as indicated by the fractional
shrinkage, ΔL/L0 in length. Specimens were character-
ized by XRD (Rigaku Ultima IV), AFM (Ntegra Aura),
SEM (Quanta 200 3D). Mechanical properties (micro-
hardness and fracture toughness) were measured using
INSTRON Vickers microhardness-tester 402MVD and
fracture toughness tester INSTRON 5882.
RESULTS AND DISCUSSION
The synthesized powder was characterized for spe-
cific average surface area and TEM was used for the
determination of exact particle size. Most of the parti-
cles are spherical and in the range of 12…20 nm
(Fig. 1).
2/g. The DTA/TG result indicates three-
stage decomposition for pseudoboehmite and single
stage decomposition for amorphous Ce0.1Y0.1Zr0.8O2.
ВОПРОСЫ АТОМНОЙ НАУКИ И ТЕХНИКИ. 2011. №6.
Серия: Вакуум, чистые материалы, сверхпроводники (19), с. 175-178. 175
mailto:Ivanov.Oleg@bsu.edu.ru
Fig. 1. TEM image of the
10%Al2O3-90%Ce0.1Y0.1Zr0.8O2
10%Al2O3-90%Ce0.1Y0.1Zr0.8O2 powder was com-
pacted by cold isostatic pressing of green compacts at
300 MPa and calcined. Densification studies are carried
out in both the muffle furnace as well as a dilatometer in
atmospheric conditions.
The sintering was carried out without any isothermal
treatment with heating rate of 5 K/min. The small initial
shrinkage curve up to 100 °C of the compacts during
sintering is responsible for the expulsion of the residual
water from the sample (Fig. 2). The densification starts
at around 940 °C. Beyond 1145 °C, the slope has been
changed due to completion of α-Al2O3. Pores are also
eliminated with an achievement of 65 % of the theoreti-
cal density of that particular composition.
The present results exhibit the sintering without sin-
tering additive and isothermal treatment is mainly at-
tributed to high surface area of starting powders.
Fig. 2. Sintering of a green body
10%Al2O3-90%Ce0.1Y0.1Zr0.8O2
Microstructure of 10%Al2O3-90%Ce0.1Y0.1Zr0.8O2
studied by Atomic Force Microscopy (AFM) and scan-
ning electron microscopy (SEM) reveals that particles
are present as either intergranular or intragranular in the
ZrO2 matrix. The average grain size of alumina is about
500 nm – 1.5 µm and fairly homogeneous in the entire
matrix. Zirconia particles are smaller in size
(90…300 nm) and are isolated at grain boundaries be-
tween larger alumina grains. The microstructure of
10%Al2O3-90%Ce0.1Y0.1Zr0.8O2 is shown in Fig. 3, in
which the zirconia grains appear brighter compared to
the darker alumina grains.
Fig. 3. Microstructure of 10%Al2O3-90%Ce0.1Y0.1Zr0.8O2
However, the amount of porosity is greater than that
of sintered Y-TZP and comprises between 8 and 11 %
[6]. This partially explains the generally lower mechani-
cal properties of ceria-zirconia ceramics when compared
to 3Y-TZP dental ceramics [7]. It should be pointed out,
however, that Ce-Y-TZP ceramics usually exhibit better
thermal stability and resistance to low temperature deg-
radation than Y-TZP under similar thermo-cycling or
aging conditions [8, 9]. It was confirmed that the Ce-Y-
TZP ceramic was constituted of two crystalline phases,
a rhombohedral alumina matrix (Fig. 4), so-called α-
alumina (R-3c, hexagonal ICDD (PDF2008) and cubic
zirconia (Fm-3m ICDD (PDF2008)).
Fig. 4. XRD pattern of 10% Al2O3-90% Ce0.1Y0.1Zr0.8O2
sintered body sintered at 1350 °C for 2h
The X-ray mapping (EPMA analysis) of polished
and thermally etched surface showing the presence of
different elements (Al, Zr, Ce, Y) within the matrix is
illustrated in Fig. 5. The EPMA analysis shows an al-
most uniform distribution of Y2O3-CeO2-ZrO2 and alu-
mina.
This homogeneous distribution assists to enhance-
ment of the thermo-mechanical properties. The principal
merit of the microstructure observed in the 10%Al2O3-
90 % Ce0.1Y0.1Zr0.8O2 composites obtained by the chem-
ical wet route is the adequate relative grain size ratio
and phase distribution between the both phases, allow-
ing zirconia particles to be present mostly at grain
boundaries.
The mechanical properties of zirconia are the highest
ever reported for any dental ceramic. This may allow
the realization of posterior fixed partial dentures and
permit a substantial reduction in core thickness. These
capabilities are highly attractive in prosthetic dentistry,
where strength and esthetics are paramount.
176
Fig. 5. X-ray mapping (EPMA analysis) of polished and
thermally etched surface
10%Al2O3-90 % Ce0.1Y0.1Zr0.8O2
However, due to the metastability of tetragonal zir-
conia, stress-generating surface treatments such as
grinding or sandblasting are liable to trigger the t → m
transformation with the associated volume increase
leading to the formation of surface compressive stresses,
thereby increasing the flexural strength but also altering
the phase integrity of the material and increasing the
susceptibility to aging [6]. The low temperature degra-
dation (LTD) of zirconia is a well-documented phe-
nomenon, exacerbated notably by the presence of water
[10]. The consequences of this aging process are multi-
ple and include surface degradation with grain pullout
and microcracking as well as strength degradation.
Hardness was determined by the Vickers hardness
test. Vickers hardness values were calculated using Eq.
(1) where «P» was the applied load (N) and «d» was the
average of the diagonal length (m) and the angle be-
tween the opposite faces of the indenter (136°)
2d
PH α
ν = . (1)
Elastic modulus was determined by the resonance
vibration method. Flexural strength was measured by a
three-point bending test at room temperature. The ten-
sile surfaces of the specimens were polished with a di-
amond liquid suspension. The span length and the cross-
head speed were 30 mm and 0.5 mm/min, respectively.
The fracture toughness was estimated by the indenta-
tion-fracture method with the use of the following equa-
tion of Marshall and Evans [11]:
5.1
7.06.04.0
1 036.0
−
− ⎟
⎠
⎞
⎜
⎝
⎛=
α
α cPEK C , (2)
where E is the elastic modulus, P is the applied load, a
is the half length of the Vickers impression, and c is the
half length of the median crack.
The mechanical properties of the 10%Al2O3-
90%Ce0.1Y0.1Zr0.8O2 nanocomposite and Y-TZP are
listed in Table. The fracture toughness of the Ce-Y-
TZP/Al2O3 was much higher than that Y-TZP, whereas
the toughness values measured by the indentation-
fracture method might be overestimated because of the
rising R-curve behavior of Ce-Y-TZP/Al2O3.
The alumina grains prevent nucleation of zirconia mo-
noclinic phase and prevent transformation propagation
to neighboring zirconia grains, and due to the mismatch
in the elastic module between alumina and zirconia, the
transformation of bulk grains becomes severely re-
stricted. On the other hand, surface grains can accom-
modate such strain in a vertical direction, which may
lead to grain pop-out and detachment.
Mechanical properties of the 10%Al2O3-
90 % Ce0.1Y0.1Zr0.8O2 and Y-TZP
Composites
Proporties 10 % Al2O3-
90 % Ce0.1Y0.1Zr0.8O Y0.55Zr0.93O2
Flexural
strength 507 ± 65 MPa 1003 ± 132
MPa
Vickers hard-
ness νH 6 GPa 13.5 GPa
Fracture
ughness CK1to 8.2±0.2 MPa·m1/2 6.0 ± 0.2
MPa·m1/2
Elastic m d- 87 GPa 200 GPa o
ulus E
Th -
p - 10.1 μm/◦C 10.4 μm/◦C
ermal ex
ansion coeffi
cient α
CONCLUSION
This technique ides a straight-
for
ther indicate that the product can be
use
ACKNOWLEDGEMENTS
This wor work of the
federal target program No. 13.G25.31.0006.
of preparation prov
ward method for the preparation of Y O -, CeO -
doped ZrO -
2 3 2
2 Al2O3 nanocrystalline homogeneous solid
solutions at low temperatures and for shorter annealing
times, reducing segregation of the components. The
mechanical properties of obtained ceramic strongly de-
pend on its grain size. Above a critical grain size,
YTZ/Al2O3 is less stable and more susceptible to spon-
taneous t → m transformation whereas smaller grain
sizes (< 1 μm) are associated with a lower transforma-
tion rate [12]. Moreover, below a certain grain size
(~ 0.2 μm), the transformation is not possible, leading to
reduced fracture toughness. Consequently, the sintering
conditions have a strong impact on both stability and
mechanical properties of the final product as they dictate
the grain. Higher sintering temperatures and longer sin-
tering times lead to larger grain sizes. High fracture
toughness of 90 % Ce0.1Y0.1Zr0.8O2 is attributed to the
presence of a coupled mechanism of stress-induced
transformation toughening and transformation-induced
microcrack toughening, and high flexural strength of the
ceramics is a coupled result of small-size flaw and high
fracture toughness.
These results fur
d as a promising new ceramic material to fabricate
dental base crowns and bridges. Composite (CZA) not
only exhibited higher strength, but might also have
higher fracture toughness when compared with YTZ/
Al O . 2 3
k was performed in the frame
177
REFERENCES
1. R.C. Garvie, R Pasco.H. Hannink, R.T.
1975, v. 258, p.703–
e. Ceramic
steel // Nature. 704.
logy of zir-
3.
nterrelation // Key Eng Mater.
4. R
eram Soc. 1972, v. 55,
5.
on toughening: an overview // J. Am
6.
d alumina/zirconia-
7.
ess and microstructure of a
8. K Mechanical properties and thermal sta-
9. . Shimada. Strength, fracture tough-
10. imada. Transformation of
11. awlings. Vickers indentation
12. m, M.J. Mayo. Fracture toughness of
Статья поступила в редакцию 17.10.2011 г.
СОЗДАНИЕ И СВОЙСТВА ЛЕГИРОВАННЫХ ИТТРИЕМ И ЦЕРИЕМ
В настоящее время керам ю популярность в стома-
тол
СТВОРЕННЯ ТА ВЛАСТИВОСТІ АНИХ ІТРІЄМ І ЦЕРІЄМ
В даний час кераміка на рності в стоматологічному
про
2. E.C. Subbarao. Zirconia-an overview // Heuer AH,
Hobbs LW / editors. Science and techno
conia. Columbus, OH: The American Ceramic Soci-
ety; 1981, p. 1–24.
E. Kisi, C. Howard. Crystal structures of zirconia
phases and their i
1998, v.153/154, p.1–35.
.C. Garvie, P.S. Nicholson. Phase analysis in zirco-
nia systems // J. Am C
p. 303–305.
A.H. Heuer, F.F. Lange, M.V. Swain, A.G. Evans
Transformati
Ceram. Soc. 1986, v.69, p. i–iv.
M. Guazzato, M. Albakry, M.V. Swain, S.P. Ringer.
Microstructure of alumina- an
glass infiltrated dental ceramics // Bioceramics.
2003, v.15, p. 879-882.
M. Guazzato, M. Albakry, S.P. Ringer, M.V. Swain.
Strength, fracture toughn
selection of all-ceramic materials. Part II. Zirconia-
based dental ceramics // Dent Mater. 2004, v. 20,
p. 449-456.
. Tsukuma.
bility of CeO2 containing tetragonal zirconia poly-
crystals // Am Ceram Soc Bull. 1986, v.65,
p.1386-1389.
K. Tsukuma, M
ness and Vickers hardness of CeO2-stabilzed tetra-
gonal ZrO2 polycrystals (Ce-TZP) // J. Mater. Sci.
1985, v.20, p.1178-1184.
T. Sato, S. Ohtaki, M. Sh
yttria partially stabilized zirconia by low-
temperature annealing in air // J. Mater. Sci. 1985,
v.20, p.1466-1470.
C.B. Ponton, R.D. R
fracture toughness test. Part 1—review of literature
and formulation of standardized indentation tough-
ness equations // Mater. Sci. Technol. 1989, v.5,
p.865-872.
B.A. Cotto
nanocrystalline ZrO2–3mol% Y2O3 determined by
Vickers indentation // Scripta Mater. 1996, v.34,
p. 809.
ЦИРКОНИЙ-АЛЮМИНИЕВЫХ КЕРАМИЧЕСКИХ КОМПОЗИТОВ
Р.А. Любушкин, О.Н. Иванов, В.Р. Чуев, А.А. Бузов
ика на основе диоксида циркония приобретает большу
огическом протезировании ввиду исключительных механических и косметических (прозрачность и цвет
естественных зубов) свойств, биоинертности. Композиционная керамика Y Zr O0.1 0.9 2/Al2O3-CeO была синте-
зирована обратным соосаждением из водных растворов, компактирована методом холодного изостатическо-
го прессования и спечена пошагово на воздухе.
2
Охарактеризованы свойства исходного порошка методами
БЭТ, просвечивающей микроскопии и дифференциальной сканирующей калориметрии. Изучена микро-
структура, фазовый состав, микротвердость и прочность на сжатие консолидированного Y Zr O0.1 0.9 2/Al2O3-
CeO . 2
ЛЕГОВ
ЦИРКОНІЙ-АЛЮМІНІЄВИХ КЕРАМІЧНИХ КОМПОЗИТІВ
Р.А. Любушкін, О.М. Іванов, В.Р. Чуєв, А.А. Бузов
основі діоксиду цирконію набуває великої популя
тезуванні зважаючи на виняткові механічні та косметичні (прозорість і колір природних зубів) властиво-
сті, біоінертність. Композиційна кераміка Y Zr O0.1 0.9 2/Al2O3-CeO2 була синтезована зворотним співосаджен-
ням з водних розчинів і компактуванням методом холодного ізостатичного пресування та поетапного спі-
кання на повітрі. Охарактеризовано властивості вихідного порошку методами БЕТ, просвічуючої мікроско-
пії і диференціальної скануючої калориметрії. Вивчено мікроструктуру, фазовий склад, мікротвердість і мі-
цність на стискання консолідованого Y Zr O0.1 0.9 2/Al2O3-CeO .2
178
|