Some Considerations on Failure of Solids and Liquids

Процесс разрушения как твердых, так и жидких тел в сплошной среде можно рассматривать как единое физическое явление. Математически описать его можно при выполнении некоторого предельного условия, в котором обычно учитывается напряженное состояние материала. Анализ классических теорий разрушения тв...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2010
Hauptverfasser: Brighenti, R., Carpinteri, A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2010
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/111719
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Some Considerations on Failure of Solids and Liquids/ R. Brighenti, A. Carpinteri// Проблемы прочности. — 2010. — № 2. — С. 39-54. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111719
record_format dspace
spelling irk-123456789-1117192017-01-14T03:03:31Z Some Considerations on Failure of Solids and Liquids Brighenti, R. Carpinteri, A. Научно-технический раздел Процесс разрушения как твердых, так и жидких тел в сплошной среде можно рассматривать как единое физическое явление. Математически описать его можно при выполнении некоторого предельного условия, в котором обычно учитывается напряженное состояние материала. Анализ классических теорий разрушения твердых тел (с точки зрения пластичности и механики разрушения) и современной теории разрушения жидких тел (явление кавитации с учетом максимального значения главного напряжения) позволил обнаружить общие закономерности в условиях их разрушения. В рамках общего подхода к разрушению тел предложено использовать для описания предельного условия разрушения такой параметр поля напряжений как трехосность напряженного состояния. Показано, что функции коллапса для твердых и жидких тел в сплошной среде имеют подобный вид. Процес руйнування твердих і рідких тіл у суцільному середовищі можна розглядати як єдине фізичне явище. Математично описати його можна при виконанні деякої граничної умови, в якій зазвичай враховується напружений стан матеріалу. Аналіз класичних теорій руйнування твердих тіл (із точки зору пластичності і механіки руйнування) і сучасної теорії руйнування рідких тіл (явище кавітації з урахуванням максимального значення головного напруження) дозволив виявити загальні закономірності в умовах їх руйнування. У рамках загального підходу до руйнування тіл запропоновано використовувати для описування граничної умови руйнування такий параметр поля напружень, як тривісний напружений стан. Показано, що функції коллапса для твердих і рідких тіл у суцільному середовищі подібні. 2010 Article Some Considerations on Failure of Solids and Liquids/ R. Brighenti, A. Carpinteri// Проблемы прочности. — 2010. — № 2. — С. 39-54. — Бібліогр.: 28 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/111719 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Brighenti, R.
Carpinteri, A.
Some Considerations on Failure of Solids and Liquids
Проблемы прочности
description Процесс разрушения как твердых, так и жидких тел в сплошной среде можно рассматривать как единое физическое явление. Математически описать его можно при выполнении некоторого предельного условия, в котором обычно учитывается напряженное состояние материала. Анализ классических теорий разрушения твердых тел (с точки зрения пластичности и механики разрушения) и современной теории разрушения жидких тел (явление кавитации с учетом максимального значения главного напряжения) позволил обнаружить общие закономерности в условиях их разрушения. В рамках общего подхода к разрушению тел предложено использовать для описания предельного условия разрушения такой параметр поля напряжений как трехосность напряженного состояния. Показано, что функции коллапса для твердых и жидких тел в сплошной среде имеют подобный вид.
format Article
author Brighenti, R.
Carpinteri, A.
author_facet Brighenti, R.
Carpinteri, A.
author_sort Brighenti, R.
title Some Considerations on Failure of Solids and Liquids
title_short Some Considerations on Failure of Solids and Liquids
title_full Some Considerations on Failure of Solids and Liquids
title_fullStr Some Considerations on Failure of Solids and Liquids
title_full_unstemmed Some Considerations on Failure of Solids and Liquids
title_sort some considerations on failure of solids and liquids
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2010
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/111719
citation_txt Some Considerations on Failure of Solids and Liquids/ R. Brighenti, A. Carpinteri// Проблемы прочности. — 2010. — № 2. — С. 39-54. — Бібліогр.: 28 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT brighentir someconsiderationsonfailureofsolidsandliquids
AT carpinteria someconsiderationsonfailureofsolidsandliquids
first_indexed 2025-07-08T02:35:05Z
last_indexed 2025-07-08T02:35:05Z
_version_ 1837044446405853184
fulltext UDC 539.4 Some Considerations on Failure of Solids and Liquids R. Brighenti and A. Carpinteri Department of Civil and Enviromental Engineering & Architecture, University of Parma, Parma, Italy ÓÄÊ 539.4 O íåêîòîðûõ îáùèõ çàêîíîìåðíîñòÿõ ðàçðóøåíèÿ òâåðäûõ è æèäêèõ òåë Ð. Áðèãåíòè, À. Êàðïèíòåðè Îòäåëåíèå ãðàæäàíñêîãî ñòðîèòåëüñòâà, ýêîëîãèè è àðõèòåêòóðû, Óíèâåðñèòåò ã. Ïàðìû, Ïàðìà, Èòàëèÿ Ïðîöåññ ðàçðóøåíèÿ êàê òâåðäûõ, òàê è æèäêèõ òåë â ñïëîøíîé ñðåäå ìîæíî ðàññìàò- ðèâàòü êàê åäèíîå ôèçè÷åñêîå ÿâëåíèå. Ìàòåìàòè÷åñêè îïèñàòü åãî ìîæíî ïðè âûïîëíåíèè íåêîòîðîãî ïðåäåëüíîãî óñëîâèÿ, â êîòîðîì îáû÷íî ó÷èòûâàåòñÿ íàïðÿæåííîå ñîñòîÿíèå ìàòåðèàëà. Àíàëèç êëàññè÷åñêèõ òåîðèé ðàçðóøåíèÿ òâåðäûõ òåë (ñ òî÷êè çðåíèÿ ïëàñòè÷- íîñòè è ìåõàíèêè ðàçðóøåíèÿ) è ñîâðåìåííîé òåîðèè ðàçðóøåíèÿ æèäêèõ òåë (ÿâëåíèå êàâèòàöèè ñ ó÷åòîì ìàêñèìàëüíîãî çíà÷åíèÿ ãëàâíîãî íàïðÿæåíèÿ) ïîçâîëèë îáíàðóæèòü îáùèå çàêîíîìåðíîñòè â óñëîâèÿõ èõ ðàçðóøåíèÿ.  ðàìêàõ îáùåãî ïîäõîäà ê ðàçðóøåíèþ òåë ïðåäëîæåíî èñïîëüçîâàòü äëÿ îïèñàíèÿ ïðåäåëüíîãî óñëîâèÿ ðàçðóøåíèÿ òàêîé ïàðàìåòð ïîëÿ íàïðÿæåíèé êàê òðåõîñíîñòü íàïðÿæåííîãî ñîñòîÿíèÿ. Ïîêàçàíî, ÷òî ôóíêöèè êîë- ëàïñà äëÿ òâåðäûõ è æèäêèõ òåë â ñïëîøíîé ñðåäå èìåþò ïîäîáíûé âèä. Êëþ÷åâûå ñëîâà: ðàçðóøåíèå, èçëîì, êàâèòàöèÿ, òðåõîñíîñòü íàïðÿæåííîãî ñîñòîÿíèÿ, òâåðäûå òåëà, æèäêîñòè. N o m e n c l a t u r e a – characteristic dimension of a defect B – material’s mechanical parameter D u[ ] – symmetric part of the gradient of the velocity field u E G, � – Young’s and shear moduli, respectively g – acceleration of gravity G G c, I – fracture energy and critical fracture energy under Mode I, respectively I1 – first invariant of the stress tensor J 2 – second invariant of the deviatoric stress tensor K I – stress intensity factor (SIF) K cI – fracture toughness (plane strain condition) p – hydrostatic pressure in a liquid under static condition p Tc ( ) – liquid’s cavitation threshold pressure © R. BRIGHENTI, A. CARPINTERI, 2010 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 39 S, sij – deviatoric stress tensor S ij – principal stresses of the deviatoric stress tensor S (i j, , ,�1 2 3) t T, – stress triaxiality and temperature, respectively u�{ }u v w – velocity field in the x x x1 2 3, , coordinate system Y – dimensionless SIF or geometric correction factor � – liquid dynamic viscosity � – hydrostatic stress component of the stress tensor � �, – parameter’s of the failure criterion adopted for solids � – mass density s s, – normal and shear stress, respectively – stress tensor i – principal stresses of the stress tensor (i�1 2 3, , ) 0 – remote applied stress [ ]u – shear stress tensor in a moving liquid Introduction. Failure in continuum media, solids or liquids, can be regarded as a single physical phenomenon which is determined by the fulfilment of a limit condition which generally involves the stress field in the medium under study. Failure conditions can be easily and conveniently written in terms of the stress invariants and the deviatoric stress invariants, and this approach is used in the following. By considering the classical theory of plasticity or fracture mechanics concepts in the context of failure of solids and a recent theory on the cavitation phenomenon in the context of liquids, a unified discussion is herein presented, showing as the collapse functions present a similar form for both classes of continuum materials. Furthermore, by introducing a stress field parameter (the stress triaxiality), the limit conditions of collapse for both classes of materials can be simply represented through the same equation by only setting the involved material’s parameters appropriately. The values assumed by such parameters can give us useful information about the kind of expected failure. Local collapse of continuum media, for both solids (mainly brittle solids) and liquids, frequently appears as a loss of continuity of the material. The above phenomenon occurs through the formation of cracks or high strain deformation due to plastic flow in solids, or as the appearance of voids or bubbles (due to the so-called cavitation phenomenon) in liquids. Several studies have been carried out on collapse of solids. The classical plasticity has been described by a well established theory [1, 2] (up to recent studies on crystal plasticity [3, 4]), as well as fracture mechanics that dates back to the pioneering researches carried out by Griffith [5, 6] and to the rigorous mathematical approach performed by Westergaard [7], up to subsequent works by Liebowitz [8] and Sih [9] and the recent studies of fracture at microscopic and nanoscale level [10, 11]. Liquid collapse, also known as liquid cavitation, has also been studied by several authors [12–18]. By considering a stress-based approach to the mentioned failure phenomena in solids and liquids [4, 12], similar governing equations can be found. R. Brighenti and A. Carpinteri 40 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 1. Failure in Solids: Plastic Collapse and Fracture Collapse. Failure in solids can be regarded as an irreversible phenomenon which involves a great rearrangement of the solid structure accompanied by energy dissipation. Such an irreversible modification of the material structure can appear as a plastic flow due to the sliding – at the microscopic scale – of the lattice structure of the material, characterized by high plastic strain level (typical of the so-called ductile materials) or as a loss of continuity, due to a large strain localization (as usually occurs in brittle materials). Fracture in solids is a common phenomenon which usually takes place due to the growth and coalescence of microcracks or voids, produced by the stressed state in the material, up to the formation of a macrodefect which can be mathematically represented as a strain localization in a narrow band which identifies the fracture position. Typical approaches to the fracture phenomenon are the well-known SIF criterion {descending from the classical Westergaard solution in linear elastic fracture mechanics (LEFM) [7]} and the energy criterion introduced by Griffith [5, 6]. The critical SIF criterion for catastrophic fracture under pure Mode I can be written as follows: K Y a K cI I� � �0 , (1) where Y is the so-called geometric correction factor (or dimensionless SIF), 0 is the applied remote stress, a is a characteristic size of the existing crack, and K cI is the fracture toughness of the material under given environmental conditions. As mentioned above, the fracture phenomenon can also be analyzed through an energy-based approach. For example, by considering a tensile loading of infinite plate containing a straight crack with length 2a [in such a case: Y �1 in Eq. (1)], the energy criterion for collapse states that [5, 6]: G a E G c� �� 0 2 I , (2) where G is the fracture energy, i.e., the energy per unit crack surface, available (in the mechanical system) for crack extension. The above two approaches to fracture can be linked by the classical relationships: G K Ec cI I� 2 (plane stress), G K Ec cI I� ( )1 2 2� (plane strain). (3) Such fracture mechanics approaches assume that fracture process occurs starting from a pre-existing crack or defect having a characteristic size a, which instantaneously grows when the critical condition [either (1) or (2)] is fulfilled. In other words, in the (theoretical) case of absence of any defect, fracture mechanics approach leads to the erroneous conclusion that no failure occurs, irrespective of the stress level in the body. Some Considerations on Failure of Solids and Liquids ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 41 In macroscopically non-damaged solids, the failure process can be regarded as a breaking or a decohesion phenomenon produced by a sufficiently high stress level, which must be greater than the tensile strength, f t , of the material. The collapse condition in a material under uniform tension, 0 , can be generally stated as follows: �1� � � � � � � � �min ,f EG at cI or �1� � � � � � �min , ,f K Y a t cI (4) where the maximum principal stress 1 0� is used. From such an equation, a characteristic flaw dimension a0 , below which collapse is strength-like and above which collapse is fracture-like, can be identified: a EG f c t 0 2 � I � (fracture-like collapse), (5a) a EG f c t 0 2 � I � (plastic-like collapse). (5b) In the context of plasticity, a more general and common failure criterion, which has a wide applicability for several materials, is the so-called Drucker criterion [2], usually expressed by means of the stress invariants. In the present paper, the criterion is written as follows: I J k1 2 0� �� � | with k p� 3 , �� � �� � � � � �3 3 3k f f c c t t , (6) where the material parameters � and k can be determined by considering two different stressed states at failure: a hydrostatic failure compressive stress field p , and a uniform tensile failure stress field f t . The dimensionless ratio c in Eq. (6) is defined as c f t p� . For compressive hydrostatic-insensitive materials, the parameter � is approximately equal to 3 3 and k is equal to 3 p , and the criterion (6) becomes I J p1 23 3 3 � | | or equivalently: � �� 3 2| |J p , (7) where � is the mean stress or hydrostatic pressure (� � �tr ii3 3). Among the various parameters to identify the stressed state ‘quality’ in a point of a continuum, the stress triaxiality factor [19–23] can be used: t tr J J I J � � � 1 3 3 2 2 1 2 �| | | | | | , (8) 42 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 R. Brighenti and A. Carpinteri i.e., the ratio between the mean hydrostatic stress and a quantity that measures the root of the distortional energy (equivalent to the von Mises stress). From the above definition, it can be deduced that t�� for purely hydrostatic stressed states, t�0 for purely shear stressed states, and t�1 3 for an uniaxial 3D stressed state. By using such a definition, the condition (4) can be written as | |( ) min ,J t f EG at c 2 1� � � � � � � � � � I � or | |( ) min , ,J t f K Y a t c 2 1� � � � � � � �I � (9) where the maximum principal stress is written as 1 2 1� | |( ),J t as is discussed below. On the other hand, by considering the Druker plastic collapse criterion, we get: | |J t k 2 3 3 � � � � � � � �� (10) and, in the particular case expressed by Eq. (7), the criterion becomes: | |( ) .J t p2 3 � � (11) The above failure expressions (9) and (11) can be summarized in the following general equation: | |( ) ,J t B2 � � �� (12) where � and B are material constants as is discussed below. It can be observed [25–28] that the stress triaxiality can provide a simple parameter to identify the type of collapse: stress triaxiality lower than zero ( t�0 corresponds to a pure shear situation) produces a shear-type plastic flow collapse, which can be identified as a special case of fracture process, while positive triaxiality produces a void formation-type fracture process (fracture along a direction normal to the principal stress) [27, 28]. Experimental observations [21] have shown that fracture never occurs for t� 1 3. 2. “Fracture” in Liquids: The Cavitation Phenomenon. Generally speaking, liquid failure can be identified by the appearance of voids or bubbles in the liquid with loss of continuity and, consequently, the well-known corrosion in solid parts which are in contact which such broken zones produced by the so-called cavitation phenomenon. The knowledge of the stressed state in a liquid is fundamental to predict the possibility of liquid breaking. The stressed state � ij can be generally written as � � �p 1 u[ ], (13) where p is a scalar that represents the hydrostatic pressure (a positive value of p indicates hydrostatic compression), 1 is the identity tensor, and is the shearing ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 43 Some Considerations on Failure of Solids and Liquids stress tensor which can be determined by an appropriate constitutive law depending on the liquid under consideration. Generally, the shearing stress tensor can be written as an appropriate function of the velocity. As an example, a simple linear constitutive equation can be assumed for a Newtonian liquid: �[ ] [ ],u D u� �2 (14) where � is the dynamic viscosity, and D u[ ] is the symmetric part of the gradient of the velocity vector ui , D u u u[ ] ( ) ( ),, ,� � � � �D u uij T i j j i1 2 1 2� � i�1, 2, 3. According to the above hypothesis, the stress tensor can be rewritten as � �ij ij i j j ip u u� � �( ),, , (15) where the symbol � ij denotes the Kroneker delta function. As is well-known, the following relationship holds for an incompressible liquid: div u tr ui i� � �D u[ ] , 0 (mass conservation equation). From the previous equation, it can be stated that tr tr �� �( [ ]) .2 0D u In this case, the mean hydrostatic pressure becomes: p tr ii� � 1 3 1 3 . (16) The above equation is true for a liquid in a static condition for which the hydrostatic pressure p represents the average of the principal stresses. In a flowing liquid, the average of the principal stresses has not significance [16, 18], and the hydrostatic pressure p also depends on the stresses given by (14). In such a general case, p tr� 1 3 ( ) since tr 0, as occurs for a constitutive relationship different from the classical constitutive relationship (which holds for the so-called non-Newtonian liquids) expressed by Eq. (14). In this last case, Eq. (13) can be rewritten as �� � � � � �p S1 1 , (17) where p tr� 1 3 ( ), � � � 1 3 1 3tr p tr , and S is the deviatoric stress tensor for which tr sijS� �0 holds (the scalars and are assumed positive for hydrostatic compression states). The breaking phenomenon in a liquid, commonly known as cavitation, takes place by the formation of bubbles inside the liquid and is classically identified by the following condition [18]: p p Tc� ( ) (cavitation), (18a) p p Tc! ( ) (no cavitation), (18b) where p Tc( ) is the cavitation threshold (negative) pressure of the considered liquid at a given temperature T. The above condition can be rewritten for liquids in 44 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 R. Brighenti and A. Carpinteri motion, by considering the principal stresses instead of the average pressure p which can loose significance in such a case [18]. The previous hypothesis requires the determination of the maximum (principal) stresses and of the corresponding directions in a point of the liquid. Principal stresses in the coordinate system coincident with the principal stress directions can be determined by considering that the stress tensor has a diagonal form in such a coordinate system: diag diag diag � �� � � � � �( )1 1 SS (19a) or � 1 2 3 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 " # $ $ $ % & ' ' ' � " # $ $ $ % & ' ' ' �diagS. (19b) In two dimensions, the above relationship becomes: � � 1 2 11 22 0 0 1 0 0 1 0 0 1 0 0 1 " # $ % & '� " # $ % & '� " # $ % & '� " # $ S S % & '� " # $ % & ' S S 11 11 0 0 since S S11 22 0� � , (20) where the principal stresses of the deviatoric tensor S, S 11 , S 22 , are equal to S s s11 11 2 12 2 1 2� �( ) ,/ S s s22 11 2 12 2 1 2� �( ) / (since s s11 22� ), and the term sij � � � � �ij ij is the generic component of S. Since the principal stresses of the deviatoric tensor S are: S 11 1 1 2 1 2 � � ( ), S 22 2 1 2 1 2 � � ( ), (21) the maximum difference between the maximum ( 1) and the minimum ( 2) principal stress is equal to 1 2 11 22 112 � �S S S . The condition of rupture (18), formulated in terms of the maximum principal stress, becomes: 1� pc (22a) or � � � �1 11 11 2 12 2 1 1 2 1 2 2 1 2 1 2� � � � � � �S s s u u u( ) [ ( ) ], , , / pc . (22b) When the above condition is fulfilled, a slit vacuum cavity initially opens in a direction perpendicular to the maximum tension axis; subsequently the flow vorticity can rotate the major axis of the ellipse, and vapour fills the created cavity [18]. If also �2 22� �S pc then the cavity opens also along the other principal direction. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 45 Some Considerations on Failure of Solids and Liquids The above criterion must be corrected in presence of impurities (such as bubbles, etc.) that facilitate the cavitation phenomenon. If a defect having a characteristic dimension a, is supposed to exist in a point of the liquid, Eq. (22) can be written as follows [16]: 1� � �p a T K T a p Tc c c( , ) ( ) ( ) , (23) where K Tc( ) is a material parameter for a given temperature T. Similar to the case of collapse in solids, the cavitation phenomenon, in general, takes place when the following condition is fulfilled [16]: 1� � � � � � � � ��min ( ) , ( ) ( ) .p T K T a K T a c c c (24) Defining the stress triaxiality factor similar to the case of solids (see Section 1): t J�� 2 with J s s s2 11 22 12 2� , (25) the maximum principal stress can be rewritten as follows: � � �1 11 2 12 2 1 2 11 22 12 2 1 2 2� � � � � ( ) ( ) ./ /s s s s s J (26) Then, the cavitation phenomenon takes place when 1 2 1� �J t pc( ) . (27) As can be also observed under pure shear (t�0), liquid rupture can occur when J pc2 � . If a high level of hydrostatic compressive pressure exists ( ,t!!0 since �!0 for hydrostatic compression), 11 2 1 0� �J t( ) and no cavitation occurs. Some examples of fracture collapse in solids and fluids are given in Fig. 1. 46 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 R. Brighenti and A. Carpinteri Fig. 1. Fracture collapse in a ductule (a) or brittle (b) solid material and rupture (cavitation) in a liquid (c). a cb 3. Discussion. From the previous Sections, we can deduce that the failure condition in flawed solids [see Eqs. (9) and (11)] and that in liquids [see Eq. (27)] present a similar form which can be synthesized as follows: 1 2 1 21� � �J t C C( ) min( , ), (28a) where C C f EG a K Y a p T K T a t c c c c 1 2, , , ( ) , ( ) � �I I for solids for � � liquids, ( ) * * + * * (28b) where the same definition of � is used for both solids and liquids, i.e., � �1 3 tr (instead of � � 1 3 tr as usually made for liquids). Equation (29) is valid for both solids and liquids once the constants C1 and C 2 are appropriately defined. In the above general relationship, a difference in the meaning of the stress 1 must be considered: the failure in liquids takes place in the point where the principal stress attains the maximum value (the imperfections are assumed to be equally distributed in the liquid domain), while the stress in solids must be interpreted as the reference stress (applied to the structure) that produces the critical condition of the SIF. By considering the previous Sections, it can also be noted that the failure conditions in unflawed solids [see Eqs. (9) and (10)] and liquids [see Eq. (27)] have a similar form which can be synthesized in this way: J t B2 ( ) ,� �� � (29) where the material constants �, �, and B depend on the mechanical material behavior and the presence of defects. The values assumed by the three parameters involved in Eq. (29) are summarized in Table 1. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 47 Some Considerations on Failure of Solids and Liquids T a b l e 1 Parameters Involved in the General Failure Function, J t B2 ( )� �� � , for Both Unflawed and Flawed Solids and Liquids Material Mechanical behavior and defects Failure parameters � � B Solids Unflawed brittle 1 1 ft Unflawed ductile 1 � 3 k 3 Flawed 1 1 EG acI ( )� Liquids Unflawed 1 1 p Tc ( ) Flawed 1 1 p a T K T ac c( , ) ( )� In order to compare the failure phenomenon occurrence in unflawed solids and liquids, two 2D examples related to collapse in simple situations are discussed below. 3.1. Collapse of a Solid Undefined 2D Strip under Shear Load. As an example of application of the collapse functions determined above, an undefined 2D strip in plane stress condition, under self weight and an applied shear load, is considered in the present Section (Fig. 2). The stressed state in the material can be approximately defined by the following equations: �� " # $ % & '� � � � 11 12 21 22 1 S � � � � � " # $ % & '� �g h e x e h e x e2 1 2 1 0 0 1 2 1 2 2 ( ) ( ) ( ) ( ) � � � � � � � � � g h e x e G d h G d h g h e x e 2 1 2 1 2 1 2 1 2 2 [ ( ) ( )] [ ( ) ( )] " # $ $ $ % & ' ' ' , (30) where �, g , and �G are solid density, acceleration of gravity and shear modulus, respectively. Furthermore, d is the displacement applied to the top edge of the strip, and e x y� ( ) ( )0 0 is the ratio between the horizontal stress and the vertical stress at the bottom of the strip. In the principal stress coordinate system, the stress tensor becomes: diag � � � � � � " # $ % & '� g h e x e h e x e J 2 1 2 1 0 0 1 2 1 2 2 2( ) ( ) ( ) ( ) 0 0 2 " # $ $ % & ' 'J , (31) where J g h e x e G d h 2 2 2 2 2 2 2 24 1 2 1� � � �� [ ( ) ( )] . 48 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 R. Brighenti and A. Carpinteri Fig. 2. 2D infinite strip under self weight and shear load. It can be observed that, at the top free surface, we have: � � �� " # $ % & '� � � " # $ $ $ % & ' ' ' ghe ghe G d h G d h ghe2 1 0 0 1 2 2 , (32) diag � � ( )x h ghe g h e G d h 2 2 2 2 2 2 2 22 1 0 0 1 4 1 0 0 1 � � " # $ % & '� � � " # $ % & ', and J g h e G d h 2 2 2 2 2 2 24 � � ��, . By introducing the stress triaxiality t (which is a function of x 2 only): t x J g h e x e g h e x e ( ) ( ) ( ) [ ( ) ( ) 2 2 2 2 2 2 2 1 2 1 4 1 2 1 � � � � � � � � ] , 2 2 2 2 � �G d h (33) the maximum principal stress can be expressed as follows: � � 1 2 2 2 2 2 1 2 ( ) ( ( )) ( ) x J J t x g h x � � � � � � � � ��2 2 2 2 2 2 24 g h x G d h ( ) , (34) and the failure conditions can be written as 1 2 2 21( ) ( ( )) ,x J t x f t� � � J t k 2 3 3 � � � � � � � �� , (35) for an undamaged brittle or ductile material, respectively, or in dimensionless form: F x f J t x ft t 1 1 2 2 2 1 1 1 0� � � � ( ) ( ( )) , F J k t2 2 3 3 1 0� � � � � � � � � � . (36) ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 49 Some Considerations on Failure of Solids and Liquids In Fig. 3a, the qualitative collapse function patterns are displayed. As can be observed, the collapse for a ductile solid occurs first at the base of the strip, while the collapse for a brittle solid occurs first at the top of the strip. In Fig. 3b, the stress triaxiality factor along a vertical line of the solid strip is represented: such a parameter increases from the base to the top of the strip. 3.2. Collapse of a Liquid under Shear Flow. Fracture in liquids can occur even under shear flow if the maximum tension stress criterion described above is adopted. By assuming a one-dimensional flow with a velocity field expressed as follows (Fig. 4): { } { },u v w Ux h� 2 0 0 (37) the constitutive equation (14) becomes: �[ ] .u U h U h� " # $ $ $ % & ' ' ' 0 0 0 0 0 0 0 (38) The liquid is assumed to be in the gravity field (the direction of gravity is x 2). Under the previous hypothesis, the stressed state in the liquid (only quantities on plane x y are considered) can be expressed as follows: � � �� � � � " # $ % & '� " # $ % & '�1 S 11 12 21 22 2 1 0 0 1 0 g h x( ) U h U h 0 " # $ % & ', (39) where � and g are the liquid density and the acceleration of gravity, respectively. In the principal stress coordinate system, the stress tensor becomes: 50 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 R. Brighenti and A. Carpinteri Fig. 3. Brittle or ductile solid strip under shear: (a) collapse functions; (b) stress triaxiality factor. a b diag � �� " # $ % & '� " # $ % & 'g h x U h U h ( ) .2 1 0 0 1 0 0 (40) Therefore, at the free surface we have: diag �( ) .x h U h U h2 0 0 � � " # $ % & ' By introducing the stress triaxiality t (which is a function of x 2 only): t x J g h x h U ( ) ( ) ,2 2 2� � � � � (41) the maximum principal stress can be expressed in terms of such a parameter as � �1 2 2 2 21( ) ( ( )) ( ).x J t x U h g h x� � (42) The condition of liquid fracture (or cavitation) can be finally written as follows: � �1 2 2 2 21( ) ( ( )) ( ) ,x J t x U g h x pc� � � (43) or in dimensionless form: F x p p U gh p h x h c c c 1 1 2 2 1 1 0� � � � �( ) ( ) . (44) In Fig. 5, the qualitative collapse function pattern is displayed. As can be observed, since ( ) ,h x !2 0 the cavitation phenomenon takes place first at the top free surface of the liquid located at x h2� . In Fig. 5b, the stress triaxiality factor along a vertical line of the liquid is represented: it increases from the base to the top of the liquid domain. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 51 Some Considerations on Failure of Solids and Liquids Fig. 4. Shear flow of a liquid in the gravitational field. Conclusions. In the present paper, the failure phenomena in continuum media, solids or liquids, have been regarded as a single physical phenomenon which is determined by the fulfilment of a limiting condition. By considering the classical plasticity or fracture mechanics theory to describe the failure of solids and the theory of the cavitation phenomenon to describe the failure of liquids, a unified description has been proposed, showing that collapse functions present a similar form for both classes of continuum materials. The stress triaxiality, as a stress field parameter, allows us to express the limit conditions of collapse for both classes of materials through a single equation, i.e., the structure of the governing failure equation in both solids or liquids failure is the same. By appropriately setting the involved material parameters, the failure function can be explicitly written. The values of such parameters provide useful information about the type of expected failure. Acknowledgements. The authors gratefully acknowledge the research support for this work provided by the Italian Ministry for University and Technological and Scientific Research (MIUR). Ð å ç þ ì å Ïðîöåñ ðóéíóâàííÿ òâåðäèõ ³ ð³äêèõ ò³ë ó ñóö³ëüíîìó ñåðåäîâèù³ ìîæíà ðîçãëÿäàòè ÿê ºäèíå ô³çè÷íå ÿâèùå. Ìàòåìàòè÷íî îïèñàòè éîãî ìîæíà ïðè âèêîíàíí³ äåÿêî¿ ãðàíè÷íî¿ óìîâè, â ÿê³é çàçâè÷àé âðàõîâóºòüñÿ íàïðóæåíèé ñòàí ìàòåð³àëó. Àíàë³ç êëàñè÷íèõ òåîð³é ðóéíóâàííÿ òâåðäèõ ò³ë (³ç òî÷êè çîðó ïëàñòè÷íîñò³ ³ ìåõàí³êè ðóéíóâàííÿ) ³ ñó÷àñíî¿ òåî𳿠ðóéíóâàííÿ ð³äêèõ ò³ë (ÿâèùå êàâ³òàö³¿ ç óðàõóâàííÿì ìàêñèìàëüíîãî çíà÷åííÿ ãîëîâíîãî íàïðó- æåííÿ) äîçâîëèâ âèÿâèòè çàãàëüí³ çàêîíîì³ðíîñò³ â óìîâàõ ¿õ ðóéíóâàííÿ. Ó ðàìêàõ çàãàëüíîãî ï³äõîäó äî ðóéíóâàííÿ ò³ë çàïðîïîíîâàíî âèêîðèñòîâó- 52 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 R. Brighenti and A. Carpinteri a b Fig. 5. Liquid under shear flow: (a) collapse function along a vertical line of the liquid; (b) stress triaxiality factor. âàòè äëÿ îïèñóâàííÿ ãðàíè÷íî¿ óìîâè ðóéíóâàííÿ òàêèé ïàðàìåòð ïîëÿ íàïðóæåíü, ÿê òðèâ³ñíèé íàïðóæåíèé ñòàí. Ïîêàçàíî, ùî ôóíêö³¿ êîëëàïñà äëÿ òâåðäèõ ³ ð³äêèõ ò³ë ó ñóö³ëüíîìó ñåðåäîâèù³ ïîä³áí³. 1. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, London (1950). 2. D. C. Drucker, “Plasticity,” in: J. N. Goodier and J. H. Hoff (Eds.), Structural Mechanics, Pergamon Press, London (1960), pp. 407–445. 3. A. Acharya, “A model of crystal plasticity based on the theory of continuously distributed dislocations,” J. Mech. Phys. Sol., 49, 761–784 (2001). 4. V. L. Berdichevsky, “On thermodynamics of crystal plasticity,” Scripta Mater., 54, 711–716 (2006). 5. A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. Royal Soc. London, A221, 163–197 (1921). 6. A. A. Griffith, “The theory of rupture,” in: Proc. of the 1st Int. Conf. of Applied Mechanics (Delft, the Netherlands) (1924), pp. 55–63. 7. H. M. Westergaard, “Bearing pressure and cracks,” J. Appl. Mech., 6, 49–93 (1939). 8. H. Liebowitz (Ed.), Fracture (an Advanced Treatise), in 6 volumes, Academic Press, New York (1968). 9. G.C. Sih (Ed.), Mechanics of Fracture, vol. 1–5, Noordhoff Int. Publ., Leyden (1973). 10. S. L. Mielke, T. Belytschko, and G. C. Schatz, “Nanoscale fracture mechanics,” Annual Rev. Phys. Chem., 58, 185–209 (2007). 11. S. Huang, S. Zhang, T. Belytschko, et al., “Mechanics of nanocrack: fracture, disclocation emission, and amorphization,” J. Mech. Phys. Sol., 57, 840–850 (2009). 12. J. C. Fisher, “The fracture of liquids,” J. Appl. Phys., 19, 1062–1067 (1948). 13. R. T. Knapp, J. W. Daily, and F. G. Hammit, Cavitation, McGraw Hill, New York (1970). 14. Y. Chen and J. Israelachvili, “New mechanism of cavitation damage,” Science, 252, 1157–1160 (1991). 15. C. E. Brennen, Cavitation and Bubble Dynamics, Oxford University Press, Oxford (1995). 16. D. D. Joseph, “Cavitation in a flowing liquid,” Phys. Rev., E51, 1649–1650 (1995). 17. L. A. Archer, D. Ternet, and R. G. Larson, “‘Fracture’ phenomena in shearing flow of viscous liquids”, Rheol. Acta, 36, 579–584 (1997). 18. D. D. Joseph, “Cavitation and the state of stress in a flowing liquid,” J. Liquid Mech., 366, 367–378 (1998). 19. B. S. Henry and A. R. Luxmoore, “The stress triaxiality constraint and the Q-value as a ductile fracture parameter,” Eng. Fract. Mech., 57, No. 4, 375– 390 (1997). ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 53 Some Considerations on Failure of Solids and Liquids 20. S. Jun, “Stress triaxiality constraint and crack tip parameters,” Eng. Fract. Mech., 44, No. 5, 789–806 (1993). 21. Y. Bao and T. Wierzbicki, “On fracture locus in the equivalent strain and stress triaxiality space,” Int. J. Mech. Sci., 46, No. 1, 81–98 (2004). 22. Y. Bao and T. Wierzbicki, “On the cut-off value of negative triaxiality for fracture,” Eng. Fract. Mech., 72, No. 7, 1049–1069 (2005). 23. Y. Bao, “Dependence of ductile crack formation in tensile tests on stress triaxiality, stress and strain ratios,” Eng. Fract. Mech., 72, No. 4, 505–522 (2005). 24. C. R. Chen, O. Kolednik, J. Heerens, and F. D. Fischer, “Three-dimensional modeling of ductile crack growth: Cohesive zone parameters and crack tip triaxiality,” Eng. Fract. Mech., 72, No. 13, 2072–2094 (2005). 25. D. Holland, A. Halim, and W. Dahl, “Influence of stress triaxiality upon ductile crack propagation,” Steel Res., 61, No. 10, 504–506 (1990). 26. J. Sun, Z. J. Deng, and M. J. Tu, “Effect of stress triaxiality levels in crack tip regions on the characteristics of void growth and fracture criteria,” Eng. Fract. Mech., 39, No. 6, 1051–1060 (1991). 27. J. Sun, “Effect of stress triaxiality on micro-mechanisms of void coalescence and micro-fracture ductility of materials,” Eng. Fract. Mech., 39, No. 5, 799– 805 (1991). 28. Y. Zhang and Z. T. Chen, “On the effect of stress triaxiality on void coalescence,” Int. J. Fract., 143, No. 1, 105–112 (2007). Received 10. 09. 2009 54 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 2 R. Brighenti and A. Carpinteri << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /All /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Warning /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJDFFile false /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /LeaveColorUnchanged /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /Description << /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /NoConversion /DestinationProfileName () /DestinationProfileSelector /NA /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice