Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex
The NICA ion collider project at JINR is under development at present. As a part of the project the Nuclotron injector upgrade has been started. The work is provided in cooperation of JINR, MEPhI and ITEP. Up to now the Nuclotron injection system consist of a number of proton and ion sources, the 65...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/111778 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex / V.A. Andreev, A.I. Balabin, A.V. Butenko, V.S. Dyubkov, A.I. Govorov, B.V. Golovensky, V.V. Kobets, A.A. Kolomiets, V.A. Koshelev, A.D. Kovalenko, A.V. Kozlov, G.N. Kropachev, R.P. Kuibeda, T.V. Kulevoy, V.G. Kuzmichev, K.A. Levterov, D.A. Lyakin, V.A. Monchinsky, A.S. Plastun, S.M. Polozov, A.V. Samoshin, D.N. Seleznev, V.V. Seleznev, A.O. Sidorin, Yu.B. Stasevich, G.V. Trubnikov // Вопросы атомной науки и техники. — 2013. — № 6. — С. 8-12. — Бібліогр.: 12 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111778 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1117782017-01-15T03:03:04Z Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex Andreev, V.A. Balabin, A.I. Butenko, A.V. Dyubkov, V.S. Govorov, A.I. Golovensky, B.V. Kobets, V.V. Kolomiets, A.A. Koshelev, V.A. Kovalenko, A.D. Kozlov, A.V. Kropachev, G.N. Kuibeda, R.P. Kulevoy, T.V. Kuzmichev, V.G. Levterov, K.A. Lyakin, D.A. Monchinsky, V.A. Plastun, A.S. Polozov, S.M. Samoshin, A.V. Seleznev, D.N. Seleznev, V.V. Sidorin, A.O. Stasevich, Yu.B. Trubnikov, G.V. Состояние действующих и проекты новых ускорителей The NICA ion collider project at JINR is under development at present. As a part of the project the Nuclotron injector upgrade has been started. The work is provided in cooperation of JINR, MEPhI and ITEP. Up to now the Nuclotron injection system consist of a number of proton and ion sources, the 650 keV pulsed preinjector and DTL linac LU-20 (Alvarez type). Such system provides injection into Nuclotron of 20 MeV proton and 5 MeV/u (Z/A >0.3) ion beams. The ion beam acceleration is realized at the 2nd harmonic of bunch travelling mode. The 650 kV high-voltage platform will be replaced by new RFQ structure. The R&D of this system is discussed in the report. Results of beam dynamics simulation in RFQ and MEBT between RFQ and LU-20, electrodynamics simula-tion, construction of RFQ resonator, RF feeding system construction will be presented. The RF power system is assembled and tested at equivalent load and RFQ resonator manufacturing is started. В даний час в ОІЯД розробляється і реалізується проект коллайдера важких іонів NICA, а також проводиться необхідна реконструкція «Нуклотрона». Зокрема, співробітниками ОІЯД, МІФІ та ІТЕФ проводиться реконструкція системи інжекції іонного пучка. В даний час система інжекції включає в себе кілька джерел протонів і іонів, імпульсний електростатичний інжектор на 650 кВ і прискорювач Альвареца ЛУ-20. Ця система дозволяє інжектувати в «Нуклотрон» пучки протонів з енергією 20 МеВ і важких іонів з енергією 5 МеВ/нукл. При цьому прискорення іонів у ЛУ-20 виробляється на другий кратності. У результаті реконструкції високовольтний інжектор повинен бути замінений прискорювачем-группірователем з просторово-однорідним квадрупольним фокусуванням (ПОКФ). Розглянуто хід робіт зі створення цього нового прискорювача. Представлено результати моделювання динаміки пучка в резонаторі з ПОКФ і каналі узгодження з ЛУ-20, результати моделювання електродинамічних характеристик прискорюючого резонатора і його конструювання, результати розробки системи високочастотного живлення. В даний час система харчування зібрана і налаштована на еквівалентне навантаження , а резонатор з ПОКФ переданий у виробництво. В настоящее время в ОИЯИ разрабатывается и реализуется проект коллайдера тяжелых ионов NICA, а также проводится необходимая реконструкция «Нуклотрона». В частности, сотрудниками ОИЯИ, МИФИ и ИТЭФ проводится реконструкция системы инжекции ионного пучка. В настоящее время система инжекции включает в себя несколько источников протонов и ионов, импульсный электростатический инжектор на 650 кВ и ускоритель Альвареца ЛУ-20. Эта система позволяет инжектировать в «Нуклотрон» пучки протонов с энергией 20 МэВ и тяжелых ионов с энергией 5 МэВ/нукл. При этом ускорение ионов в ЛУ-20 производится на второй кратности. В результате реконструкции высоковольтный инжектор должен быть заменен ускорителем-группирователем с пространственно-однородной квадрупольной фокусировкой (ПОКФ). Рассмотрен ход работ по созданию этого нового ускорителя. Представлены результаты моделирования динамики пучка в резонаторе с ПОКФ и канале согласования с ЛУ-20, результаты моделирования электродинамических характеристик ускоряющего резонатора и его конструирования, результаты разработки системы высокочастотного питания. В настоящее время система питания собрана и настроена на эквивалентную нагрузку, а резонатор с ПОКФ передан в производство. 2013 Article Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex / V.A. Andreev, A.I. Balabin, A.V. Butenko, V.S. Dyubkov, A.I. Govorov, B.V. Golovensky, V.V. Kobets, A.A. Kolomiets, V.A. Koshelev, A.D. Kovalenko, A.V. Kozlov, G.N. Kropachev, R.P. Kuibeda, T.V. Kulevoy, V.G. Kuzmichev, K.A. Levterov, D.A. Lyakin, V.A. Monchinsky, A.S. Plastun, S.M. Polozov, A.V. Samoshin, D.N. Seleznev, V.V. Seleznev, A.O. Sidorin, Yu.B. Stasevich, G.V. Trubnikov // Вопросы атомной науки и техники. — 2013. — № 6. — С. 8-12. — Бібліогр.: 12 назв. — англ. 1562-6016 PACS: 29.17.w, 29.27.Bd http://dspace.nbuv.gov.ua/handle/123456789/111778 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Состояние действующих и проекты новых ускорителей Состояние действующих и проекты новых ускорителей |
spellingShingle |
Состояние действующих и проекты новых ускорителей Состояние действующих и проекты новых ускорителей Andreev, V.A. Balabin, A.I. Butenko, A.V. Dyubkov, V.S. Govorov, A.I. Golovensky, B.V. Kobets, V.V. Kolomiets, A.A. Koshelev, V.A. Kovalenko, A.D. Kozlov, A.V. Kropachev, G.N. Kuibeda, R.P. Kulevoy, T.V. Kuzmichev, V.G. Levterov, K.A. Lyakin, D.A. Monchinsky, V.A. Plastun, A.S. Polozov, S.M. Samoshin, A.V. Seleznev, D.N. Seleznev, V.V. Sidorin, A.O. Stasevich, Yu.B. Trubnikov, G.V. Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex Вопросы атомной науки и техники |
description |
The NICA ion collider project at JINR is under development at present. As a part of the project the Nuclotron injector upgrade has been started. The work is provided in cooperation of JINR, MEPhI and ITEP. Up to now the Nuclotron injection system consist of a number of proton and ion sources, the 650 keV pulsed preinjector and DTL linac LU-20 (Alvarez type). Such system provides injection into Nuclotron of 20 MeV proton and 5 MeV/u (Z/A >0.3) ion beams. The ion beam acceleration is realized at the 2nd harmonic of bunch travelling mode. The 650 kV high-voltage platform will be replaced by new RFQ structure. The R&D of this system is discussed in the report. Results of beam dynamics simulation in RFQ and MEBT between RFQ and LU-20, electrodynamics simula-tion, construction of RFQ resonator, RF feeding system construction will be presented. The RF power system is assembled and tested at equivalent load and RFQ resonator manufacturing is started. |
format |
Article |
author |
Andreev, V.A. Balabin, A.I. Butenko, A.V. Dyubkov, V.S. Govorov, A.I. Golovensky, B.V. Kobets, V.V. Kolomiets, A.A. Koshelev, V.A. Kovalenko, A.D. Kozlov, A.V. Kropachev, G.N. Kuibeda, R.P. Kulevoy, T.V. Kuzmichev, V.G. Levterov, K.A. Lyakin, D.A. Monchinsky, V.A. Plastun, A.S. Polozov, S.M. Samoshin, A.V. Seleznev, D.N. Seleznev, V.V. Sidorin, A.O. Stasevich, Yu.B. Trubnikov, G.V. |
author_facet |
Andreev, V.A. Balabin, A.I. Butenko, A.V. Dyubkov, V.S. Govorov, A.I. Golovensky, B.V. Kobets, V.V. Kolomiets, A.A. Koshelev, V.A. Kovalenko, A.D. Kozlov, A.V. Kropachev, G.N. Kuibeda, R.P. Kulevoy, T.V. Kuzmichev, V.G. Levterov, K.A. Lyakin, D.A. Monchinsky, V.A. Plastun, A.S. Polozov, S.M. Samoshin, A.V. Seleznev, D.N. Seleznev, V.V. Sidorin, A.O. Stasevich, Yu.B. Trubnikov, G.V. |
author_sort |
Andreev, V.A. |
title |
Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex |
title_short |
Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex |
title_full |
Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex |
title_fullStr |
Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex |
title_full_unstemmed |
Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex |
title_sort |
reconstruction of light and polarized ion beam injection system of jinr nuclotron-nica accelerator complex |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Состояние действующих и проекты новых ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111778 |
citation_txt |
Reconstruction of light and polarized ion beam injection system of JINR Nuclotron-NICA accelerator complex / V.A. Andreev, A.I. Balabin, A.V. Butenko, V.S. Dyubkov, A.I. Govorov, B.V. Golovensky, V.V. Kobets, A.A. Kolomiets, V.A. Koshelev, A.D. Kovalenko, A.V. Kozlov, G.N. Kropachev, R.P. Kuibeda, T.V. Kulevoy, V.G. Kuzmichev, K.A. Levterov, D.A. Lyakin, V.A. Monchinsky, A.S. Plastun, S.M. Polozov, A.V. Samoshin, D.N. Seleznev, V.V. Seleznev, A.O. Sidorin, Yu.B. Stasevich, G.V. Trubnikov // Вопросы атомной науки и техники. — 2013. — № 6. — С. 8-12. — Бібліогр.: 12 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT andreevva reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT balabinai reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT butenkoav reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT dyubkovvs reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT govorovai reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT golovenskybv reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT kobetsvv reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT kolomietsaa reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT koshelevva reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT kovalenkoad reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT kozlovav reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT kropachevgn reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT kuibedarp reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT kulevoytv reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT kuzmichevvg reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT levterovka reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT lyakinda reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT monchinskyva reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT plastunas reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT polozovsm reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT samoshinav reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT seleznevdn reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT seleznevvv reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT sidorinao reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT stasevichyub reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex AT trubnikovgv reconstructionoflightandpolarizedionbeaminjectionsystemofjinrnuclotronnicaacceleratorcomplex |
first_indexed |
2025-07-08T02:40:11Z |
last_indexed |
2025-07-08T02:40:11Z |
_version_ |
1837044766737432576 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №6(88) 8
RECONSTRUCTION OF LIGHT AND POLARIZED ION BEAM INJECTION
SYSTEM OF JINR NUCLOTRON-NICA ACCELERATOR COMPLEX
V.A. Andreev
2
, A.I. Balabin
2
, A.V. Butenko
3
, V.S. Dyubkov
1
, A.I. Govorov
3
, B.V. Golovensky
3
,
V.V. Kobets
3
, A.A. Kolomiets
2
, V.A. Koshelev
2
, A.D. Kovalenko
3
, A.V. Kozlov
2
,
G.N. Kropachev
2
, R.P. Kuibeda
2
, T.V. Kulevoy
1,2
, V.G. Kuzmichev
2
, K.A. Levterov
3
,
D.A. Lyakin
2
, V.A. Monchinsky
3
, A.S. Plastun
1
, S.M. Polozov
1
, A.V. Samoshin
1
,
D.N. Seleznev
2
, V.V. Seleznev
3
, A.O. Sidorin
3
, Yu.B. Stasevich
2
, G.V. Trubnikov
3
1
National Research Nuclear University “Moscow Engineering Physics Institute”, Moscow, Russia
E-mail: SMPolozov@mephi.ru;
2
Institute of Theoretical and Experimental Physics, Moscow, Russia
E-mail: kulevoy@itep.ru;
3
Joint Institute for Nuclear Research, Dubna, Moscow region, Russia
The NICA ion collider project at JINR is under development at present. As a part of the project the Nuclotron in-
jector upgrade has been started. The work is provided in cooperation of JINR, MEPhI and ITEP. Up to now the Nu-
clotron injection system consist of a number of proton and ion sources, the 650 keV pulsed preinjector and DTL
linac LU-20 (Alvarez type). Such system provides injection into Nuclotron of 20 MeV proton and 5 MeV/u
(Z/A >0.3) ion beams. The ion beam acceleration is realized at the 2nd harmonic of bunch travelling mode. The
650 kV high-voltage platform will be replaced by new RFQ structure. The R&D of this system is discussed in the
report. Results of beam dynamics simulation in RFQ and MEBT between RFQ and LU-20, electrodynamics simula-
tion, construction of RFQ resonator, RF feeding system construction will be presented. The RF power system is
assembled and tested at equivalent load and RFQ resonator manufacturing is started.
PACS: 29.17.w, 29.27.Bd
INTRODUCTION
The new accelerator complex NICA (Nuclotron-
based Ion Collider facility) is now under development
and construction at JINR. The injection system of the
operating heavy ion superconducting accelerator Nuclo-
tron is upgrade is planned. Moreover, construction of
the booster ring, the collider rings and two particle de-
tectors (MPD and SPD) is in progress (Fig. 1).
Fig. 1. Scheme of NICA facility: 1 – light and polarized
ion sources and “old” Alvarez-type linac LU-20;
2 – ESIS source and new linac; 3 – Synchrophasotron
yoke, Booster and Nuclotron; 4 – Nuclotron beam lines
and fixed target experiments area; 5 – the collider
rings; 6 – SPD; 7 – MPD
General goal of the NICA project is experimental
studies of both hot and dense strongly interacting bary-
onic matter and spin physics in collisions of heavy ions
and polarized protons and deuterons [1 - 4]. The first
task of the program requires heavy ion collisions in the
energy range of NNS = 4…11 GeV at an average lumi-
nosity of L 1∙1027
cm-2c-1
for 197Au79+ nuclei. The polar-
ized beams mode is proposed to be used in the energy
range of collision energy of protons S =12…27 GeV
and deuterons NNS = 4…13.8 GeV (2…5.9 GeV/u ion
kinetic energy) at an avarege luminosity L 1∙1031
cm-2c-1.
The NICA project assumed to operate using two in-
jectors [5]: the Alvarez-type linac LU-20 as injector for
light ions, polarized protons and deuterons and a new
linac HILac for heavy ions. The Electron String Ion
Source (ISIS) is planned for ion beam generation
meanwhile the Source of Polarized (SPI) is planned for
polarized proton and deuteron beam generation [6]. Up-
grade of LU-20 front end is described.
1. LU-20 INJECTION LINAC UPGRADE
PROGRAM
Alvarez-type DTL linac LU-20 used as the Nuclo-
tron injector. was put into operation in 1974. It was
originally designed as the proton accelerator. Protons
can be accelerated by LU-20 from 600 keV to 20 MeV.
Later it was modified to accelerate ions with charge-to-
mass ratio Z/A>0.3 due to modification of operational
mode from L = βλ to 2βλ. That made it possible to ac-
celerate also ions up to 5 MeV/u [7].
The pulse transformer with voltage up to 700 kV is
now used to feed the accelerating tube of the LU-20
forinjector. The ion sources used up to now and placed
at the HV “hot” platform consumes up to 5 kW power,
which is provided by feeding station consisting of motor
and generator insulated one from the other with wood
shaft. Power consumption of the new ion sources is
~15 kW for ESIS and ~25 kW for SPI [6]. Such power
level can not be provided by the existing system. The
new fore-injector will be based on radio-frequency
quadrupole linac (RFQ). Replacement electrostatic tube
with RFQ will allow to decrease potential of the “hot”
platform and to use the insulation transformer to feed
the sources. High voltage (up to 150 kV) DC power
supply will be used to provide necessary electric poten-
mailto:kulevoy@itep.ru
ISSN 1562-6016. ВАНТ. 2013. №6(88) 9
tial. Installation of two separate RFQ (for Z/A=1 and
Z/A=0.3…0.5) can be made to cover the necessary range
of particles charge-to-mass ratio [6]. The RFQ section
parameters are shown in Table 1.
Table 1
The forinjector design parameters
Forinjector Input
Z/A 1.0 0.5 0.3
Injection energy, keV ≤150 61.8 103
Maximum current, mА 40 20 10
Normalized transverse
emittance, π∙cm∙mrad
0.4
0.2
0.15
Operating frequency, MHz 145.2
Output
Output energy, MeV/u 0.631 0.156 0.156
Transmission RFQ, % ≥ 80 ≥85 ≥90
Δp/p, % ≤ 6 ≤ 4 ≤ 4
Normalized transverse
emittance, π∙cm∙mrad
≤ 1.0 ≤0.5 ≤ 0.5
Resonator length, m ≤ 3 ≤ 3 ≤ 3
Voltage at electrodes, kV 126 84 140
The new RFQ linac project is performed in collabo-
ration of JINR, MEPhI and ITEP. The beam dynamics
simulation, RF resonator simulation, construction and
drawing and RF system development and manufacturing
are finished till present. The accelerating resonator is
now under manufacturing at VNIITP (Snezhinsk). Let
we discussed the main R&D results.
2. BEAM DINAMICS IN RFQ RESONATOR
The results of beam dynamics simulation and RFQ
channel parameters definition are discussed in detail
later. It wills very complex goal to achieve the project
parameters because of very low output energy and high
injection beam emittance and leads to non conventional
RFQ linac design.
Table 2
Beam dynamics simulation parameters
Z/A 0.3 0.5
Injection and output energy, keV/u 31…155
Normalized acceptance, π∙cm∙mrad 0.5
Normalized emittance, π∙cm∙mrad 0.15 0.2
Limiting current (simulated), mA 190 114
Transverse oscillations phase ad-
vance, deg
26.5
Longitudinal oscillations phase
advance, deg
23.5
Synchronous phase, deg -90…-40
Output pulse spectrum, % ± 2.5
Averaged distance of electrode
from the axis, mm
6.5
Electrodes modulation coefficient 1.28
Aperture radius, mm 5.7
Cells number 194
Linac total length, mm 2070
Current transmission coefficient, %
without/with buncher
91/
93
88/
89
Transverse emittance growth,
without/with buncher
1.33/
1.25
1.18/
1.14
Longitudinal emittance growth,
without/with buncher
2.89/
1.96
2.89/
1.61
The scheme of accelerating-focusing RFQ channel
consists of matching, bunching, main accelerating and
debunching sub-sections. The main channel and beam
parameters were defined by analytical model and beam
dynamics simulation and are presented in Table 2. The
parameters of channel were choosing by the method
proposed in [8].
The beam dynamics simulations were done using
codes RFQDYN, DYNAMION [9] developed at ITEP
and LIDOS [10] developed at MRTI RAS. Two possi-
ble schemes were discussed: without of matching reso-
nator (buncher) before RFQ resonator and with such
buncher. The results of simulation are presented in
Table 2 and Figs. 2, 3.
Fig. 2. Output particles distribution in transverse and longi-
tudinal phase planes, Z/A=0.3, without matching resonator
Fig. 3. Output particles distribution in transverse and lon-
gitudinal phase planes, Z/A=0.3, with matching resonator
It is clear that the matching resonator sufficiently
decrease the output beam emittance. The current limit of
the structure was also defined by simulation (Fig. 4).
Fig. 4. Current transmission versus injection current
ISSN 1562-6016. ВАНТ. 2013. №6(88) 10
3. RFQ – LU-20 MATCHING CHANNEL
Matched channel should provide total beam re-
capturing in the next section. But in our case it is very
serious problem because of long transport base between
the RFQ end and the first LU-20 drift tube (correspond-
ing to the LU-20 vacuum system parameters) and low
injection energy of LU-20. Seven different matching
schemes were simulated to obtain high recapturing effi-
ciency. The most common matching scheme is present-
ed in Fig. 5. Such scheme includes up to three bunchers
(before RFQ R, after RFQ B1 and into vacuum seal of
LU-20 B2). Two magnet quadrupole triplets (Q1-Q6)
are used for transverse beam matching.
Fig. 5. Matching system scheme
It was shown by simulation that the optimal match-
ing can be achieved using only R and B1 without B2
buncher. Up to 90% of injected into RFQ ions for
Z/A=0.3 and 87% for Z/A=0.5 are effectively transport-
ed to the first LU-20 drift tube and 79% for Z/A=0.3 and
71% for Z/A=0.5 will injected into measured LU-20
acceptance. Transverse losses are very low in transport
and all of them are due to longitudinal bunch size en-
largement. Using of the third buncher no gives no some
advantages but makes very seriously complex vacuum
and RF systems much more complicated.
4. RFQ RESONATOR
The four-vane resonator with displaced magnetic
coupling windows [11] was chosen for NICA the RFQ
design. Operating frequency is of 145.2 MHz and such
frequency is defined by the LU-20 main resonator oper-
ating frequency. The simulations of electrodynamics
characteristics of the resonator were done using CST
Studio Suite code. The models of one resonant cell and
3D model of whole resonator (Fig. 6) were designed and
studied. The resonator consists of nine resonant cells,
seven of them are identical and two are the end cells
with modified coupling windows.
Fig. 6. RFQ resonator model
The simulations were directed to match the cells to
the operating frequency and to minimize the deviation
of RF field amplitude. Both problems were solved and
the amplitude deviation is not higher than ±0.25%
(Fig. 7). The tolerances of the electrodes manufacturing
must be less than ±25 µm (±0.39% of averaged aperture
radius) whereas and the constructional errors are two
times lower of them.
Fig. 7. Inter-electrode voltage distribution along resonator
Unfortunately, the simulation can not guarantee that
the resonator will have exact value of operating frequen-
cy. That is why the resonator has been simulated for a
little bit higher resonant frequency (146.6 MHz) in order
to find operating frequency by means of enlargement of
the windows size. The resonator has been simulated for a
little bit higher resonant frequency (146.6 MHz). After
first assembling of resonator for electrodes adjusting the
frequency measurements will be carried out. According
to the measured result the final electrodes windows di-
mensions will be defined to provide the resonance fre-
quency from region 149.9≤f≤145.1 MHz. The resonator
parameters after optimization are presented in Table 3.
Table 3
RFQ resonator parameters
Length of electrodes, mm 2070
Total length of resonator, mm 2190
Diameter of resonator, mm 400
Transverse size of coupling window, mm 62
Longitudinal size of coupling window, mm 288
Resonant frequency before tuning, MHz 146.6
Operating frequency, MHz 145.2
Dipole mode frequency, MHz 156.4
Voltage at electrodes, kV 125
Q-factor 9300
RF loses, kW 200
RF field amplitude deviation, % < 0.5
Transverse component of RF field devia-
tion, %
<±0.18
Maximal electric field on surface, MV/m 24
Fig. 8. Model of RFQ resonator with plungers
and RF couplers
The fine operating frequency tuning can be done us-
ing two plungers (tuners) which are constructively
ISSN 1562-6016. ВАНТ. 2013. №6(88) 11
placed in the middle of resonator (Fig. 8). The frequen-
cy sensitivity to the plunger motion is about 7 kHz/mm.
Hence, 50mm movement of the plungers will allow to
tune the frequency in 300 kHz range.
5. RFQ RESONATOR DESIGN
AND MANUFACTURING
The RFQ resonator engineering design was done and
the drawings were designed as well (see 3D general
view in Fig. 9). For the moment the resonator manufac-
turing is started at All-Russian Research Institute of
Technical Physics (Snezhinsk) and expected to be fin-
ished by the end of 2013.
Fig. 9. 3D general view RFQ resonator
6. RF POWER SYSTEM
The design the RF power system is discussed more
detailed in [12].
The LU-20 resonator is operating in self-excitation
mode. This regime demands higher tolerances of RF
field stability for LU-20 and RFQ resonators and to
higher quality of automatic phase control system.
RFQ resonator RF power system consists of two
amplifier channels for RFQ resonator and for buncher.
High power systems include of low power master gen-
erator based on solid state preamplifier, first preamplifi-
er based on four GI-39B tubes and high power final
amplifying stage based on GI-27AM triode.
Buncher RF power system consists of solid state
preamplifier and two stages based on GI-39B tubes be-
cause of low power necessary.
The control system should provide the RF field
phase shift between DTL and RFQ resonators better
than that one degree.
The amplifying stage based on GI-39B tube was
tested to define maximal output power at operating fre-
quency. The maximum power is equal to 30…35 kW
with 150 µs RF pulse length. It is necessary to fed about
50 kW to excite the GI-27. Four pre-amplifying cas-
cades based on GI-39 were manufactured and the com-
biner was designed.
The measured output pulse power Pn, consumed power
P0 and efficiency η versus anode potential Ua are shown in
Fig. 10. Maximal amplification coefficient is equal to 8.5
and peak measured power is limited by 400 kW.
The high power pulse modulator was manufactured
to form anode potentials.
Power system is manufactured, tested and is ready to
routine operation. The photo of RF power system is
shown in Fig. 11.
Fig. 10. Output pulse power Pn, consumed power P0
and efficiency η versus anode potential
Fig. 11. Photo of RF power system
CONCLUSIONS
The reconstruction of light ion and polarized protons
and deuterons beam injection system for Nuclotron-
NICA accelerator complex is in progress. It is expected
that high-voltage 700 kV platform, which is now used to
feed the accelerating tube of Alvarez type linac pre-
injector will replaced by RFQ section. The section
should to bunch and to accelerate beams of ions with
charge-to-mass ratio Z/A>0.3. This project is realized in
cooperation o JINR, MEPhI and ITEP and was started
in 2011.
The beam dynamics in RFQ and in matching system
between of new RFQ and LU-20 was studied in detail.
It was shown that up to 90% for Z/A=0.3 and 87% for
Z/A=0.5 of ions are effectively transported to the first
LU-20 drift tube and 79% for Z/A=0.3 and 71% for
Z/A=0.5 are recaptured by LU-20. Using of matching
resonator before RFQ and integrated debuncher into
ISSN 1562-6016. ВАНТ. 2013. №6(88) 12
RFQ provides the low emittance growth in RFQ and
transport channel: lower than 25% for transverse emit-
tance and lower than two times for longitudinal one.
The RFQ resonator based on known scheme using
unsymmetrical coupling windows was designed. Tuning
system was designed and simulated also. The RF field
amplitude deviation is not higher than ±0.25% of the
averaged value.
RF power system for RFQ and bunchers feeding is
designed, manufactured and tested. The operating out-
put power is equal to 400 kW which is about two times
higher than is necessary for RFQ resonator according to
simulation.
The RFQ resonator engineering design was done and
now the structure is under manufacture at VNIITF. It is
planned to finish the manufacturing in 2013.
REFERENCES
1. V. Kekelidze, A. Kovalenko, R. Lednicky,
V. Matveev, I. Meshkov, A. Sorin, G. Trubnikov //
Proc. of 36th International Conference for High En-
ergy Physics, ICHEP'12.
2. G. Trubnikov, N. Agapov, V. Alexandrov, et al. //
Proc. of IPAC’10. 2010, p. 693.
3. O. Kozlov, H. Khodzhibagiyan, S. Kostromin, et al.
// Proc. of IPAC’11. 2011, p. 1108.
4. G. Trubnikov et al. // Proc. of ICHEP'12.
5. A.V. Butenko, E.E. Donets, E.D. Donets, et al. //
Proc. of IPAC’13. 2013, p. 3915.
6. A.V. Butenko et al. // Pepan Lett. JINR. 2012, v. 9,
№ 4-5, p. 654.
7. A.M. Baldin et al. // Proc. of LINAC’96. 1996, p. 352.
8. E.A. Wadlinger // Proc. of PAC’85.1985, p. 2596.
9. A.A. Kolomiets et al. // Proc. of EPAC’98.1998,
p. 1201.
10. B.I. Bondarev, A.P. Durkin, et al. // AIP Conf. Proc.
297. Computational accelerator physics. 1993,
p. 377.
11. V.A. Andreev, G. Parisi // Proc. of PAC’93.1993,
p. 3124.
12. V.G. Kuzmichev, A.V. Kozlov, Yu.B. Stasevich, et al.
The RF system for RFQ-injector of linac LU-20 //
Problems of Atomic Science and Technology. Series
“Nuclear Physics Investigations” (this issue), p. 79-81.
Article received 04.09.2013
РЕКОНСТРУКЦИЯ СИСТЕМЫ ИНЖЕКЦИИ ПУЧКА ЛЕГКИХ И ПОЛЯРИЗОВАННЫХ ИОНОВ
УСКОРИТЕЛЬНОГО КОМПЛЕКСА «НУКЛОТРОН-NICA»
В.А. Андреев, А.И. Балабин, А.В. Бутенко, В.С. Дюбков, А.И. Говоров, Б.В. Головенский, В.В. Кобец,
А.А. Коломиец, В.А. Кошелев, А.Д. Коваленко, А.В. Козлов, Г.Н. Кропачев, Р.П. Куйбеда, Т.В. Кулевой,
В.Г. Кузмичев, К.А. Левтеров, Д.А. Лякин, В.А. Мончинский, А.С. Пластун, С.М. Полозов,
А.В. Самошин, Д.Н. Селезнев, В.В. Селезнев, А.О. Сидорин, Ю.Б. Стасевич, Г.В. Трубников
В настоящее время в ОИЯИ разрабатывается и реализуется проект коллайдера тяжелых ионов NICA, а
также проводится необходимая реконструкция «Нуклотрона». В частности, сотрудниками ОИЯИ, МИФИ и
ИТЭФ проводится реконструкция системы инжекции ионного пучка. В настоящее время система инжекции
включает в себя несколько источников протонов и ионов, импульсный электростатический инжектор на
650 кВ и ускоритель Альвареца ЛУ-20. Эта система позволяет инжектировать в «Нуклотрон» пучки прото-
нов с энергией 20 МэВ и тяжелых ионов с энергией 5 МэВ/нукл. При этом ускорение ионов в ЛУ-20 произ-
водится на второй кратности. В результате реконструкции высоковольтный инжектор должен быть заменен
ускорителем-группирователем с пространственно-однородной квадрупольной фокусировкой (ПОКФ). Рас-
смотрен ход работ по созданию этого нового ускорителя. Представлены результаты моделирования динами-
ки пучка в резонаторе с ПОКФ и канале согласования с ЛУ-20, результаты моделирования электродинами-
ческих характеристик ускоряющего резонатора и его конструирования, результаты разработки системы вы-
сокочастотного питания. В настоящее время система питания собрана и настроена на эквивалентную
нагрузку, а резонатор с ПОКФ передан в производство.
РЕКОНСТРУКЦІЯ СИСТЕМИ ІНЖЕКЦІЇ ПУЧКА ЛЕГКИХ І ПОЛЯРИЗОВАНИХ ІОНІВ
ПРИСКОРЮВАЛЬНОГО КОМПЛЕКСУ «НУКЛОТРОН-NICA»
В.А. Андрєєв, А.І. Балабін, А.В. Бутенко, В.С. Дюбков, А.І. Говоров, Б.В. Головенський, В.В. Кобець,
А.А. Коломієць, В.А. Кошелєв, А.Д. Коваленко, А.В. Козлов, Г.Н. Кропачов, Р.П. Куйбеда, Т.В. Кулевий,
В.Г. Кузмічов, К.А. Левтеров, Д.А. Лякін, В.А. Мончинський, А.С. Пластун, С.М. Полозов,
А.В. Самошин, Д.Н. Селезньов, В.В. Селезньов, А.О. Сідорін, Ю.Б. Стасевич, Г.В. Трубников
В даний час в ОІЯД розробляється і реалізується проект коллайдера важких іонів NICA, а також прово-
диться необхідна реконструкція «Нуклотрона». Зокрема, співробітниками ОІЯД, МІФІ та ІТЕФ проводиться
реконструкція системи інжекції іонного пучка. В даний час система інжекції включає в себе кілька джерел
протонів і іонів, імпульсний електростатичний інжектор на 650 кВ і прискорювач Альвареца ЛУ-20. Ця сис-
тема дозволяє інжектувати в «Нуклотрон» пучки протонів з енергією 20 МеВ і важких іонів з енергією
5 МеВ/нукл. При цьому прискорення іонів у ЛУ-20 виробляється на другий кратності. У результаті реконст-
рукції високовольтний інжектор повинен бути замінений прискорювачем-группірователем з просторово-
однорідним квадрупольним фокусуванням (ПОКФ). Розглянуто хід робіт зі створення цього нового приско-
рювача. Представлено результати моделювання динаміки пучка в резонаторі з ПОКФ і каналі узгодження з
ЛУ-20, результати моделювання електродинамічних характеристик прискорюючого резонатора і його конс-
труювання, результати розробки системи високочастотного живлення. В даний час система харчування зіб-
рана і налаштована на еквівалентне навантаження , а резонатор з ПОКФ переданий у виробництво.
|