CEBAF upgrade at Jefferson Laboratory

Upgrade to CEBAF accelerator and all experimental halls to increase the maximal beam energy from 6 up to 12.1 GeV is in progress at Jefferson Laboratory. Schedule, plans and present status of the upgrade are presented in the article.

Saved in:
Bibliographic Details
Date:2013
Main Author: Glamazdin, A.V.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/111806
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:CEBAF upgrade at Jefferson Laboratory / A.V. Glamazdin // Вопросы атомной науки и техники. — 2013. — № 6. — С. 24-28. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111806
record_format dspace
spelling irk-123456789-1118062017-01-23T20:17:12Z CEBAF upgrade at Jefferson Laboratory Glamazdin, A.V. Состояние действующих и проекты новых ускорителей Upgrade to CEBAF accelerator and all experimental halls to increase the maximal beam energy from 6 up to 12.1 GeV is in progress at Jefferson Laboratory. Schedule, plans and present status of the upgrade are presented in the article. У теперішній час у лабораторії Джефферсона відбувається комплексна реконструкція науково-дослідницького комплексу CEBAF з метою підвищення максимальної енергії пучка електронів з 6 до 12,1 ГеВ та покращення можливостей з проведення фізичних досліджень в експериментальних залах. Подані плани реконструкції та теперішній стан прискорювача та експериментальних залів. В настоящее время в лаборатории Джефферсона проводится реконструкция научно-исследовательского комплекса CEBAF с целью увеличения максимальной энергии пучка электронов с 6 до 12,1 ГэВ и расширения возможностей по проведению физических исследований в экспериментальных залах. Представлены планы реконструкции и современное состояние ускорителя и экспериментальных залов. 2013 Article CEBAF upgrade at Jefferson Laboratory / A.V. Glamazdin // Вопросы атомной науки и техники. — 2013. — № 6. — С. 24-28. — Бібліогр.: 13 назв. — англ. 1562-6016 PACS: 29.20.Ej;29.27.Eg;29.27.Aj;29.30.Aj http://dspace.nbuv.gov.ua/handle/123456789/111806 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Состояние действующих и проекты новых ускорителей
Состояние действующих и проекты новых ускорителей
spellingShingle Состояние действующих и проекты новых ускорителей
Состояние действующих и проекты новых ускорителей
Glamazdin, A.V.
CEBAF upgrade at Jefferson Laboratory
Вопросы атомной науки и техники
description Upgrade to CEBAF accelerator and all experimental halls to increase the maximal beam energy from 6 up to 12.1 GeV is in progress at Jefferson Laboratory. Schedule, plans and present status of the upgrade are presented in the article.
format Article
author Glamazdin, A.V.
author_facet Glamazdin, A.V.
author_sort Glamazdin, A.V.
title CEBAF upgrade at Jefferson Laboratory
title_short CEBAF upgrade at Jefferson Laboratory
title_full CEBAF upgrade at Jefferson Laboratory
title_fullStr CEBAF upgrade at Jefferson Laboratory
title_full_unstemmed CEBAF upgrade at Jefferson Laboratory
title_sort cebaf upgrade at jefferson laboratory
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Состояние действующих и проекты новых ускорителей
url http://dspace.nbuv.gov.ua/handle/123456789/111806
citation_txt CEBAF upgrade at Jefferson Laboratory / A.V. Glamazdin // Вопросы атомной науки и техники. — 2013. — № 6. — С. 24-28. — Бібліогр.: 13 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT glamazdinav cebafupgradeatjeffersonlaboratory
first_indexed 2025-07-08T02:43:48Z
last_indexed 2025-07-08T02:43:48Z
_version_ 1837045014545301504
fulltext ISSN 1562-6016. ВАНТ. 2013. №6(88) 24 CEBAF UPGRADE AT JEFFERSON LABORATORY A.V. Glamazdin National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: glamazdi@jlab.org Upgrade to CEBAF accelerator and all experimental halls to increase the maximal beam energy from 6 up to 12.1 GeV is in progress at Jefferson Laboratory. Schedule, plans and present status of the upgrade are presented in the article. PACS: 29.20.Ej;29.27.Eg;29.27.Aj;29.30.Aj INTRODUCTION Accelerator facility CEBAF of the Thomas Jefferson National Accelerator Facility (Jefferson Lab) is in oper- ation since 1997. It includes superconducting electron accelerator CEBAF, three experimental halls A, B and C and free electron laser. “Racetrack” type accelerator CEBAF consist of an injector, two superconducting linacs (“North” and “South”), two sets of arcs (“East” set has five arcs, “West” set has four arcs) and systems of an electron beam extraction from the accelerator and beam separa- tion between the halls. Maximal beam energy after one linac is 0.6 GeV and after one pass is 1.2 GeV. It corresponds to the maximal beam energy 6.0 GeV after five passes. CEBAF injector can provide polarized and unpolar- ized electron beams with different currents and energies for all three experimental halls simultaneously. The in- jector provides quasi-continuous electron beam with bunches frequency 499 MHz per each hall and accelera- tor frequency is 1497 MHz. After 15 years of successful operation ones was de- cided to upgrade CEBAF to increase the accelerator energy and to improve parameters of experimental halls. 1. ACCELERATOR UPGRADE PROJECT CEBAF accelerator upgrade project [1, 2] includes (Fig. 1): Fig. 1. CEBAF 12 GeV upgrade project Add ten new higher-voltage accelerating modules C100, five per each linac, to increase the maximal beam energy per linac from 0.6 GeV up to 1.1 GeV; New extraction line from “North” linac to new ex- perimental hall D; Add new 10-th arc in the “West” arcs set to increase maximal number of passes in the accelerator from five to five and a half and provide maximal beam energy 12.1 GeV in the hall D; Upgrade of the existing arcs; Upgrade of the injector; New central helium liquefier CHL-2 to increase production of liquid helium. Comparison of CEBAF parameters before and after upgrade are presented in Table. 1. Table 1 Comparison of CEBAF parameters before and after upgrade [2] Parameter Before After Maximal number of passes in accelerator 5 5.5 Maximal beam energy, GeV 6 12.1* Maximal beam energy per pass, GeV 1.2 2.2 Maximal beam current, μA 185 85** Max. beam power, MW 1 1 Emittance εх, nm-rad <1 10 Emittance εy, nm-rad <1 5 Energy spread (%RMS) 0.003 0.05 Number of experimental halls 3 4 * in Hall D after five and a half turns; ** maximal beam current in accelerator at maximal beam energy. 1.1. CEBAF INJECTOR UPGRADE The injector upgrade includes [3]: Increase of the gun voltage from 130 kV to 200 kV; Upgrade of the Wien filter; New booster with new SRF design; Integration of Capture into the booster; Upgrade of the Cryo-modules to increase the in- jector energy from 45 MeV to 123 MeV. 1.2. ACCELERATING CRYOMODULE С-100 New accelerating cryogenic module C-100 was de- veloped at Jefferson Lab for the 12 GeV upgrade pro- ject. The 12 GeV cavities have been supplied by Re- search Instruments. Cryomodule consists of eight cavi- ties with seven halfway cells per cavity (Fig. 2). Fig. 2. Cavity of new Cryomodule С-100 mailto:glamazdi@jlab.org ISSN 1562-6016. ВАНТ. 2013. №6(88) 25 A design gradient for the new cryomodule C-100 is 19.2 MV/m (108 MV for 5.6 m of cryomodule length). An operational limit is 25 MV/m. It is limited by the klystron RF power and possibly field emission. When testing on stand, all new cryomodules show perfor- mance exceeding the specifications. Particularly, C100- 5 were found to quench at ~33.5 MV/m [4]. All ten cryomodules C-100 were manufactured, test- ed and installed on the accelerator CEBAF (Fig. 3). Two of the ten C100 were installed on the accelerator in 2011 and were successfully operated since November 2011 through May 2012. Fig. 3. New Cryomodule С-100 with Waveguide installed in South Linac 1.3. CEBAF ARCS UPGRADE A combination of old and new elements will be used in arcs upgrade to reduce the 12 GeV upgrade project cost. Precision field mapping will be done for all old and new magnets in the arcs. Old elements will be used in the arcs after upgrade: 357 dipole magnets (1…3 m length); 730 quadruple magnets (30×30×30 cm); More than 2000 power supplies; More than 700 elements of the beam diagnostics; More than 5 km of the beam lines. News elements will be used to build a new 10-th arc and to upgrade existing arcs: 32 dipole magnets (4 m length); 40 quadruple magnets (35×30×30 cm); 82 power supplies; 32 elements of the beam diagnostics; 0.3 km of the beam lines. Due to delay with delivery of power supplies for magnets in arcs 7…10 CEBAF accelerator will be oper- ated with maximal beam energy 6.6 GeV (three passes) through summer 2014. 1.4. CENTRAL HELIUM LIQUEFIER The helium liquefier CHL currently working at CEBAF uses a 4.8 kW 2 K helium refrigerator for cool- ing the superconducting accelerator and physical facili- ties. Doubling the maximum energy of the accelerator beam, and the reconstruction of the physical equipment in the halls and the creation of a new hall D require an increase in productivity of helium. To achieve this goal, in addition to the existing liquefier CHL, a new liquefier CHL-2 was build. With two liquefiers, the total capacity of production of helium at a temperature of 2 K is 10.2 kW. 2. EXPERIMENTAL HALLS Running a program of experimental research on CEBAF accelerator beam with an energy of 12 GeV requires a diverse set of physical hardware. After the reconstruction, CEBAF will include three old experi- mental Halls: A, B and C, and a new Hall D. A new experimental Hall D will be equipped with the tagged photon detector and a detector based on large superconducting solenoid magnet (see Ch.2.4). Beam lines in experimental Halls A, B and C will be upgraded in accordance with the higher energy electron beam. This upgrade includes reconstruction of the beam transport system to the Hall, the Moller and the Comp- ton polarimeters, the beam raster system, etc. 12 GeV upgrade in Hall A is minimal. The Hall A space will be used as a platform for building new detec- tors for specific experiments (see Ch.2.1). In Hall B, as a replacement of the existing CLAS spectrometer, a new spectrometer of the same type, CLAS12, will be built (see Ch.2.2). In Hall C, as a replacement of the existing spectrometer SOS, a new spectrometer SHMS will be developed (see Ch.2.2). Finally, a new set of equipment in all four halls will allow to conduct experiments in the whole energy range of the accelerator CEBAF (1…12 GeV) with photon or electron beams with high luminosity and high resolu- tion. 2.1. EXPERIMENTAL HALL A Due to limited funds, upgrade in Hall A is reduced to the reconstruction of the beam line elements, upgrade of the Moller and the Compton polarimeters to allow them to work with a maximum beam energy of the ac- celerator CEBAF in the Hall (11.0 GeV). The magnets of the ARC energy measurement system will be refur- bished and remapped at the larger acceptance to provide the beam energy measurement accuracy ΔE/E=±5×10-4. Fig. 4. Layout of Hall A showing the existing pair of High Resolution Spectrometers and polarimeters being upgraded Hall A will continue to use two existing high- resolution spectrometers HRS (High Resolution Spec- trometer) with a maximum momentum of 4 GeV/c (Fig. 4), as well as a set of the existing equipment: neu- tron detector NeutronArm, a large acceptance spectrom- eter BigBite, Hadron calorimeter Big-Cal and the detec- tor DVCS [5]. ISSN 1562-6016. ВАНТ. 2013. №6(88) 26 The minimal reconstruction in Hall A will allow it to become the first experimental hall to begin physical experiments on the accelerator CEBAF after the 12 GeV upgrade. In the future, large one-of-a-kind facilities for spe- cialized experiments will be created in Hall A. One of such facilities is SBS (Super Big Bite Spec- trometer). SBS is a spectrometer designed to perform series of experiments of measurements of the nucleon form factor, down to the smallest distance scales acces- sible at Jefferson Lab [6]. SBS scheme is represented in Fig. 5. Fig. 5. Layout of new spectrometer SBS (Super Big Bite) in Hall A SBS spectrometer consists of a large acceptance di- pole magnet with the possibility to capture particles at small forward angles, a set of 64 tracking chambers of GEM-type (Gas Electron Multiplier), a carbon analyzer and a hadron calorimeter. MOLLER experiment is an extension of the experi- ment E-158 "Measuring the effects of parity violation in Moller scattering", which was done at SLAC. The MOLLER experiment has to measure a parity-violating asymmetry in fixed electron scattering with unprece- dented precision. Fig. 6. Layout of MOLLER experiment equipment in Hall A Layout of the experiment MOLLER [7] is shown on Fig. 6. The following instruments will be built for the experiment: a new liquid hydrogen target with a length of 1.5 m and a capacity of 5 kW, two room- temperature toroidal magnets, a dipole magnet downstream of the target to remove background, specialized very forward angle detector, reconstructed beam line in Hall A. According to the plans, the MOLLER experiment will be running for about 3 years, and will become the longest-running experiments in the history of Hall A. SoLID spectrometer (Solenoidal Large Intensity Device) [8, 9] is designed for three series of experi- ments: Measuring of parity violating deep inelastic scat- tering (PVDIS); Measuring of semi inclusive deep inelastic scatter- ing; Measuring of cross-section of electro-production of J/Ψ mesons near threshold. Fig. 7. Scheme of the two detector configurations SoLID for experiments SIDIS and PVDIS in Hall A The SoLID (Fig. 7) is a versatile apparatus based on a large superconducting solenoidal magnet formerly used for experiments CLEO in CESR. The magnet will serve as a mounting platform for two different configu- rations of detectors, which consist of tracking, chambers GEM-type, two (forward and backward) electromagnet- ic calorimeters, a set of baffles, and a set of gas Cheren- kov counters with different fillings. 2.2. EXPERIMENTAL HALL B After the 12 GeV upgrade, Hall B will be equipped with a large acceptance spectrometer CLAS12 (CEBAF Large Acceptance Spectrometer) (Fig. 8). Magnetic Spectrometer CLAS12 [10] consists of two supercon- ducting magnets: a six-sector torus with maximum field 2.3 T, and a ~1 m long solenoid with a maximum field 5 T. Fig. 8. Schematic of CLAS12 – a new spectrometer in Hall B The new detector will use some parts from the exist- ing detector CLAS, such as a front time-of-flight (TOF) detector, an electromagnetic calorimeter (EC), the re- stored and reconstructed Cherenkov counter. The struc- ture of the detector CLAS12 will include new instru- ISSN 1562-6016. ВАНТ. 2013. №6(88) 27 ments: a central time-of-flight detector, a drift chamber, a four-layer silicon-strip vertex tracker (SVT), a high- threshold Cherenkov counter (HTCC) and a pre-shower calorimeter. In the future, CLAS12 will be equipped with a RICH detector to improve the identification of kaons. CLAS12 detector will be able to register particles with energies within the entire range of accelerator CEBAF (up to 11 GeV) and will have a 10 times higher luminosity than the CLAS. 2.3. EXPERIMENTAL HALL C In the Hall C, the existing spectrometer SOS (Short Orbit Spectrometer) will be replaced with a new spec- trometer SHMS (Super High Momentum Spectrome- ter). The existing spectrometer HMS (High Momentum Spectrometer) will be used as a complement to the SHMS spectrometer (Fig. 9) [11]. Comparison of the parameters of the existing HMS spectrometer and the new spectrometer SHMS is given in Table 2. This pair of heavily shielded magnetic spectrometers allows for high-precision measurements of neutrino-like cross sec- tions to map valence quarks in nucleons and nuclei. Table 2 Comparison of parameters of the Hall C spectrometers HMS and SHMS Parameter HMS SHMS Scheme QQQD DQQQD Maximal momenta, GeV/с 7.5 11.0 Energy resolution, ΔР/Р 0.5×10-3 0.5×10-3 Angular acceptance, msr 6.5 5.0 Momentum acceptance ΔР, % 18 30 Angles range, deg 10.5…90° 5.5…40° All five of the spectrometer magnets SHMS are su- perconducting. A SHMS spectrometer detector package consists of a Cherenkov detector (filled with Ar or Ne), a set of two coordinate (x-y) drift chambers, two two- axis (x-y) scintillation hodoscopes, a Cerenkov detector (filled with C4F8O), two two-axis (x-y) scintillation trigger hodoscopes, and the electromagnetic calorimeter consisting of pre-shower and shower detectors, both built of lead glass blocks. Fig. 9. Layout of Hall C after reconstruction. The exist- ing HMS detector and a new detector SHMS are shown Some space in the detector is reserved for future de- tectors, such as an aerogel-based Cherenkov counter. In addition, it is possible to remove some of the detectors and insert a proton polarimeter. 2.4. EXPERIMENTAL HALL D A new Hall D is designed to conduct experiments on the photon beam and for the study of new exotic states. Hall D equipment includes a diamond target for photon beam production, a system of photon tagging and pho- ton detector GlueX (Fig. 10), which is named in honor of the main experiment in program of physics research in Hall D [12]. The linearly polarized photon beam is produced by scattering of the electron beam on the diamond crystal which is located 75 m from the detector GlueX. Photon beam is separated from electronic components in the tagger magnet and hits the target. The maximum energy of the electron beam in Hall D is 12.1 GeV. It corre- sponds to the photon energy 9 GeV. Fig. 10. Layout of detector Glue-X in new hall D GlueX spectrometer is based on a superconducting solenoid with the 2 m diameter and 4m length, and with a maximum field 2 T. GlueX detector consists of two parts placed inside and after the solenoid. The part of GlueX detector locat- ed inside the solenoid consists of a starter counter, cen- tral and forward drift chambers and a barrel electromag- netic calorimeter. The part located after the solenoid consists of a lead-glass calorimeter and a time-of-flight detector. 3. TIMING OF THE 12 GeV UPGRADE PROJECT The 12 GeV CEBAF upgrade project consists of several stages [2]: 1. May 2011 - November 2011: two new cryomod- ules C100 were installed on the accelerator (one per each linac) for testing with electron beam and operation since November 2011 through May 2012; 2. June 2012 - October 2013: complete upgrade of the accelerator CEBAF; 3. November 2013 - January 2014: running CEBAF accelerator with energy 2.2 GeV (one pass). Complete Hall A upgrade; 4. January - May 2014: run the accelerator with the beam energy 6.6 GeV. Beam delivery to Hall A for test- ing of the systems of beam extraction and separation, Hall A beam line and Hall A equipment; 5. September 2014 - May 2015: the energy of the beam up to 9 GeV. The beam delivery to Hall D. Test- ing of the equipment and early experiments in Hall A; 6. September 2015 - May 2016: 12 GeV beam ener- gy. The beam delivery to halls B and C; 7. March 2017: the end of 12 GeV of CEBAF up- grade project. ISSN 1562-6016. ВАНТ. 2013. №6(88) 28 After the 12 GeV upgrade any three of the four ex- perimental halls will be able to work simultaneously. The accelerator will work about 30 weeks a year with breaks for the Christmas holidays and for three summer months. The duration of the autumn session will be 13…14 weeks, and duration of the spring session will be 16…17 weeks. CONCLUSIONS As of July 2013, the overall rate of completion of the project is about 92%. Among them: construction 92%, accelerator 91%, physics 62% [13]. Completion of the 12 GeV CEBAF upgrade project is scheduled for March 2017. The total project cost of the 12 GeV CEBAF upgrade is $338M. This work was supported by DOE contract DE- AC05-06OR23177, under which Jefferson Science As- sociates, LLC, operates the Thomas Jefferson National Accelerator Facility. REFERENCES 1. http://www.jlab.org/12GeV/ 2. A. Freyberger. 12 GeV CEBAF Status and Plans // Hall A Collaboration meeting, 14 June 2013, Jeffer- son Lab, Newport News. 3. R. Kazimi. Injector Upgrade for 12 GeV CEBAF and Accelerator Technology Laboratory // MOLLER Collaboration meeting, 20 June 2013, Jefferson Lab, Newport News. 4. F. Marhauser, W. Clemens, M.A. Drury, D. Forehand, J. Henry, S. Manning, R. Overton, S. Williams. Results of Cavity Series Fabrication at Jefferson Laboratory for the Cryomodule R100 // Conf. Proc. C110904. 2011, p. 343-345. 5. J. Dudek, R. Ent, R. Essig, K. Kumar, C. Meyer, R. McKeown, Z. Meziani, G.A. Miller, M. Penning- ton, D. Richards, L. Weinstein, G. Young. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab \\ arXiv: 1208. 1244 [hep-ex]. 2012, 64 рр. 6. http://hallaweb.jlab.org/12GeV/SuperBigBite/ 7. http://hallaweb.jlab.org/parity/PR-09-005-moller.pdf 8. http://www.lepp.cornell.edu/Research/EPP/CLEO/ 9. https://hallaweb.jlab.org/wiki/index.php/SoLID 10. http://www.jlab.org/Hall-B/clas12-web/ 11. http://www.jlab.org/Hall-C/upgrade/ 12. http://www.jlab.org/Hall-D/ 13. H. Montgomery. Jefferson Lab 12 GeV Upgrade Project // Hall A Collaboration meeting, 14 June 2013, Jefferson Lab, Newport News. Article received 07.10.2013 РЕКОНСТРУКЦИЯ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОГО КОМПЛЕКСА CEBAF ЛАБОРАТОРИИ ДЖЕФФЕРСОНА А.В. Гламаздин В настоящее время в лаборатории Джефферсона проводится реконструкция научно-исследовательского комплекса CEBAF с целью увеличения максимальной энергии пучка электронов с 6 до 12,1 ГэВ и расшире- ния возможностей по проведению физических исследований в экспериментальных залах. Представлены планы реконструкции и современное состояние ускорителя и экспериментальных залов. РЕКОНСТРУКЦІЯ НАУКОВО-ДОСЛІДНИЦЬКОГО КОМПЛЕКСУ CEBAF ЛАБОРАТОРІЇ ДЖЕФФЕРСОНА О.В. Гламаздін У теперішній час у лабораторії Джефферсона відбувається комплексна реконструкція науково- дослідницького комплексу CEBAF з метою підвищення максимальної енергії пучка електронів з 6 до 12,1 ГеВ та покращення можливостей з проведення фізичних досліджень в експериментальних залах. Подані плани реконструкції та теперішній стан прискорювача та експериментальних залів. http://arxiv.org/find/hep-ex/1/au:+Dudek_J/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Ent_R/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Essig_R/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Kumar_K/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Meyer_C/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+McKeown_R/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Meziani_Z/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Miller_G/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Pennington_M/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Pennington_M/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Richards_D/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Weinstein_L/0/1/0/all/0/1 http://arxiv.org/find/hep-ex/1/au:+Young_G/0/1/0/all/0/1 http://arxiv.org/abs/1208.1244 http://hallaweb.jlab.org/12GeV/SuperBigBite/ http://hallaweb.jlab.org/12GeV/SuperBigBite/ http://hallaweb.jlab.org/parity/PR-09-005-moller.pdf http://www.lepp.cornell.edu/Research/EPP/CLEO/ https://hallaweb.jlab.org/wiki/index.php/SoLID http://www.jlab.org/Hall-B/clas12-web/ http://www.jlab.org/Hall-C/upgrade/ http://www.jlab.org/Hall-C/upgrade/ http://www.jlab.org/Hall-D/