Accelerator mass-spectrometr SB RAS
The accelerator mass spectrometer (AMS) created at BINP SB RAS is installed at CCU “Geochronology of the Cenozoic era” for sample dating by the ¹⁴С isotope and for biomedical applications. The most distinguishing fea-tures of BINP AMS is the use of the middle energy separator of ion beams, the magne...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/111808 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Accelerator mass-spectrometr SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2013. — № 6. — С. 16-19. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111808 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1118082017-01-15T03:03:36Z Accelerator mass-spectrometr SB RAS Rastigeev, S.A. Frolov, A.R. Goncharov, A.D. Klyuev, V.F. Konstantinov, E.S. Kutnykova, L.A. Parkhomchuk, V.V. Petrozhitskii, A.V. Состояние действующих и проекты новых ускорителей The accelerator mass spectrometer (AMS) created at BINP SB RAS is installed at CCU “Geochronology of the Cenozoic era” for sample dating by the ¹⁴С isotope and for biomedical applications. The most distinguishing fea-tures of BINP AMS is the use of the middle energy separator of ion beams, the magnesium vapors target as a stripper and time-of-flight telescope with thin films for accurate ion selection. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented. Створений у ІЯФ СО РАН прискорювальний мас-спектрометр (ПМС) встановлено у ЦКП «Геохронологія кайнозою» для датування зразків по ізотопу ¹⁴С і біомедичних застосувань. Сепаратор іонів на середніх енергіях, мішень на парах магнію в якості обдирної мішені і телескоп тонкоплівкових часопролітних детекторів є відмінними рисами УМЗ ІЯФ для надійної селекції іонів. Представлені поточний стан комплексу УМЗ і результати експериментів з вимірювання концентрації радіовуглецю в тестових зразках. Созданный в ИЯФ СО РАН ускорительный масс-спектрометр (УМС) установлен в ЦКП «Геохронология кайнозоя» для датирования образцов по изотопу ¹⁴С и биомедицинских применений. Сепаратор ионов на средних энергиях, мишень на парах магния в качестве обдирочной мишени и телескоп тонкопленочных времяпролетных детекторов являются отличительными особенностями УМС ИЯФ для надежной селекции ионов. Представлены текущее состояние комплекса УМС и результаты экспериментов по измерению концентрации радиоуглерода в тестовых образцах. 2013 Article Accelerator mass-spectrometr SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2013. — № 6. — С. 16-19. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 29.30.Aj http://dspace.nbuv.gov.ua/handle/123456789/111808 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Состояние действующих и проекты новых ускорителей Состояние действующих и проекты новых ускорителей |
spellingShingle |
Состояние действующих и проекты новых ускорителей Состояние действующих и проекты новых ускорителей Rastigeev, S.A. Frolov, A.R. Goncharov, A.D. Klyuev, V.F. Konstantinov, E.S. Kutnykova, L.A. Parkhomchuk, V.V. Petrozhitskii, A.V. Accelerator mass-spectrometr SB RAS Вопросы атомной науки и техники |
description |
The accelerator mass spectrometer (AMS) created at BINP SB RAS is installed at CCU “Geochronology of the Cenozoic era” for sample dating by the ¹⁴С isotope and for biomedical applications. The most distinguishing fea-tures of BINP AMS is the use of the middle energy separator of ion beams, the magnesium vapors target as a stripper and time-of-flight telescope with thin films for accurate ion selection. Present status of AMS complex and the results of experiments for radiocarbon concentration measurements in test samples are presented. |
format |
Article |
author |
Rastigeev, S.A. Frolov, A.R. Goncharov, A.D. Klyuev, V.F. Konstantinov, E.S. Kutnykova, L.A. Parkhomchuk, V.V. Petrozhitskii, A.V. |
author_facet |
Rastigeev, S.A. Frolov, A.R. Goncharov, A.D. Klyuev, V.F. Konstantinov, E.S. Kutnykova, L.A. Parkhomchuk, V.V. Petrozhitskii, A.V. |
author_sort |
Rastigeev, S.A. |
title |
Accelerator mass-spectrometr SB RAS |
title_short |
Accelerator mass-spectrometr SB RAS |
title_full |
Accelerator mass-spectrometr SB RAS |
title_fullStr |
Accelerator mass-spectrometr SB RAS |
title_full_unstemmed |
Accelerator mass-spectrometr SB RAS |
title_sort |
accelerator mass-spectrometr sb ras |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Состояние действующих и проекты новых ускорителей |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111808 |
citation_txt |
Accelerator mass-spectrometr SB RAS / S.A. Rastigeev, A.R. Frolov, A.D. Goncharov, V.F. Klyuev, E.S. Konstantinov, L.A. Kutnykova, V.V. Parkhomchuk, A.V. Petrozhitskii // Вопросы атомной науки и техники. — 2013. — № 6. — С. 16-19. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT rastigeevsa acceleratormassspectrometrsbras AT frolovar acceleratormassspectrometrsbras AT goncharovad acceleratormassspectrometrsbras AT klyuevvf acceleratormassspectrometrsbras AT konstantinoves acceleratormassspectrometrsbras AT kutnykovala acceleratormassspectrometrsbras AT parkhomchukvv acceleratormassspectrometrsbras AT petrozhitskiiav acceleratormassspectrometrsbras |
first_indexed |
2025-07-08T02:44:07Z |
last_indexed |
2025-07-08T02:44:07Z |
_version_ |
1837045022506090496 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №6(88) 16
ACCELERATOR MASS-SPECTROMETR SB RAS
S.A. Rastigeev
1
, A.R. Frolov
1
, A.D. Goncharov
1
, V.F. Klyuev
1
, E.S. Konstantinov
1
,
L.A. Kutnykova
2
, V.V. Parkhomchuk
1
, A.V. Petrozhitskii
1
1
BINP, Novosibirsk, Russia;
2
IAE SB RAS, Novosibirsk, Russia
E-mail: S.A.Rastigeev@inp.nsk.su
The accelerator mass spectrometer (AMS) created at BINP SB RAS is installed at CCU “Geochronology of the
Cenozoic era” for sample dating by the 14С isotope and for biomedical applications. The most distinguishing fea-
tures of BINP AMS is the use of the middle energy separator of ion beams, the magnesium vapors target as a strip-
per and time-of-flight telescope with thin films for accurate ion selection. Present status of AMS complex and the
results of experiments for radiocarbon concentration measurements in test samples are presented.
PACS: 29.30.Aj
INTRODUCTION
Accelerator mass spectrometry ultrasensitive
method of radiocarbon analysis of matter used in vari-
ous fields of science. Created in BINP AMS [1 - 5] is
based on an electrostatic tandem accelerator with ion
separation at medium energies, on magnesium vapor
target as a stripper and time time-of-flight telescope
with thin films for accurate identification of the ions.
The ion movement in a AMS is represented as fol-
lows. Negative ions are accelerated in the horizontal ion
source to the injection energy, then turned by 90 in the
magnetic field and accelerated straight up in the first
accelerator tube to the positive potential of the high-
voltage terminal. The ions are stripped to a positive
charge in the on magnesium vapor target. Then ions are
turned by 180 in the electric field, and accelerated
down in the second accelerator tube to ground potential.
The accelerated ions are turned by 90 in the magnetic
field and horizontally entered into the particle detector.
In this configuration of the AMS, the ions back-
ground is significantly reduced by the energy filter in
the high voltage terminal [6, 7]. For example, the nega-
tive nitrogen ions are unstable, but the nitrogen atoms
can accelerate as part of the molecules, which can be in
the negative charge state. Molecular ions formed from
the residual gas in the first accelerating tube can be
drawn into the acceleration. Such ions after passage of
the first accelerating tube will have a lower energy than
the analyzed ions. That is because the kinetic energy of
the fragments of the molecule is always smaller than the
energy of the molecule as a whole and the charge state
of -1 is largest for acceleration in the first tube. The fil-
tration of the ions by energy is very effective in the high
voltage terminal, because the energy of ions background
in the high voltage terminal is always less than the ener-
gy of the analyzed ions. Without the energy filter in the
high voltage terminal, nitrogen ions of molecular frag-
ments freely falling in the second accelerating tube, can
compensate for the lack of energy by flying part of the
tube in a higher charge state than the analyzed ions.
Thus the energy of the analyzed ions and of background
ions can be equal at the exit of AMS, and the subse-
quent separation is possible only by nuclear detector
through the difference in energy loss during the passage
of the substance. Not only the background ions of nitro-
gen from the fragments of molecules, but other frag-
ments of molecules reliably filtered out in AMS SB
RAS. Another feature of our project is to use the mag-
nesium vapor target [8] as a stripper. This target does
not affect to the vacuum outside the heated volume.
Degradation of the vacuum conditions, particularly in
accelerator tubes, causes an increase ions background.
Using TOF telescope at the exit of AMS allows not only
to identify the ions by time of flight, but also clean up
"technical" ions background from high-voltage break-
down by registering the arrival time of the particles in
the detector.
Since 2009, the AMS SB RAS is used for radiocar-
bon dating of archaeological and geological samples.
Over the past year have been analyzed more then 600
samples. The improvement of methods of AMS sample
analysis, upgrade of elements of accelerator, replace-
ment of the electronic units on a more reliable and sta-
ble are permanently carried out accordingly the finan-
cial capacity of AMS complex. Given the interest in
using AMS in the biomedical field, recently carried out
the adaptation of the AMS to biomedical applications.
The first biomedical researches are started jointly with
biologists.
AMS-ANALYSIS OF ARCHAEOLOGICAL
AND GEOLOGICAL SAMPLES
The preparation procedure of the ion source (IS) and
of the samples in the IS for AMS-analysis is necessary
for the stable operation of the complex. The sputter ion
source with a wheel rotation for 23 positions is used at
AMS SB RAS. The similar IS, but without wheel rota-
tion was used before and has been described [9]. The
vacuum in system mainly provided by ion pumps is
about 10-6 Torr. However, the turbomolecular pump is
used at the exit of IS, because the ion pumps are not
suitable for pumping out containing carbon gases, by
reason of contamination by carbon , leakage currents,
breakdowns, etc. Until recently, backing pump with oil
is used with a turbomolecular pump. Although the car-
bon from the oil is weakly influenced on the sample
measurement results, however, for safety, such a pump
has been replaced by an oil-free.
The working vacuum is reached in about 30 minutes
after installation of the samples in the sample wheel and
replacement of the cesium in the oven. However, the
degassing components of IS is required by heating the
ionizer and cesium oven (with not breaked ampules with
cesium ) to a temperature of about 10% above the oper-
ISSN 1562-6016. ВАНТ. 2013. №6(88) 17
ating mode. This process takes about 1.5 hours. Typical-
ly samples are measured the next day after degassing. It
should be noted that although the ampules with cesium
are not destroyed by heating the oven, however, cesium
beam appears briefly by heating the ionizer (if not per-
formed a thorough cleaning of the IS). During IS degas-
sing, the graphite MPG in sample wheel is rotated under
the cesium beam to avoid destruction of the samples.
The graphite MPG is also used for "activation" of IS
(with crushed ampules with cesium, before measuring
samples). Slow rotation of the samples wheel is used,
when a carbon current appears from PGM graphite. A
typical time dependence of the carbon current from the
samples is shown in Fig. 1.
0 500 1000 1500
0.00
0.05
0.10
0.15
0.20
0.25
cu
rr
en
t
1
3
С
3
+
r
ef
.u
n
it
s
t, s
Fig. 1. The increase in the carbon current from the
samples during first (after the change of samples) rota-
tion of samples wheel under the beam of cesium
This process is accompanied by degassing, with a
gradual increase in the current in all the samples, which
we assume is due to the accumulation of cesium on the
surface of samples required for the efficient production
of negative ions of carbon. After the currents of the
samples come into saturation, in the future, there are no
rapid changes in carbon currents when installing a ce-
sium beam. This is important for AMS-analysis based
on switching measurement of carbon isotopes. In addi-
tion, the surface of the samples is cleaned by the cesium
beam from possible contamination by external carbon
before the measurement is started.
The 20 graphitized samples are setted in the IS sam-
ple wheel to measure the concentration of radiocarbon.
Furthermore, the 3 control sample with a known con-
centration of radiocarbon is setted in IS sample wheel
for control and normalization of the measurement sam-
ples. Typically, this sample of two carbon fiber with a
carbon concentration on the natural content of modern
plants and one sample of graphite MPG with radiocar-
bon concentration at 2 10-3 compared to modern plants.
It should be noted that the control samples did not re-
quire the procedure of graphitization and setted in the IS
sample wheel in natural form. For this, using graphite
from a single piece of machined graphite cylinders for
installation in an aluminum piston of IS. The carbon
filament is placed in an aluminum tube, then tube is
racially compressed and then cut into cylinders for use
in IS sample wheel.
The radiocarbon ions sputtered from samples, going
through all stages of selection, is detected time in time-
of-flight telescope [10] at the exit of AMS. Fig. 2 shows
a typical TOF spectra of modern (carbon fiber) and
"dead" (graphite MPG) carbon samples. One recording
channel of the detector is 70 ps. The location of the
main peak (840 channels) corresponds to the time of
flight of the radiocarbon ions. The location of the near-
est background peak of the ion 13C corresponds to a
channel 810. It is seen the radiocarbon peak is dominant
for modern sample, the influence of background ions is
negligible. For the "dead" sample, the peaks of back-
ground ions are comparable to the peak of 14C, but they
are significantly separated in TOF space.
800 820 840 860 880 900
1
10
100
co
u
n
ts
TOF1-3
carbon fabric
graphite MPG
Fig. 2. TOF spectrums for modern and “dead” carbon
samples
When measuring the concentration of radiocarbon in
the samples, the switching algorithm is used. The iso-
tope 14C are detected by TOF telescope and 13C currents
are measured at the exit of AMS. For switching algo-
rithm the high voltage of IS is changed. The energy of
the cesium ions remains constant. The electrostatic lens
and correctors at the exit of the ion source are changed
for each isotope. Thus, the passage of isotopes is carried
out through a first dipole magnet, without changing the
magnetic field. Note that, for reasonable changes of
energy cesium, the carbon current is approximately the
same, however, the change in energy cesium leads to
the transient, lasting for about a minute, for which the
carbon ion current can vary by several tens of percent.
In recent years, the passage algorithm for different iso-
topes through the dipole magnet at the output of UMC is
changed. Initially, the magnetic field of exit magnet was
switched for different isotopes. The movable beam
probe with Faraday cup and was used for measuring 13C
current. Although this algorithm works well, however,
we were unable to achieve adequate reliability of the
moving probe. It was possible to hit an intense beam of
stable isotopes in the TOF detector, leading to the de-
struction of the films used in detector. Currently, radial
aperture at the exit of AMS was increased that allowed
to pass through the magnet the adjacent mass isotopes.
The FC and TOF were permanently installed. It is noted
that with new 13C measuring algorithm, the TOF detec-
tor registers 13C ions from energy tail with approximate-
ly 100 kHz, however, this load is not dangerous for the
films and the detector as a whole. And given that meas-
urement 13C and 14C are spaced in time, this background
count are not affected to the measurement of radiocar-
bon concentration.
ISSN 1562-6016. ВАНТ. 2013. №6(88) 18
0 10 20 30 40 50
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
ra
d
io
ca
rb
o
n
c
o
n
ce
n
tr
at
io
n
number of measurements
Fig. 3. An example of a set of statistics in measuring
of the radiocarbon concentrations in modern samples
The cycle of AMS-analysis of samples is represent-
ed as follows. For each sample, the 14C ions are twice
counted (20 seconds each) and twice the 13C currents are
measured. After that, the samples wheel is turned to the
next sample for process repetition. Measuring of whole
sample wheel (23 samples) takes about 20 minutes. For
a set of statistics the wheel are moving to the second
turn, third, etc. Typically, the measurement will take
approximately 8 hours, with a statistical error of meas-
urement for modern samples of approximately 2%. An
example of a set of statistics for the two samples of car-
bon fibers is shown in Fig. 3. Typically, the next day the
cycle repeats itself measurements are compared to the
results of measurements for different days, if they are
within the statistical spread, the final result is given as a
set of data for all measurements of these samples.
0 2 4 6 8 10 12 14 16 18 20 22 24
0
5
10
15
20
25
30
35
cu
rr
en
t
1
3
С
3
+
,
n
A
sample position
Fig. 4. Average 13C current during the measurement
for graphitized natural samples
The typical average 13С current at the exit of AMS
for each samples are shown in Fig. 4. Here is the aver-
age current from the samples in 8 hours of measure-
ment. Typically, the maximum current is obtained from
carbon filaments without sample preparation (see posi-
tions 1 and 12 in Fig. 4). The currents from prepared
(graphitized) archaeological and geological samples are
in the range from carbon fibers currents level to much
smaller level. At the time, the carbon currents from
graphitized samples varies are not in sync, probably this
depends on the special features of graphitization for
each sample. It should be noted that a very small current
from the samples is not often, approximately one sam-
ple for 50 graphitized samples. The contamination level
in the samples during the sample preparation procedure
estimated by the radiocarbon content in graphite after
combustion and graphitization (the radiocarbon concen-
tration in graphite is insignificant before this procedure).
Typically, the quantity of pollution (radiocarbon con-
centration) composes approximately 1% of the concen-
tration level in the modern plants, which corresponds to
40 000 radiocarbon years of age. However, sometimes
there are "epidemic", when the amount of contamination
in the sample preparation procedure for graphite is 10
percent or more. In such cases, it is believed that the
radiocarbon concentration in all samples into sample
wheel does not reflect the concentration of radiocarbon
in the original object. After cleaning the sample prepa-
ration equipment and graphitization of new samples, the
process of analyzing of samples is repeated. Note that
the radiocarbon concentration of graphite MPG without
sample preparation procedure does not depend on these
processes and is 0.2%. The experience of the analysis
shows that the presence of small pollution into graphi-
tized samples of graphite does not always guarantee the
absence of contamination in the graphitized natural ob-
jects. Probably to improve the reliability of the analysis
necessary graphitize known natural objects of the same
type of the analyzed samples of material (bone, char-
coal, etc.) and use them to monitor sample preparation
instead of pure graphite. In addition, it is necessary to
manufacture independently two samples for each ar-
chaeological samples, and only at a reasonable coinci-
dence in analysis of pairs of samples assume that the
radiocarbon concentration in samples after sample prep-
aration procedure corresponds to the initial archaeologi-
cal sample. However, for reasons beyond the control of
the authors of such methods to improve the reliability
and validity of the analysis has not yet been implement-
ed.
5 6 7 8 9 10
0
1000
2000
3000
4000
5000
6000
7000
8000
41 cm per 1000 year
ra
d
io
ca
rb
o
n
a
g
e
Y
B
P
height above the river level , m
Fig. 5. The radiocarbon age of peat deposits, depending
on the height above the river level
As an example of AMS-analysis, the data from geo-
logical samples peat deposits of the river Dem'yanka,
Tyumen region, depending on the height above the river
level (samples of Leshchinsky VS, TSU), presented in
Fig. 5. Such analyzes are necessary to obtain a timescale
for peat deposits. Such results are quite revealing, since
in the absence of mixings deposits should be observed
dependence the deeper the ancient.
ISSN 1562-6016. ВАНТ. 2013. №6(88) 19
SUMMARY
The AMS SB RAS created in BINP for reliable
identification of radiocarbon ions from the ion back-
ground is used for AMS-analysis of archaeological and
geological samples. The algorithm of the AMS-analysis
of the samples and the present status of complex are
described.
The work was supported by the Federal Program:
GC № 14.512.12.0004 and SB RAS integration project
number 106.
REFERENCES
1. N.I. Alinovskii et al. Accelerator mass spectrometer
for the Siberian Branch of the Russian Academy of
Sciences // Technical Physics. 2009, v. 54, №9,
p. 1350.
2. S.A. Rastigeev et al. Development of the BINP
AMS complecs at CCU SB RAS // Problems of
Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2012, №3(79), p. 188.
3. N.I. Alinovskii et al. Status of an accelerator mass
spectrometr project for SD RAS // Problems of
Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2006, №2, p. 34.
4. S.A. Rastigeev et al. Recent results in accelerator
mass spectrometer construction at BINP // Problems
of Atomic Science and Technology. Series “Nuclear
Physics Investigations”. 2008, №5, p. 8.
5. V.V. Parkhomchuk, S.A. Rastigeev. Accelerator
mass spectrometer of the center for collective use of
the Siberian Branch of the Russian Academy of Sci-
ences // Journal of Surface Investigation. X-ray,
Synchrotron and Neutron Techniques. 2011, v. 5,
iss. 6, p.1068.
6. V.V. Parkhomchuk, S.A. Rastigeev. Ion selection in
accelerator mass spectrometer at the Budker institute
of nuclear physics // Physics of Particles and Nuclei
Letters. 2012, v. 9, iss. 4, 5, p. 406.
7. V.V. Parkhomchuk, S.A. Rastigeev. Analysis of the
ion background in an acceleration mass spectrometer
of the Siberian Division of the Russian Academy of
Sciences // Technical Physics. 2009, v. 54, №10,
p. 1529.
8. V.F. Klyuev, V.V. Parkhomchuk, S.A. Rastigeev. A
magnesium vapor charge-exchange target for an ac-
celerator mass spectrometer // Instruments and Ex-
perimental Techniques. 2009, v. 52, №2, p. 245.
9. N.I. Alinovskii et al. The negative carbon ion
sources for accelerator mass spectrometer // Prob-
lems of Atomic Science and Technology. Series
“Nuclear Physics Investigations”. 2006, №3, p. 72.
10. N.I. Alinovskii et al. A time-of-flight detector of
low-energy ions for an accelerating mass-
spectrometer // Experimental Techniques. 2009,
v. 52, № 2, p. 234.
Article received 20.09.2013
УСКОРИТЕЛЬНЫЙ МАСС-СПЕКТРОМЕТР СО РАН
С.А. Растигеев, А.Р. Фролов, А.Д. Гончаров, В.Ф. Клюев, Е.С. Константинов, Л.А. Кутнякова,
В.В. Пархомчук, А.В. Петрожицкий
Созданный в ИЯФ СО РАН ускорительный масс-спектрометр (УМС) установлен в ЦКП «Геохронология
кайнозоя» для датирования образцов по изотопу 14С и биомедицинских применений. Сепаратор ионов на
средних энергиях, мишень на парах магния в качестве обдирочной мишени и телескоп тонкопленочных
времяпролетных детекторов являются отличительными особенностями УМС ИЯФ для надежной селекции
ионов. Представлены текущее состояние комплекса УМС и результаты экспериментов по измерению кон-
центрации радиоуглерода в тестовых образцах.
ПРИСКОРЮВАЛЬНИЙ МАСС-СПЕКТРОМЕТР СО РАН
С.А. Растігеєв, А.Р. Фролов, А.Д. Гончаров, В.Ф. Клюєв, Є.С. Константинов, Л.А. Кутнякова,
В.В. Пархомчук, А.В. Петрожицький
Створений у ІЯФ СО РАН прискорювальний мас-спектрометр (ПМС) встановлено у ЦКП «Геохроноло-
гія кайнозою» для датування зразків по ізотопу 14С і біомедичних застосувань. Сепаратор іонів на середніх
енергіях, мішень на парах магнію в якості обдирної мішені і телескоп тонкоплівкових часопролітних детек-
торів є відмінними рисами УМЗ ІЯФ для надійної селекції іонів. Представлені поточний стан комплексу
УМЗ і результати експериментів з вимірювання концентрації радіовуглецю в тестових зразках.
http://www.springerlink.com/content/?Author=S.+A.+Rastigeev
http://www.springerlink.com/content/?Author=S.+A.+Rastigeev
http://link.springer.com/journal/11497
http://link.springer.com/journal/11497
http://link.springer.com/journal/11497/9/4/page/1
http://www.springerlink.com/content/?Author=V.+V.+Parkhomchuk
http://www.springerlink.com/content/?Author=S.+A.+Rastigeev
http://www.springerlink.com/content/1063-7842/54/10/
http://www.springerlink.com/content/?Author=V.+V.+Parkhomchuk
http://www.springerlink.com/content/0020-4412/52/2/
http://www.springerlink.com/content/x510knrgvp46p324/
http://www.springerlink.com/content/x510knrgvp46p324/
http://www.springerlink.com/content/x510knrgvp46p324/
|