Account of the longitudinal temperature in cyclotron superradiance

The phenomenon of cyclotron Dicke superradiance (SR) in the inverted system of nonrelativistic electrons in low density magnetized plasma is considered. It is shown, that account of the longitudinal temperature increases the critical electron density which is needed for the nonequilibrium phase tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Novak, O.P., Fomina, A.P., Kholodov, R.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/111862
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Account of the longitudinal temperature in cyclotron superradiance / O.P. Novak, A.P. Fomina, R.I. Kholodov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 69-73. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111862
record_format dspace
spelling irk-123456789-1118622017-01-16T03:02:49Z Account of the longitudinal temperature in cyclotron superradiance Novak, O.P. Fomina, A.P. Kholodov, R.I. Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина The phenomenon of cyclotron Dicke superradiance (SR) in the inverted system of nonrelativistic electrons in low density magnetized plasma is considered. It is shown, that account of the longitudinal temperature increases the critical electron density which is needed for the nonequilibrium phase transition to the SR regime. Розглянуто явище циклотронного надвипромiнювання Дiке (НВ) в iнвертованiй системi нерелятивiстських електронiв у розрiдженiй замагнiченiй плазмi. Показано, що врахування поздовжньої температури збiльшує критичну концентрацiю електронiв, необхiдну для нерiвноважного фазового переходу в НВ-режим. Рассмотрено явление циклотронного сверхизлучения Дике (СИ) в инвертированной системе нерелятивистских электронов в разреженной замагниченной плазме. Показано,что учет продольной температуры увеличивает критическую концентрацию электронов, необходимую для неравновесного фазового перехода в СИ-режим. 2013 Article Account of the longitudinal temperature in cyclotron superradiance / O.P. Novak, A.P. Fomina, R.I. Kholodov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 69-73. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.30.-q, 52.25.Xz http://dspace.nbuv.gov.ua/handle/123456789/111862 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
spellingShingle Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
Novak, O.P.
Fomina, A.P.
Kholodov, R.I.
Account of the longitudinal temperature in cyclotron superradiance
Вопросы атомной науки и техники
description The phenomenon of cyclotron Dicke superradiance (SR) in the inverted system of nonrelativistic electrons in low density magnetized plasma is considered. It is shown, that account of the longitudinal temperature increases the critical electron density which is needed for the nonequilibrium phase transition to the SR regime.
format Article
author Novak, O.P.
Fomina, A.P.
Kholodov, R.I.
author_facet Novak, O.P.
Fomina, A.P.
Kholodov, R.I.
author_sort Novak, O.P.
title Account of the longitudinal temperature in cyclotron superradiance
title_short Account of the longitudinal temperature in cyclotron superradiance
title_full Account of the longitudinal temperature in cyclotron superradiance
title_fullStr Account of the longitudinal temperature in cyclotron superradiance
title_full_unstemmed Account of the longitudinal temperature in cyclotron superradiance
title_sort account of the longitudinal temperature in cyclotron superradiance
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
url http://dspace.nbuv.gov.ua/handle/123456789/111862
citation_txt Account of the longitudinal temperature in cyclotron superradiance / O.P. Novak, A.P. Fomina, R.I. Kholodov // Вопросы атомной науки и техники. — 2013. — № 3. — С. 69-73. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT novakop accountofthelongitudinaltemperatureincyclotronsuperradiance
AT fominaap accountofthelongitudinaltemperatureincyclotronsuperradiance
AT kholodovri accountofthelongitudinaltemperatureincyclotronsuperradiance
first_indexed 2025-07-08T02:49:05Z
last_indexed 2025-07-08T02:49:05Z
_version_ 1837045326781874176
fulltext ACCOUNT OF THE LONGITUDINAL TEMPERATURE IN CYCLOTRON SUPERRADIANCE O.P.Novak1∗, A.P.Fomina2, R.I.Kholodov1 1Institute of Applied Physics NAS of Ukraine, 40000, Sumy, Ukraine; 2Bogolyubov Institute for Theoretical Physics NAS of Ukraine, 03680, Kiev, Ukraine (Received January 1, 2013) The phenomenon of cyclotron Dicke superradiance (SR) in the inverted system of nonrelativistic electrons in low density magnetized plasma is considered. It is shown, that account of the longitudinal temperature increases the critical electron density which is needed for the nonequilibrium phase transition to the SR regime. PACS: 52.30.-q, 52.25.Xz 1. INTRODUCTION The phenomenon of superradiance (SR) was con- sidered first by Dicke [1] on the example of two-level model. SR was studied in a number of works (see, for example, reviews [2, 3, 4]), but a lot of interest- ing and physically important questions remain not investigated. In the Ref. [5] (see, also [6, 7]) the theory of collec- tive coherent SR in the system of inverted electrons occupying high Landau levels [8] in low density mag- netized plasma with E⊥ = n~ωH , n À 1, (1) ωH = eH mc , (2) has been developed. It was shown in [5, 6], that under certain condi- tions the polarization phase transition occurs to the Dicke SR state [1] in such system due to the dipole- dipole interaction between rotating electrons. The phenomenon of SR arises in “coherence domains” with the sizes R0 smaller than the radiation wave- length λ when all N0 radiating dipoles gradually align in the same direction due to the dipole-dipole inter- action in a “near zone” R0 ¿ λ. As a result, the total dipole moment of a domain becomes proportional to the number of electrons N0 and the intensity of collec- tive coherent dipole radiation of a domain increases in N0 times in contrast to the intensity of uncorre- lated dipole radiation and becomes proportional to N2 0 . The transition to such correlated polarized state is similar to the phase transition in magnetics and the Weiss method of mean self-consistent field [9] was used to find the criteria of self-polarization in a such system. The resulting nonlinear equation is similar to the Weiss equation and determines the threshold of polar- ization phase transition in a domain on the density of inverted electrons. It is defined by the relation [5, 6] ne > nec = 0.18H2kT mc2E⊥ . (3) In Ref. [7] the SR phenomenon theory is used to explain the nature and the main features of the super power decameter radiation (DCM) of the Jupiter-Io system. The sporadic DCM radiation of Jupiter was dis- covered in 1955. Despite considerable progress in studying the features of DCM radiation, there are no generally accepted and consistent answers to many important questions yet. The most important prob- lem is the nature of the coherent collective mechanism of radiation providing a gigantic peak power of the DCM-pulses. It reaches ∼ 1017÷1018 erg/s that cor- responds to the brightness temperature of the source about ∼ 1017 K. Introducing the SR mechanism sim- plifies the problem and allows us to explain the ob- served power of DCM-pulses without involving of free parameters. However, in References [6, 7] the authors assumed that electrons in a magnetic field rotate at circular orbits with fixed centers and do not move along the field. The purpose of the present paper is to investi- gate how the longitudinal motion of electrons affects the main features of the cyclotron SR. 2. ACCOUNT OF LONGITUDINAL TEMPERATURE It is convenient to consider first the situation when the electrons in a coherence domain move along and opposite to the magnetic field with the same con- stant speed v. Thus, the electron trajectories are de- ∗Corresponding author E-mail address: novak-o-p@ukr.net ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85). Series: Nuclear Physics Investigations (60), p.69-73. 69 fined by the expressions ~Rj(t) = ~rj(t) + ~rj⊥(t), (4) ~rj(t) = ~rj(0)± ~vt, ~v = (0, 0, v), (5) ~r⊥(t) = rL[cos(ωt + α), sin(ωt + α), 0]. (6) Here, ~rj defines the position of the orbit center and rL is the Larmor radius. Thus, it is assumed that N0/2 electrons move along the field with the velocity ~v while the others N0/2 electrons move opposite to the field with the same speed. The potential energy of a trial dipole is U = −~d0 ~E, (7) where ~d0 = e~r0⊥(t) and the total electric field ~E in a near zone decomposes in the sum ~E = N−1∑ j 3~nj(~nj ~dj)− ~dj |~r0 − ~rj |3 , (8) ~nj = ~r0 − ~rj |~r0 − ~rj | . (9) Averaging (7) over the rotation period one should note that radius vectors ~rj vary with time slowly in comparison with ~rL. Substituting Eqs. (8), (9) into (7) and averaging over the period we obtain 〈U(~r0)〉 = −d2 0 2   N/2∑ j=1 1− 3~n2 jz |~r0 − ~rj |3 cos(α0 − αj)+ N∑ j=N/2 1− 3~n2 jz |~r0 − ~rj |3 cos(α0 − αj)   , (10) where d0 = erL and the first sum is taken over the electrons which have the same longitudinal velosity as the trial one while the second sum is taken over the other group of electrons. The position of the trial dipole should not be pre- ferred, therefore it necessary to average (10) over ~r0. After the replacing of variables according to the re- lations {~r0, ~rj} → {~r = ~r0 − ~rj , ~R = 1 2 (~r0 + ~rj)}, the averaged potential energy can be expressed in the form 〈U〉 = −d2 0ne 4 〈cos ∆α〉 × (11)   ∫ Vc1 r2 − 3z2 r5 d~rj + ∫ Vc2 r2 − 3z2 r5 d~rj   , where the sums are replaced with the integrals. Note that cos(α0−αj) is replaced by its averaged over the ensemble value 〈cos∆α〉 in accordance with the Weiss method [9]. Aligning of dipoles is energetically favourable be- cause it increases the negative contribution to the potential energy 〈U〉. Therefore, the correlations will occur only in the “coherence domain” defined by the condition r2 − 3z2 > 0. (12) In the near-by domains the directions of the aver- age polarization vectors should be close to opposite to minimize the total potential energy of the system. In the similar way magnetics and ferroelectrics are broken into domains too. As follows from Eq. (12), the ”coherence do- mains” in relative coordinates look like flattened cylinders with conical covers, as shown in Fig. 1,a. Fig.1. Overal view of the coherence domains in the cases of zero longitudinal temperature (a) and presence of the motion along the magnetic field (b) Both coherence domains Vc1 and Vc2 in Eq. (11) have the same shape defined by Eq. (12). How- ever, Vc2 moves along z axis since the second sum- mand describes the contribution from dipoles that move relative to each other. Consequently, align- ing between such dipoles is possible only in the area that belongs to the both volumes during the phasing time τ It results in changing of the co- herence domain shape, as shown in Fig. 1,b, Fig. 2. Fig.2. Changing of the coherence domain due to the electron motion along the magnetic field It is convenient to carry out integration in Eq. (11) in cylindrical coordinates. In the integral over the variable r, the lower limit should be chosen about Larmor radius rL since at 70 the smaller distance the electron-electron interaction can not be described by dipole formulas. The upper limit should be chosen ∼ R0, the characteristic size of the “coherence domain” determined by the condition rL ¿ R0 ¿ λ. After integration we obtain 〈U〉 = −1 2 d2 0ne〈cos∆α〉J(η) , (13) where J(η) = 4π 3 √ 3 [ ln √ 2(x2 − χ1)(x2 − χ2) η(x1 − χ1)(x1 − χ2) + √ 6x1 − 3 √ 3 1 + x2 1 + √ 6x2 − 3 √ 3 1 + x2 2 ] , (14)    x1 = √ 3−1√ 2 , η √ 2 < 1; x1 = √ 1 + (10η − 1√ 2 )2 − (10η − 1√ 2 ), η √ 2 > 1; x2 = √ 1 + (η − 1√ 2 )2 − (η − 1√ 2 ) (15) and η is the dimensionless longitudinal speed, η = vτ R0 . (16) Let us proceed to the case of Maxwell distribution f(v) for the dipole longitudinal speed, f(v) = √ m 2πkT‖ exp ( −mv2 2kT‖ ) . (17) In this case the total electric field of the electron sys- tem in Eq. (7) can be written in the form ~E = ∑ i ∑ j ~Ei,j , (18) where the sum over particle longitudinal speed is in- troduced. Following the same procedure as before and introducing the additional averaging over the speed of the trial dipole, we obtain the average in- teraction energy in the form 〈U〉 = −1 2 e2r2 Lne〈cos∆α〉 ∞∫ −∞ dv′f(v′) ∞∫ −∞ dvJ(|v−v′|) , (19) where the quantity J(|v−v′|) is the previously found integral over the modified coherence volume, J(|v − v′|) = ∫ V d~r r2 − 3z2 r5 . (20) After changing of variables according to the rela- tions {η, η′} → {ξ = η − η′, ξ′ = η′}, the averaged potential energy can be expressed in the form 〈U〉 = −d2 0ne〈cos∆α〉 4η0 √ π ∞∫ −∞ e − ξ2 4η2 0 J(|ξ|)dξ , (21) where the function J(x) is defined by the Eq. (14) and the quantity η0 is dimensionless longitudinal temper- ature, η2 0 = kT‖τ2 mR2 0 . (22) Thus, it is seen that the aligning of dipoles with radiation of the released energy is energetically favourable because of the negative contribution of dipole-dipole interaction to the total potential energy of the system. The thermal fluctuations resist to this tendency. They are realized in low density magne- tized plasma mainly in the form of plasma fluctua- tions and Alfven waves. To determine the thresh- old values of the parameters, when the transition to the polarized state become possible, one can use the Weiss method of mean self-consistent field [9]. Ac- cording to the results of Ref. [6], the criteria of such transition can be written as 〈U〉 2kT 〈cos∆α〉 > 1. (23) It is convenient to introduce an auxiliary normal- ized function g(η0), g(η0) = 〈U〉 〈UT‖=0〉 = 3 √ 3 8 √ π3 ∞∫ −∞ e − ξ2 4η2 0 J(|ξ|)dξ η0 ln( mc2 5E⊥ ) , (24) where 〈UT‖=0〉 is the potential energy of the dipole- dipole interaction at zero longitudinal temperature, obtained in Ref. [6], 〈UT‖=0〉 = − 2π 3 √ 3 ln ( mc2 5E⊥ ) ned 2 0〈cos∆α〉. (25) Evidently, the condition g(0) = 1 is true. Func- tion g(η0) has been calculated numerically and it is shown in Fig. 3. Finally, to determine the criteria of the transition to the SR regime, it is necessary to substitute the found potential energy 〈U〉 = 〈UT‖=0〉g(η0) to the relation (23). With account of Eq. (25) the criteria takes on the form 2π 3 √ 3 ln ( mc2 5E⊥ ) mc2 H2 neE⊥ kT⊥ · g(η0) > 1. (26) 71 Fig.3. The dimensionless function g(x) defining the normalized potential energy of the dipole-dipole interaction 3. PHASING DYNAMICS As follows from the above consideration, longitu- dinal motion in low density magnetized plasma re- sults in electron outflow from the coherence domain. Consequently, the total number of phased dipoles at each moment of time t decreases with T‖ growing. Let t′ < t be the moment of time when the number of phased dipoles at zero longitudinal temperature N equals to this number N ′(t) at T‖ 6= 0, N ′(t) = N(t′). (27) To find the number of phased dipoles in the moment t + dt one should take into account the outflow dN : N ′(t + dt) = N(t′ + dt)− dN(t). (28) Assuming for estimation that the coherence do- main is a cylinder with radius R0, one can find the outflow of electrons having speed withing the interval (v, v + dv) in the form dNv = 2πR2dt · vdnv , (29) where the fraction dnv is given by the Maxwell dis- tribution, dnv = N ′(t) V √ m 2πkT‖ exp [ −mv2 2kT‖ ] dv. (30) Performing simple integration, we obtain the follow- ing expression for the total outflow: dN = N ′(t) √ 2 π η0 τ dt. (31) Finally, expanding Eq. (28) into series in dt and taking into account Eq. (27), one can find the follow- ing equations determining the sought function N ′(t), dN ′(t) dt = dN(t) dt ∣∣∣∣ t=t′ −N ′(t) η0 τ √ 2 π , (32) N(t′) = N ′(t). (33) To solve Eqs. (32), the function N(t) describ- ing the phasing at zero longitudinal temperature is needed, which is unknown. Nevertheless, some con- clusions of how the longitudinal motion affects the phasing can be inferred from treatment of a model function N(t). Apparently, it should satisfy the fol- lowing conditions: 1. N(t) ∼ exp( t τ ) when t → 0. 2. N(t) → N0 when t →∞. 3. N(0) ∼ 1. For example, let us choose the model function in the form N(t) = N0 1 + N0 exp(− t τ ) . (34) Then the solution of Eqs. (32), (33) can be expressed as N ′(t) = γN0 1 + [γN0 − 1] exp(−γ t τ ) , (35) where γ = 1− η0 √ 2 π (36) and the initial condition is N ′(0) = 1. The plots of Eq. (35) at different temperatures is shown in Fig. 4. Fig.4. Phasing dynamics at different longitudinal temperatures, N0 = 100 Thus, the total amount of phased electrons de- creases by a factor γ while the phasing time increases by the factor γ−1. In other words, account of the lon- gitudinal temperature results in the following. The coherence domain size decreasing is proportional to the temperature, while phasing time is in inverse ra- tio to the temperature. Moreover, phasing is impossible when γ < 0. Consequently, the following condition should be met: η0 < √ π 2 . (37) 72 Asknowledgement The authors would like to thank V.Yu. Storizhko for the support of this work and V.I. Myroshnichenko for helpful discussions. References 1. R.H.Dicke // Phys. Rev. 1954, v.93, p.99. 2. V.V. Zheleznyakov, V.V.Kocharovskiy and Vl.V.Kocharovskiy // Usp. Fiz. Nauk. 1989, v.159, p.193. 3. A.V.Andreev // Usp. Fiz. Nauk, 1990, v. 160, p.1. 4. L.I.Men‘shikov // Usp. Fiz Nauk, 1999, v. 169, p.113. 5. P.I. Fomin, A.P. Fomina // Prob. At. Sci. Tech. 2001, v. 6, 45. 6. V.M.Malnev, A.P. Fomina, P.I. Fomin // Ukr. J. Phys. 2002, v. 47, p.1001. 7. P.I. Fomin, A.P. Fomina, V.N. Mal’nev // Ukr. J. Phys. 2004, v. 49, p.3. 8. L.D. Landau , E.M. Lifshitz // Quantum mechan- ics, M.: ”Nauka”, 1974, p.752. 9. S. Smart. Effective field theoris of magnetism., W. Saunders Company, Philadelphia-London, 1966. УЧЕТ ПРОДОЛЬНОЙ ТЕМПЕРАТУРЫ В ЦИКЛОТРОННОМ СВЕРХИЗЛУЧЕНИИ A.П.Новак, А.П.Фомина, Р.И.Холодов Рассмотрено явление циклотронного сверхизлучения Дике (СИ) в инвертированной системе нереляти- вистских электронов в разреженной замагниченной плазме. Показано, что учет продольной темпера- туры увеличивает критическую концентрацию электронов, необходимую для неравновесного фазового перехода в СИ-режим. ВРАХУВАННЯ ПОВЗДОВЖНЬОЇ ТЕМПЕРАТУРИ В ЦИКЛОТРОННОМУ НАДВИПРОМIНЮВАННI О.П.Новак, А.П.Фомiна, Р.I.Холодов Розглянуто явище циклотронного надвипромiнювання Дiке (НВ) в iнвертованiй системi нерелятивiстсь- ких електронiв у розрiдженiй замагнiченiй плазмi. Показано, що врахування поздовжньої температури збiльшує критичну концентрацiю електронiв, необхiдну для нерiвноважного фазового переходу в НВ- режим. 73