Quantum field methods in the electron cooling

Quantum field methods are proposed to describe the electron cooling process. The influence of the magnetic field and the anisotropy of the temperature distribution of the electron gas are considered in the framework of quantum field theory. It is shown the longitudinal component of the thermal motio...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Khelemelya, O.V., Kholodov, R.I.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/111865
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantum field methods in the electron cooling / O.V. Khelemelya, R.I. Kholodov// Вопросы атомной науки и техники. — 2013. — № 3. — С. 53-57. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111865
record_format dspace
spelling irk-123456789-1118652017-01-16T03:02:52Z Quantum field methods in the electron cooling Khelemelya, O.V. Kholodov, R.I. Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина Quantum field methods are proposed to describe the electron cooling process. The influence of the magnetic field and the anisotropy of the temperature distribution of the electron gas are considered in the framework of quantum field theory. It is shown the longitudinal component of the thermal motion of electrons acts the main role in the electron cooling of heavy ions in the presence of a sufficiently strong magnetic field. Quantum effects in the electron cooling are estimated. Запропоновано використовувати квантово-польовi методи для опису процесу електронного охолодження. Розглянуто в рамках квантової теорiї поля вплив магнiтного поля з урахуванням анiзотропiї температурного розподiлу електронного газу. Показано, що в присутностi сильного магнiтного поля головну роль в електронному охолодженнi важких iонiв вiдiграє повздовжня компонента теплового руху електронiв. Проведено оцiнку квантових ефектiв в електронному охолодженнi. Предложено использовать квантово-полевые методы для описания процесса электронного охлаждения. Рассмотрено в рамках квантовой теории поля влияние магнитного поля при учете анизотропии температурного распределения электронного газа. Показано,что в присутствии достаточно сильного магнитного поля главную роль в электронном охлаждении тяжелых ионов отыгрывает продольная составляющая теплового движения электронов. Проведена оценка квантовых эффектов в электронном охлаждении. 2013 Article Quantum field methods in the electron cooling / O.V. Khelemelya, R.I. Kholodov// Вопросы атомной науки и техники. — 2013. — № 3. — С. 53-57. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 52.30.-q, 52.25.Xz http://dspace.nbuv.gov.ua/handle/123456789/111865 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
spellingShingle Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
Khelemelya, O.V.
Kholodov, R.I.
Quantum field methods in the electron cooling
Вопросы атомной науки и техники
description Quantum field methods are proposed to describe the electron cooling process. The influence of the magnetic field and the anisotropy of the temperature distribution of the electron gas are considered in the framework of quantum field theory. It is shown the longitudinal component of the thermal motion of electrons acts the main role in the electron cooling of heavy ions in the presence of a sufficiently strong magnetic field. Quantum effects in the electron cooling are estimated.
format Article
author Khelemelya, O.V.
Kholodov, R.I.
author_facet Khelemelya, O.V.
Kholodov, R.I.
author_sort Khelemelya, O.V.
title Quantum field methods in the electron cooling
title_short Quantum field methods in the electron cooling
title_full Quantum field methods in the electron cooling
title_fullStr Quantum field methods in the electron cooling
title_full_unstemmed Quantum field methods in the electron cooling
title_sort quantum field methods in the electron cooling
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Квантово-полевые и групповые подходы теоретической физики. Семинар памяти Петра Ивановича Фомина
url http://dspace.nbuv.gov.ua/handle/123456789/111865
citation_txt Quantum field methods in the electron cooling / O.V. Khelemelya, R.I. Kholodov// Вопросы атомной науки и техники. — 2013. — № 3. — С. 53-57. — Бібліогр.: 10 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT khelemelyaov quantumfieldmethodsintheelectroncooling
AT kholodovri quantumfieldmethodsintheelectroncooling
first_indexed 2025-07-08T02:49:18Z
last_indexed 2025-07-08T02:49:18Z
_version_ 1837045340299067392
fulltext QUANTUM FIELD METHODS IN THE ELECTRON COOLING O.V.Khelemelya∗, R.I.Kholodov, Institute of Applied Physics NAS of Ukraine, 40000, Sumy, Ukraine (Received Marth 22, 2013) Quantum field methods are proposed to describe the electron cooling process. The influence of the magnetic field and the anisotropy of the temperature distribution of the electron gas are considered in the framework of quantum field theory. It is shown the longitudinal component of the thermal motion of electrons acts the main role in the electron cooling of heavy ions in the presence of a sufficiently strong magnetic field. Quantum effects in the electron cooling are estimated. PACS: 52.30.-q, 52.25.Xz 1. INTRODUCTION In 1967 G.I. Budker [1] proposed the electron cool- ing method of charge massive particle beam (damp volume space). One combines of moving “hot” ion and “cold” electron beams at a some location of the storage ring. Due to the Coulomb interaction beams temperatures equalized then ”warmed up” electrons are removed from the system drive. The cooled ion beam contin- ues to move in a storage ring. In modern facilities, such HESR (High Energy Storage Ring, Germany, FAIR Collaboration), elec- tron cooling method is a necessary part of the process of accumulation of antiprotons. Charmonium spec- troscopy, which is one of the main items in the exper- imental program of HESR, requires antiproton mo- mentum up to 8.9 GeV/c with a resolution ∆p/p ∼ 10−5. This can be achieved only with electron cool- ing. Originally Coulomb theory of binary collisions is used to describe the process of electron cooling. The advantage of this method is evident in the construc- tion of the theory, but the total result can be obtained only by means of numerical simulations [2, 3, 4]. Also, the friction force can be obtained by the methods of plasma physics (dielectric model). Here the properties of the medium are given by the di- electric constant of the plasma, which determines the form of the expression for the energy loss of ions mov- ing in the electron gas [5]. The theory of binary collisions and the dielectric model have a significant disadvantage associated with the introduction of empirical values such as the cutoff parameters in the Coulomb logarithm. The quantum field theory method is devoid of this disadvantage, the Coulomb logarithm contains values determined from the first principles. The question of energy loss of the interaction charged particles with a plasma without a magnetic field was investigated in the framework of quantum field theory by Larkin [6]. The interaction of a nonrelativistic charged par- ticle with a plasma in a magnetic field was described within quantum field theory in Akhiezer‘s work [7]. The energy losses were obtained with approximation of zero temperature. In this paper the effect of the anisotropic electron- gas temperature on the energy losses are taken into account in the linear approximation. 2. ENERGY LOSSES OF PARTICLE IN A MAGNETIZED ELECTRON GAS Let consider the basic steps of quantum field theory to the description of electron cooling. The Hamiltonian of the system of charged parti- cles interacting by Coulomb’s law with the passing through of the particles, can be written as H = H0 + H ′(t), (1) where H0 is the main Hamiltonian of nonperturbative system of plasma particles, the second term H ′(t) , the Hamiltonian of interaction, describes the pertur- bation introduced by the projectile particle: H ′(t) = ∫ d~rJ0(~r, t)a0(~r, t), (2) a0(~r, t) = (4π)−1 ∫ d~r′ |~r − ~r′|−1 j0(~r′, t). a0 is operator of a scalar potential, j0 and J0 are operators of the charge density of the system and of the projectile particle, respectively, the operators are taken in the interaction representation. The elements ∗Corresponding author E-mail address: xvdm@mail.ru ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2013, N3(85). Series: Nuclear Physics Investigations (60), p.53-57. 53 of the scattering matrix S = T   −i ∞∫ −∞ H ′ (t) dt    (3) connects the various states of the original system and external particle. These states are characterized by the quantum numbers α, n, where α ≡ (ν, pz, q) are quantum numbers of the projectile particle in a mag- netic field ~H and n is set of quantum numbers de- scribing the state of the environment with a certain energy En and a certain number of particles Nn. We assume the speed of the moving particle V is large enough that ( e2V −1h̄−1 ¿ 1 ) its interaction with the particles of the medium can be considered by perturbation theory. In the linear approximation in H ′ (t) probability of transition from the initial state α, n to the final state α′, n′ has the form Wif = 2πδ (Ei − Ef ) |H ′|2 (4) or Wif = 2πδ (Ei − Ef ) ∫ d~rd~r′〈α′ ∣∣∣Ĵ0 (~r) ∣∣∣ α〉, (5) 〈α ∣∣∣Ĵ0 (~r′) ∣∣∣ α′〉〈n′ |ϕ̂ (~r)|n〉〈n |ϕ̂ (~r′)|n′〉 , where En − En′ + εα − εα′ εα ≡ εν,pz = η (ν + 1) m/M + pz/2M is the energy of projectile particle, M is its mass, η = eH/mc is the Larmor frequency of electron in magnetic field ~H (α̂0, Ĵ0 are operators in the Schrodinger representation). Let sum expression for the probability of the final states environment and average over the initial states of the density matrix ρ0 = exp {β (Ω + µN − En)} to get the full transition probability of a particle from a state with energy εν,pz in a state of the energy εν′,p′z Wα,α′ = ∑ n exp {β (Ω + µN − En)} ∑ n′ Wif . (6) Passing to Fourier components Wα,α′ = 2π ∫ d3kΦ ( ~k, εα − εα′ ) U ( ~k ) , (7) where Φ ( ~k, εα − εα′ ) and U ( ~k ) are components of Fourier function, Φ (~r1 − ~r2, ω) = ∑ n,n′ exp {β (Ω + µN − En)}× (8) ×〈n′ |α̂0(~r1)|n〉〈n |α̂0(~r2)|n′〉δ (En − En′+ω) , U (~r1 − ~r2) = ∑ q,q′ 〈α′ ∣∣∣Ĵ0(~r1) ∣∣∣ α〉〈α ∣∣∣Ĵ0(~r2) ∣∣∣ α′〉. The energy losses per unit of time of the particle is connected with the probability −dE dt = ∑ α′ (εα − εαprime) Wα,α′ . (9) The final form of this equation can be written as −dEν,p dt = 2e2mωB (2π)2 ∑ ν ∞∫ −∞ ωdω (1− e−βω) × (10) × ∫ d3k k Λν,ν′ ( kt√ 2mωB ) × ×Im κ ( ~k, ω ) 1 + κ ( ~k, ω )δ (εν,p − εν′,p−kz − ω) , where the dielectric susceptibility κ ( ~k, ω ) can be de- termine through polarized operator: κ ( ~k, iω ) = −k−2P ( ~k, iω ) . (11) The graphic technique is applied to calculate the polarization operator. In the one-loop approxima- tion (first Born approximation) the polarization op- erator are described by the Feynman diagram shown in Fig. 1. P (~r − ~r′, iω) = 2e2 β ∑ p4 G (~r, ~r′, p4) (~r′, ~r, p4 − iω) , (12) where G (~r, ~r′, p4) is Green’s function of an electron in a magnetic field that has the form G (~r, ~r′, p4) = ∑ α Ψα(r1) 1 εα − µ + ip4 Ψ∗α(r2), (13) where Ψα(r) is the wave function of a par- ticle in a magnetic field. The factor of in- verse temperature β = 1/T are contained in the resulting formula for the energy loss (10). Fig.1. The Feynman diagram of the polarization op- erator in the one-loop approximation Special function Λν,ν′ (a) is Λν,ν′ (a) = ∞∫ 0 dsJ0 ( 2 √ as ) Lν(s)Lν′(s) exp(−s), (14) where a = (h̄kt) 2 2mh̄ωB is the ratio of the transverse en- ergy (h̄kt) 2 2m and the distance between adjacent Lan- dau levels h̄ωB , Lν(x) = ex n! dn dxn (e−xxn) is Laguerre polynomial, J0(x) is Bessel function. In the case of strong magnetic fields (a ¿ 1) 54 Λ′ν,ν′ ≈ δν,ν′ + a [(ν + 1)δν+1,ν′ − (2ν + 1)δν,ν′ + νδν−1,ν′ ] + a4 4 [ (ν + 1)(ν + 2)δν+2,ν′ − 4(ν + 1)2δν+1,ν′+ 2(3ν2 + 3ν + 1)δν,ν′ − 4ν2δν−1,ν′ + ν(ν − 1)δν−2,ν′ ] , (15) where δ is the delta function [10]. In the case of weak magnetic fields (a À 1): Λ′′ν,ν′ ≈ mh̄ωB π∆ , (16) where ∆ is the area of the triangle which was built on the segments h̄k⊥, p⊥ = 2mh̄ωB(ν + 1/2), p′⊥ = 2mh̄ωB(ν + 1/2). Fig.2. The function Λνν′(a) (solid curve), its as- ymptotic for a ¿ 1 (dash–dotted curve) and for a À 1 (dotted curve) with numbers of Landau lev- els ν = 3 and ν′ = 2 In Fig. 2. the explicit form of special functions Λν,ν′(a) (14) and its approximations in the case of strong Λ′ν,ν′(a) (15) and weak Λ′′ν,ν′(a) (16) magnetic fields for the numbers of Landau levels ν = 3 and ν′ = 2 are presented [10]. 3. THE APPROACHING OF ZERO TEMPERATURE OF ELECTRON GAS If the electron temperature is T = 0 in [7], a sim- ple expression for an arbitrary angle of the projectile particle relative to the external magnetic field of ar- bitrary strength was obtained. −dEp dt = e2ω2 P 4πV [ LC − f ( α, ωP ωB )] , (17) where LC = ln ( 2mMV 2 (M+m)ωB ) is Coulomb logarithm, the addition term to the friction force relating to the influence of the magnetic field is written as f ( α, ωP ωB ) = 1 π ( ωP ωB )2    z1∫ 0 g(z)dz − z3∫ z2 g(z)dz    , g(z) = z(1− z)√ z(z − z1)(z − z2)(z3 − z) , z1,2 = 1 2 ( z3 + sqrtz2 3 − 4 ( ωP ωB )2 sin2 α ) , z3 = 1 + ( ωP ωB )2 . The resulting analytical expression corresponds ex- pression derived in the framework of the clas- sical theory of binary collisions and the di- electric model (Such result is shown in Fig. 3.) Fig.3. Dependence f(α, u), on the angle 0 ≤ α ≤ π/2 of a projectile particle with respect to the external magnetic field 0 ≤ u = ωP /ωB When the magnetic field is turned off the addition part f (α, ωP /ωB) and we get a supplement known expression for the polarization losses without a mag- netic field when the temperature is neglected, that is, the initial velocity of the incoming particle is much greater than the speed of random motion of particles in the plasma. 4. THE ACCOUNTING OF THE ANISOTROPIC TEMPERATURE OF THE ELECTRON GAS IN THE LINEAR APPROXIMATION Taking into account of the temperature of the electron gas is essential problem of electron cooling. The temperature is met in the expression for the energy loss of the projectile particle in the form βεα βεα = βεα⊥ + βεα‖ = ωB T ( ν + 1 2 ) + p2 2mT . (18) An important point in accelerator technology is the effect of ”plated” of the electrostatically accel- erated beam of charged particles. This effect is a consequence of Liouville’s theorem. After acceler- ating the electron velocity distribution is essentially anisotropic. The transverse temperature is a thou- sand times greater than the longitudinal component 55 (for the characteristic values T⊥e ≈ Tcath ∼ 1000K, U ∼ 10kV , T‖ = T 2 cath/E ∼ 1K. Let use replacement to account for the tempera- ture anisotropy βεα = β⊥εα⊥ + β‖εα‖ = ωB T⊥ ( ν + 1 2 ) + p2 2mT‖ . (19) In the linear approximation of the temperature the dielectric susceptibility one can write as [10] κ (ω, k, T ) = κ (ω, k, 0) + AT‖ + BT⊥ + C, (20) where κ (ω, k, 0) = −ω2 P k2 ( k2 z ω2 + k2 ⊥ ω2 − ω2 B ) . (21) The first term in (20) is the well-known expression in the plasma physics obtained in hydrodynamics ap- proximation [5] A = −ω2 P k2 z mk2 ( 3k2 z ω4 + k2 ⊥ 3ω2 + ω2 B (ω2 − ω2 B)3 ) , (22) B = −ω2 P k2 ⊥ mk2 × (23) ( k2 z ω2 3ω2 − ω2 B (ω2 − ω2)2 + 3k2 ⊥ (ω2 − 4ω2 B) (ω2 − ω2 B) ) . Next two terms in (20) give a correction for tem- perature in the linear approximation [10]. C = −ω2 P k2 ( h̄2k2 z 4mω2 + h̄2k4 ⊥k2 z 8m2ω2ω2 B ( 1 + 3T⊥ h̄ωB )) − (24) −ω2 P k2 ( h̄2k4 zk2 ⊥ 4m2 ( 3ω2 + ω2 B ω2 − ω2 B )) . Expression (24) takes into account the quantum corrections [10]. Let consider the case of longitudi- nal motion of the particles in a magnetic field. In the weak and strong magnetic fields one can obtain simple analytical expressions for the energy loss. En- ergy losses are written in approximation of a weak magnetic field (ωB/ωP ¿ 1) as −dE dt = q2ω2 P Vi [ LC − τ 2 − 1 2 ( ωB ωP )] . (25) where τ = 3v2 eT V 2 i , LC is Coulomb logarithm (17) If the value of the magnetic field one comes to the result obtained in the case without the magnetic field [6] ~H = 0 that means the correspondence prin- ciple is performed. In approximation of a weak magnetic field they are (ωB/ωP À 1) −dE dt = q2ω2 P Vi [( 1− 4τ‖ 3 ( ωB ωP )4 − 2τ⊥ 3 ( ωB ωP )2 ) LC− ln   √ 1 + ( ωB ωP )2   + 2τ‖ 3 ( ωB ωP )4 − τ⊥ 3 ( ωB ωP )2   . (26) The term with the Coulomb logarithm yields main contribution to the expression (26). It is proportional ( 1− 4τ‖ 3 ( ωB ωP )4 − 2τ⊥ 3 ( ωB ωP )2 ) . (27) The value equal to the ratio of the second and the third term of (27) is ξ = 2 T‖ T⊥ ( ωB ωP )2 . (28) It is an experimentally proved fact that with in- creasing values of the external longitudinal magnetic field the effect of the ”fast” electron cooling are ob- served [3, 4]. The effect is observed in strong external magnetic fields which locks the transverse motion of the electrons. So the energy exchange is possible only through the longitudinal component of the tempera- ture which is several orders of magnitude low than transverse one. The cooling of the beam of heavy charged particles is several times better as result. In early experiments term was only a fraction of a unit [9]. In modern installations, for example, project HESR (High Energy Storage Ring), ξ reaches values (ξ ≈ 10). The contribution of the longitudinal com- ponent of the thermal motion of electrons is much higher than the perpendicular one. 5. QUANTUM EFFECTS IN THE ELECTRON COOLING In the electron gas in a magnetic field two types of quantum effects are possible: 1) if the temperature of the electron gas below the degeneracy temperature then all of the electron gas behaves as a quantum ob- ject; and 2) the energy of particles is characterized by the Landau levels due to the motion of particles in a magnetic field. If the transverse temperature of the electron gas is less than the distance between adjacent Landau levels then there will be quantum effects. There are characteristic density of the electron gas N ≈ 3 · 107cm−3, plasma ωP ≈ 2.9 · 108c−1 and cy- clotron ωB ≈ 3.5 · 108c−1 frequencies in the electron cooling. For such parameters the degeneracy temper- ature of the electron gas is T0 = h̄2 2m ( 3π2N )2/3 ∼ 10−10eV. (29) 56 The temperature below the temperature of the electrons is assumed while technically impossible. In the second case with the Landau levels the tem- perature of the electron T0 gas are imposed less strin- gent conditions h̄ωB T⊥ = eBh̄ 2mcT⊥ ∼ 10−5. (30) So on devices such HESR quantum effects are not important. However, it should be noted that quan- tum electron cooling can be observed in the labora- tory if we increase the magnetic field and decrease the transverse temperature by two orders of magnitude, that is technically possible. In conclusion, the main advantage of the quan- tum approach to the description of electron cooling is avoiding of the disadvantages associated with the empirical determination of the Coulomb logarithm which is typical for the theory of binary collisions and for the plasma model. In quantum field theory the Coulomb logarithm is defined from the first prin- ciples. The authors are grateful to Miroshnichenko V.I. for useful discussions References 1. G.I. Budker // Atomnaya Energiya. 1967, v. 22, p.346. 2. G.I. Budker, A.N. Skrinsky. Electron cooling and new possibilities in elementary particle physics // UFN 1978, v.21, 277-296. 3. V.V.Parkhomchuk, A.N. Skrinsky. Electron cool- ing: physics and prospective application // Rep.Prog.Phys. 1991, v.54, p.919-947. 4. I.N.Meshkov. Electron Cooling: Status and Per- spectives. // Physics of Elementary Particles and Atomic Nuclei. 1994, v. 25, N6, p.1487-1560. 5. A.I. Akhiezer, R.V.Polovin, et al. Plasma Elec- trodynamics. Oxford: Pergamon Press, 1967. 6. A.I. Larkin, Passage of particles through plasma // Sov. Phys. JETP. 1960, v.10, p.186-191. 7. I.A.Akhiezer // Sov. Phys. JETP. 1961, v.13, p.667. 8. V.V.Parkhomchuk. Physics of fast electron cool- ing. Proc. // Workshop on Electron Cooling and Related Applications (Karlsruhe, 1984)/ ed H.Poth (Karlsruhe: KfK). 9. G.I. Budker, N.S. Dikansky, V.I. Kudelaineen, I.N.Meshkov, V.V. Parkhomchuk, A.N. Skrinsky and B.N. Sukhina. First experiments on electron cooling // Proc. IV All-Union Meering an Ac- celerators of Charged Parricles (Moscow, 1974). Moscow: ”Nauka”) v.2, p.309: 1975 IEEE Trans. Nucl. Sci. VS-22 2093-7. 10. M.M.Dyachenko, V.I. Miroshnichencko, R.I.Kolodov // Reports of the National Academy of Sciences of Ukraine. 2012, v.10, p.70-76. КВАНТОВО-ПОЛЕВЫЕ МЕТОДЫ В ЗАДАЧЕ ЭЛЕКТРОННОГО ОХЛАЖДЕНИЯ А.В.Хелемеля, Р.И.Холодов Предложено использовать квантово-полевые методы для описания процесса электронного охлажде- ния. Рассмотрено в рамках квантовой теории поля влияние магнитного поля при учете анизотропии температурного распределения электронного газа. Показано, что в присутствии достаточно сильного магнитного поля главную роль в электронном охлаждении тяжелых ионов отыгрывает продольная со- ставляющая теплового движения электронов. Проведена оценка квантовых эффектов в электронном охлаждении. КВАНТОВО-ПОЛЬОВI МЕТОДИ В ЗАДАЧI ЕЛЕКТРОННОГО ОХОЛОДЖЕННЯ О.В.Хелемеля, Р.I.Холодов Запропоновано використовувати квантово-польовi методи для опису процесу електронного охолоджен- ня. Розглянуто в рамках квантової теорiї поля вплив магнiтного поля з урахуванням анiзотропiї темпе- ратурного розподiлу електронного газу. Показано, що в присутностi сильного магнiтного поля головну роль в електронному охолодженнi важких iонiв вiдiграє повздовжня компонента теплового руху елек- тронiв. Проведено оцiнку квантових ефектiв в електронному охолодженнi. 57