Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor
We investigate the transition radiation of an electron crossing an interface between a dielectric and a layered superconductor. The electron’s direction of motion and the orientation of the superconductor’s layers are perpendicular to the interface. The analysis of the radiation patterns reveals the...
Gespeichert in:
Datum: | 2013 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/111905 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor / Yu.O. Averkov, V.M. Yakovenko, V.A. Yampol’skii // Вопросы атомной науки и техники. — 2013. — № 4. — С. 15-20. — Бібліогр.: 21 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111905 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1119052017-01-16T03:03:23Z Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor Averkov, Yu.O. Yakovenko, V.M. Yampol’skii, V.A. Нерелятивистская электроника We investigate the transition radiation of an electron crossing an interface between a dielectric and a layered superconductor. The electron’s direction of motion and the orientation of the superconductor’s layers are perpendicular to the interface. The analysis of the radiation patterns reveals the strong anisotropy of the radiation intensity distribution with respect to the azimuth angle in the interface plane. Досліджено перехідне випромінювання електрона, який перетинає межу поділу діелектрика і шаруватого надпровідника. Напрямок руху електрона і шари надпровідника орієнтовані перпендикулярно цієї межі. Аналіз діаграм спрямованості випромінювання показав сильну анізотропію його інтенсивності щодо азимутального кута у площині межі поділу середовищ. Исследовано переходное излучение электрона, пересекающего границу раздела диэлектрика и слоистого сверхпроводника. Направление движения электрона и слои сверхпроводника ориентированы перпендикулярно границе. Анализ диаграмм направленности излучения показал сильную анизотропию его интенсивности по азимутальному углу в плоскости границы раздела сред. 2013 Article Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor / Yu.O. Averkov, V.M. Yakovenko, V.A. Yampol’skii // Вопросы атомной науки и техники. — 2013. — № 4. — С. 15-20. — Бібліогр.: 21 назв. — англ. 1562-6016 PACS: 41.60. ±m, 74.70. ± b http://dspace.nbuv.gov.ua/handle/123456789/111905 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Нерелятивистская электроника Нерелятивистская электроника |
spellingShingle |
Нерелятивистская электроника Нерелятивистская электроника Averkov, Yu.O. Yakovenko, V.M. Yampol’skii, V.A. Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor Вопросы атомной науки и техники |
description |
We investigate the transition radiation of an electron crossing an interface between a dielectric and a layered superconductor. The electron’s direction of motion and the orientation of the superconductor’s layers are perpendicular to the interface. The analysis of the radiation patterns reveals the strong anisotropy of the radiation intensity distribution with respect to the azimuth angle in the interface plane. |
format |
Article |
author |
Averkov, Yu.O. Yakovenko, V.M. Yampol’skii, V.A. |
author_facet |
Averkov, Yu.O. Yakovenko, V.M. Yampol’skii, V.A. |
author_sort |
Averkov, Yu.O. |
title |
Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor |
title_short |
Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor |
title_full |
Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor |
title_fullStr |
Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor |
title_full_unstemmed |
Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor |
title_sort |
transition radiation of an electron crossing an interface between a dielectric and a layered superconductor |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Нерелятивистская электроника |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111905 |
citation_txt |
Transition radiation of an electron crossing an interface between a dielectric and a layered superconductor / Yu.O. Averkov, V.M. Yakovenko, V.A. Yampol’skii // Вопросы атомной науки и техники. — 2013. — № 4. — С. 15-20. — Бібліогр.: 21 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT averkovyuo transitionradiationofanelectroncrossinganinterfacebetweenadielectricandalayeredsuperconductor AT yakovenkovm transitionradiationofanelectroncrossinganinterfacebetweenadielectricandalayeredsuperconductor AT yampolskiiva transitionradiationofanelectroncrossinganinterfacebetweenadielectricandalayeredsuperconductor |
first_indexed |
2025-07-08T02:52:44Z |
last_indexed |
2025-07-08T02:52:44Z |
_version_ |
1837045556368637952 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №4(86) 15
NON-RELATIVISTIC ELECTRONICS
TRANSITION RADIATION OF AN ELECTRON CROSSING
AN INTERFACE BETWEEN A DIELECTRIC AND A LAYERED
SUPERCONDUCTOR
Yu.O. Averkov1, V.M. Yakovenko1, V.A. Yampol’skii1,2
1A.Ya. Usikov Institute for Radiophysics and Electronics of the National Academy
of Science of Ukraine, Kharkov, Ukraine;
2V.N. Karazin Kharkov National University, Kharkov, Ukraine
E-mail: yuriyaverkov@gmail.com
We investigate the transition radiation of an electron crossing an interface between a dielectric and a layered su-
perconductor. The electron’s direction of motion and the orientation of the superconductor’s layers are perpendicu-
lar to the interface. The analysis of the radiation patterns reveals the strong anisotropy of the radiation intensity dis-
tribution with respect to the azimuth angle in the interface plane.
PACS: 41.60. ±m, 74.70. ± b
INTRODUCTION
As is known, the transition radiation effect, i.e. the
effect of radiation of a uniformly moving electron due
to its transition from one medium into another, was dis-
covered by V.L. Ginzburg and I.M. Frank in 1945 [1].
Since then the numerous papers have been written on
the subject (see, e.g., [2 - 6]). Nowadays a good deal of
attention to the transition radiation effect is caused by a
large number of its applications. For instance, the transi-
tion radiation is used in high-energy physics to the de-
tection of charged particles [2]. The electron bunch
bombardment of the solids [6] and transit of the bunches
through diaphragms [8, 9] allow to generate short high
power pulses which are widely used for radiolocation.
The transition radiation also finds application in investi-
gation of two-dimensional electron systems which are
the basis for many up-to-date electronic devices [10,
11]. Besides, the radiation of modulated electron beams
crossing a boundary of a plasma-like medium is a very
effective method for generation of surface electromag-
netic waves [12 - 13].
The characteristic properties of the transition radia-
tion of both the electrons and electron bunches crossing
anisotropically conducting interfaces such as wire
shields have been considered in [14 - 16]. Specifically,
the possibility of obtaining an elliptical polarization of
electromagnetic waves has been shown. V.E. Pafomov
in 1959 first proved the possibility of excitation of the
electromagnetic waves with negative group velocity
with the aid of the Vavilov-Cherenkov radiation in the
medium which possesses negative permittivity and
negative permeability simultaneously (so-called left-
handed medium) [17]. Namely, he first demonstrated
that if an electron moves from a vacuum into the me-
dium, the maximum of the intensity of the Vavilov-
Cherenkov radiation is in a vacuum. A similar effect
occurs when an electron crosses an interface between a
vacuum and a uniaxial anisotropic conducting medium
(e.g., layered superconductor) in the case where the
conducting layers are parallel to the interface [18].
In the present paper we theoretically investigate the
transition radiation of an electron crossing a layered
superconductor in the case where its layers are perpen-
dicular to the interface. Specifically, it turned out that
unlike the results of work [18], in our system the excita-
tion of the electromagnetic waves with negative group
velocity in the layered superconductor is principally
impossible, i.e. the energy flux density vector in the
superconductor does not form an obtuse angle with the
direction of the electron motion. In addition, we have
found that energy flux distribution of transition radia-
tion exhibits a strong anisotropy on azimuth angle in the
interface plane.
1. STATEMENT OF THE PROBLEM AND
BASIC EQUATIONS
Let the structure under study be comprised of the di-
electric (the region with index 1) with permittivity 1ε
and the layered superconductor (the region with index
2) with dielectric permittivity given by the diagonal
permittivity tensor with components ,abyyxx εεε ==
czz εε = (Fig. 1), where
( )ωνγωγεε abab i 2221= +− , (1)
( )ωνωεε cc i+− 211= . (2)
Fig. 1. Geometry of the problem
Here, we introduce the dimensionless parameters
,Jωωω = )(4= 2γεωπσν Jabab and )(4= Jcc εωπσν ,
1>>= abc λλγ is the current-anisotropy parameter, cλ
and abλ are the magnetic-field penetration depths along
and across the layers, respectively. The relaxation fre-
quencies abν and cν are proportional to the averaged
quasi-particle conductivities abσ (along the layers) and
cσ (across the layers), respectively, ( )1/28= επω hcJ eDJ
ISSN 1562-6016. ВАНТ. 2013. №4(86) 16
is the Josephson plasma frequency, e is the electron
charge, D is the period of the layered structure, cJ is
the critical Josephson current density, ε is the inter-
layer dielectric constant. All media are supposed to be
nonmagnetic. We define our coordinate system so that
the dielectric occupies the half-space ,0<y the layered
superconductor occupies the half-space ,0>y and the
z -axis coincides with the crystallographic c
r
-axis of
superconductor. An electron moves uniformly in the
dielectric along the y -axis at a velocity cv << (where
c is the speed of light in a vacuum) and crosses the
interface. The electron-charge density ( )trn ,
r
is deter-
mined by the formula
( ) ( ) ( ) ( ),, zytvxetrn δδδ −=
r
(3)
where ( )xδ is the Dirac delta function. The electromag-
netic fields of the electron are expressed in terms of
Fourier integrals
( ) ( ) ( )[ ] ,exp,, ωωω dkdtrkikEtrE ee
rrrrrrr
ll −= ∫ (4)
where 2 ,1=l is the number of the medium,
( ), ,x y zk k k k=
r
. The Fourier components for the elec-
tric and magnetic fields of the electron in the dielectric are
( )
( )
( ),
2
,
1
22
2
1
1
21 vk
ck
kcviekE y
e −
−
−
= ωδ
εω
ωε
επ
ω
rrrr
(5)
( ) ( )1
1 1, ,e eH k v E k
c
ε
ω ω= ×
r rr rr . (6)
The corresponding field components in the super-
conductor are
( ) ( ) ( ) ( ),
ΔΔ2
Λ
, eo2
1
2 vk
kievk
kE y
yxe
x −−= ωδ
ωπ
ω
r
(7)
( ) ( ) ( ) ( ),
ΔΔ2
Λ, eo2
2
2 vkievkE y
e
y −−= ωδ
ωπ
ω
r
(8)
( ) ( ) ( ),
Δ2
, e22 vk
kievk
kE y
yze
z −−= ωδ
ωπ
ω
r
(9)
( ) ( ),,1, 22 ωω kDv
c
kH ee
rrrrr
×= (10)
where ( ) ( ) ( ),,, 22 ωωεω kEkD e
kjk
e
j
rr
=
,Λ 2
2
2
1 cc
k εω
−= (11)
( ),Λ 2
2
2
2
2
2
2
2
2
2 abczcaby c
k
c
k
c
k εεωεωεω
−−⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−= (12)
( ) ,Δ 2
2
2
ab
o
c
k εω
−= (13)
( ) ( ) .2
2
222Δ cababyxcz
e
c
kkk εεωεε −++= (14)
The radiation fields we express in terms of the fol-
lowing Fourier integrals
( ) ( ) ( )[ ] ,exp,, ωκωρκωκ ddtykiEtrE y
rrrrrrr
lll −+= ∫ (15)
where ( ),x zk kκ =
r
is the wave vector in the xz
plane, ( )yx,=ρ
r
is the radius vector in the xz plane.
We assume that the radiation field in the dielectric is the
superposition of the ordinary and extraordinary electro-
magnetic waves with components ( ) ( )( ),0,, 11
o
y
o
x EE
( ) ( ) ( )( )o
z
o
y
o
x HHH 111 ,, and ( ) ( ) ( )( ),,, 111
e
z
e
y
e
x EEE ( ) ( )( )0,, 11
e
y
e
x HH ,
respectively. From the Maxwell equations we attain the
following relationships between the Fourier components
of electric and magnetic fields of o and e types:
( ) ( ),,=, )(
1
1
)(
1 ωκωκ
rr o
x
y
xo
y E
k
k
E − (16)
( ) ( ),,=, )(
1
1
)(
1 ωκ
ω
ωκ
rr o
x
y
zxo
x E
k
kck
H (17)
( ) ( ),,=, )(
1
)(
1 ωκ
ω
ωκ
rr o
x
zo
y EckH (18)
( ) ( ),,=, )(
1
1
2
1
2
)(
1 ωκ
ω
ωκ
rr o
x
y
yxo
z E
k
kkcH
+
− (19)
( ) ( ),,=, )(
1
1)(
1 ωκωκ
rr e
x
x
ye
y E
k
k
E (20)
( ) ( ),,=, )(
1
2
1
2
)(
1 ωκωκ
rr e
x
zx
yxe
z E
kk
kk
E
+
− (21)
( ) ( ),,=, )(
11
1)(
1 ωκεωωκ
rr e
x
zx
ye
x E
kk
k
c
H − (22)
( ) ( ),,=, )(
11
)(
1 ωκεωωκ
rr e
x
z
e
y E
ck
H (23)
where .= 22
1
2
1 κεω −− ck y In the layered
superconductor the radiation field we represent as the
superposition of electromagnetic waves of o and e
types with following Fourier components:
( ) ( ),,=, )(
2)(
2
)(
2 ωκωκ
rr o
xo
y
xo
y E
k
k
E − (24)
( ) ( ),,=, )(
2)(
2
)(
2 ωκ
ω
ωκ
rr o
xo
y
zxo
x E
k
kck
H (25)
( ) ( ),,=, )(
2
)(
2 ωκ
ω
ωκ
rr o
x
zo
y EckH (26)
( ) ( ),,=, )(
2)(
2
2)(
2
2
)(
2 ωκ
ω
ωκ
rr o
xo
y
o
yxo
z E
k
kkcH
+
− (27)
( ) ( ),,=, )(
2
)(
2)(
2 ωκωκ
rr e
x
x
e
ye
y E
k
k
E (28)
( ) ( ),,=, )(
2
2)(
2
2
)(
2 ωκ
ε
ε
ωκ
rr e
x
zx
e
yx
c
abe
z E
kk
kk
E
+
− (29)
( ) ( ),,=, )(
2
)(
2)(
2 ωκεωωκ
rr e
xab
zx
e
ye
x E
kk
k
c
H − (30)
( ) ( ),,=, )(
2
)(
2 ωκεωωκ
rr e
xab
z
e
y E
ck
H (31)
where
,= 222)(
2 κεω −ck ab
o
y (32)
.= 2222)(
2 abzcxc
e
y kkck εεεω −− (33)
ISSN 1562-6016. ВАНТ. 2013. №4(86) 17
From the continuity conditions for the tangential
components of the electric and magnetic fields at the
interface we derive the following expressions for the
total radiation fields in the dielectric:
( ) ,
Δ
, 1321
1
OSW
x
QQ
c
iE
ααωωκ
+
−=
r
(34)
( )
( ) ( )
1
1
3 2 1 1 4 2
,
Δ
,
y
y OSW
x z x z
iE
ck
k k Q k k Q
ωκ ω
α α α α
= ×
× + + −⎡ ⎤⎣ ⎦
r
(35)
( ) ,
Δ
, 1224
1
OSW
z
QQ
c
iE ααωωκ
−
=
r
(36)
( ) ( )
( ) ( )
1 1
1 1
2 2
12 2
1 4 1 1
1 1
, ,
,
x x
y
z y
x z z y
y
cH E
k
i k k
k k k k Q
k
κ ω κ ω
α ω
α α
α
= ×
+
⎡ ⎤× − + −⎣ ⎦
r r
(37)
( ) ( ) ,,, 1
1
1
1
4
1 Q
ik
EkkcH x
xxzy α
ωκ
α
α
ω
ωκ +⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
+=
rr
(38)
( ) ( )
( )
1 1
1 1
2 2
1 1 4 1
1 1
, ,
,
z x
y
x z
x y x z
y
cH E
k
ik kk k k k Q
k
κ ω κ ω
α ω
α α
α
= − ×
⎡ ⎤× + − +⎣ ⎦
r r
(39)
where
( )
( ) ,
21
12
1 o
yy
y
o
y
zx kk
kk
kk
−
−=α ( ),12 εεα −−= abzxkk (40)
( ) ( )( ),2111
2
3
e
yyyababz kkkk −+−= εεεα (41)
( ) ,2
12
2
1
1
2
2
21
24 ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−−⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−= −−
zyzab
o
y k
c
kk
c
k εωεωα (42)
,Δ 4321 αααα +=OSW (43)
( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( ) ( )( )}
1 o2
1 2 1
2 2
o 2 2
1 1 2 2
2
o 2
2 1 12 2
o2
1 1
2 Δ Δ Δ
Δ Δ Δ
Δ Δ Δ
Δ Δ Δ ,
x
o e
y
e
c ab z
o e
y ab c
e
z
eckQ
v k
k k
c c
v k k
c c
k
π ωε
ω ωε ε ε
ω ωε ε ε
ε
= − ×
⎧⎡ ⎤⎛ ⎞ ⎛ ⎞⎪× − − − −⎨⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪⎣ ⎦⎩
⎡ ⎤⎛ ⎞
− − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
+ −
(44)
( ) ( )
( ) ( )( )
( ) ( )
( ) ( ) ( )( )
1
2 o2 2
1
2
o 2
1 2
2
o2 2
1 2
o
2 1 1
1
2 Δ Δ Δ
Δ Δ Δ
Δ Δ Δ
Δ Δ Δ ,
z y
e
e
c ab z
e
x ab c
e eab
y
eck k
Q
v
v k
c
vk k
c
k
π ω
ωε ε
ωε ε
ωε ε
ε
= ×
⎧ ⎛ ⎞⎪× − − −⎨ ⎜ ⎟
⎪ ⎝ ⎠⎩
⎡ ⎤⎛ ⎞
− − − −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
⎫
− − ⎬
⎭
(45)
,Δ 12
2
2
1 εω
c
k −= .2
2
222
v
kkk zx
ω
++= (46)
In order to derive the spatial and time dependencies
of the total electromagnetic fields in the explicit forms,
we need to integrate expressions (34) - (39) with respect
to xk and zk by means of the stationary phase method
for two-dimensional integrals [19]. According to this
method, we obtain following stationary points:
,sinsin10 ϕϑεω
c
kx = (47)
,cossin10 ϕϑεω
c
kz = (48)
where ϑ is the angle relative to the y -axis, ϕ is the
azimuth angle in the interface plane (see Fig. 1).
To calculate the energy losses by the electron to ra-
diation in the dielectric we find the energy flux of the
total electromagnetic wave in the dielectric across the
remote hemisphere using the following time-integrated
Poynting vector:
( ) ( )[ ].,,,Re
4
*∫
∞
∞−
= trHtrEdtcS
rrrrr
π
. (49)
Eventually, we will get the following expression for
the spectral density ( )ϕϑω ,,Π of the radiation energy
(in units of ce2
0Π = ) per unit solid angle
ϕϑϑ ddsinΩ =d averaged over all transit time of the
electron:
( )
( ) ( ){
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) }
2 2 2
1
*
1 1
*
1 1
*
1 1
*
1 1
*
1 1
*
1 1
Π , , 2 cos
Re , , , ,
, , , , sin sin
, , , ,
, , , , sin cos
, , , ,
, , , , cos ,
y z
z y
x y
y x
z x
x z
E H
E H
E H
E H
E H
E H
ω ϑ φ π ε ω ϑ
ω ϑ φ ω ϑ φ
ω ϑ φ ω ϑ φ ϑ φ
ω ϑ φ ω ϑ φ
ω ϑ φ ω ϑ φ ϑ φ
ω ϑ φ ω ϑ φ
ω ϑ φ ω ϑ φ ϑ
= ×
⎡× −⎣
⎤− +⎦
⎡+ −⎣
⎤− −⎦
⎡− −⎣
⎤− ⎦
(50)
where ( ),,,1 ϕϑωjE ( )ϕϑω ,,1 jH are dimensionless
Fourier components for the radiation fields (in units of
Je ω ) given by equations (34) - (39) and expressed in
terms of dimensionless frequency ω with due account
of equations (47), (48).
2. ANALYSIS OF THE SPECTRUM
Let us analyze the dependences of the spectral den-
sity ( )ϕϑω ,,Π on the tilt angle ϑ and the azimuth an-
gle .ϕ Hereafter, we will make use of the following
parameters of the adjacent media:
,11 =ε ,16=ε ,200=γ ,0=abν .10 5−=cν (51)
Fig. 2 shows the ϑ dependence of Π for a number
of ϕ values at 0.7,=ω 3.0== cvβ (the electron
enters into the superconductor). In Fig. 2 curve 1 corre-
sponds to ,90o=ϕ curve 2 is for ,60o=ϕ curve 3 is
for ,30o=ϕ and curve 4 is for .0o=ϕ As seen from
ISSN 1562-6016. ВАНТ. 2013. №4(86) 18
Fig. 2, at o90=ϕ the maximum of the spectral energy
density is located at .90o≈ϑ
Physically this implies that radiation energy flux at
o90≈ϑ is directed at a grazing angle to the interface.
0 15 30 45 60 75 90
0
1
2
3
4
ϑ
Π
, 1
0-3
(i
n
un
its
o
f e
2 /c
)
(degree)
1
2
3
4
Fig. 2. The dependences of ( )ϑΠ for a number
of ϕ values at 0.7,=ω 3.0=β
It easily seen from Fig. 2 that the maximum of the
spectral energy density decreases and shifts towards
lower values of the angle ϑ with decreasing the angle
.ϕ Note that at angles o0≈ϕ and o90≈ϕ the radiation
field is TM polarized. At o0≈ϕ the radiation field has
components ( )zy EE 11 ,,0 , ( )0,0,1xH , while at o90≈ϕ it
has components ( )0,, 11 yx EE , ( )zH1,0,0 . At angles
oo 900 <<ϕ the radiation field, as mentioned earlier, is
the superposition of o and e polarized waves and pos-
sesses all components of the electric and magnetic
fields.
The dependences of ( )ϑΠ for a number of frequen-
cies ω at ,0o=ϕ 3.0=β are shown in Fig. 3.
0 15 30 45 60 75 90
0
1
2
3
4
Π
, 1
0-3
(i
n
un
its
o
f e
2 /c
)
ϑ (degree)
1
2
3
4
5
6
7
Fig. 3. The dependences of ( )ϑΠ for a number
of ω values at ,0o=ϕ 3.0=β
In Fig. 3 curve 1 corresponds to ,0→ω curve 2 is
for ,1.0=ω curve 3 is for ,5.0=ω curve 4 is for
,8.0=ω curve 5 is for ,1=ω curve 6 is for ,2=ω and
curve 7 is for .10=ω From Fig. 3 it follows that at
o0=ϕ and the low frequencies ( 0→ω ) the maximum of
the spectral energy density is located at .90o≈ϑ As the
frequency further increases, the maximum decreases and
tends to a certain minimum value at 1=ω (curve 5). At
1>ω the value of the maximum grows with the in-
crease of the frequency and tends to the limit at 1>>ω
(curve 7).
Fig. 4 presents the analogous dependences at
,90o=ϕ .3.0=β
In Fig. 4 curve 1 corresponds to ,0→ω curve 2 is
for ,2=ω and curve 3 is for .10=ω
0 15 30 45 60 75 90
0
1
2
3
4
5
80 85 90
1
2
3
4.05
4.50
Π
, 1
0-3
(i
n
un
its
o
f e
2 /c
)
ϑ (degree)
1
2
3
Fig. 4. The dependences of ( )ϑΠ for a number
of ω values at ,09 o=ϕ 3.0=β
The dependences demonstrate that for all frequen-
cies, which have a physical meaning, the maximums of
the spectral energy density are directed at very large
angles close to 90° with respect to the normal to the
interface.
It is worthwhile to consider the Vavilov-Cherenkov
radiation generated by the electron in the layered super-
conductor. As suggested earlier, the electron enters into
the superconductor. In this case, the excited bulk elec-
tromagnetic wave in the superconductor has extraordi-
nary polarization and we can write the following exact
formula for :
2)(
2
e
yk
,ImRe
2)(
2
2)(
2
2)(
2
e
y
e
y
e
y kikk += (52)
where
,Re 2
22
2
2
2
22)(
2
ab
сab
zx
ab
ab
zc
e
y kkk
c
k
ε
εε
ε
εωε
′′′′
−−⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ ′
−′= (53)
,Im 2
2
2
2
2
22)(
2
ab
cab
z
ab
ab
zc
e
y kk
c
k
ε
εε
ε
εωε
′′′
+⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ ′
−′′= (54)
cabcab ,, Reεε =′ , сabсab ,, Imεε =′′ . (55)
From equations (52) - (54) it becomes evident that
the excited extraordinary electromagnetic wave is a ho-
mogeneous one over the frequency range where
,0<′abε 0>′cε and the condition ,0Re
2)(
2 >e
yk in
principle, can be satisfied. It is seen that over the same
frequency range the condition 0Im
2)(
2 >e
yk is satisfied
as well. Using the equations (52) - (54), we can easily
demonstrate that over the frequency range where
,0<′abε 0>′cε the real and imaginary parts of )(
2
e
yk
are simultaneously positive. Physically this implies that
the Vavilov-Cherenkov radiation generated by the elec-
tron entering the layered superconductor cannot be re-
versed, i.e. the energy flux density vector cannot form
an obtuse angle with the direction of the electron mo-
tion. In other words, the superconductor does not be-
have like a left-handed medium. On the other hand, in
case where the layers of the superconductor are parallel
to the interface the reversed Vavilov-Cherenkov radia-
ISSN 1562-6016. ВАНТ. 2013. №4(86) 19
tion is possible [18]. Hence, the orientation of the su-
perconductor layers with respect to the interface plane
plays a critical role for the formation of the reversed
Vavilov-Cherenkov radiation.
Let us consider the case where the electron escapes
from the layered superconductor. In this case, the
above-described characteristics of the transition radia-
tion hold true. At the same time, the Vavilov-Cherenkov
radiation can escape from the superconductor and its
dependences of ( )ϑΠ are shown in Fig. 5.
0 15 30 45 60 75 90
0.0
0.2
0.4
0.6
Π
, 1
0-3
(i
n
un
its
o
f e
2 /c
)
ϑ (degree)
1
2
3
4
Fig.5. The dependences of ( )ϑΠ for a number of ϕ
values at 1.81,≈ω 3.0−=β
In Fig. 5 curve 1 is for ,0o=ϕ curve 2 is for
,1.0 o=ϕ curve 3 is for ,2.0 o=ϕ and curve 4 is for
.3.0 o=ϕ It is seen that the Vavilov-Cherenkov radia-
tion escapes form the semiconductor at very small an-
gles .ϕ So, we can say that the almost all Vavilov-
Cherenkov radiation is mainly concentrated in the yz -
plane.
In order for the Vavilov-Cherenkov radiation to
arise, the condition vk e
y ω=)(
2 must be satisfied. This
condition allows one to derive the following representa-
tive values of the azimuth angles ϕΔ , the radiation fre-
quency VCHω , and the electron velocity :β
,1tan2 <<<
ab
c
ε
ε
ϕ (56)
( ) ,1
2112
VCH
−−
⎥⎦
⎤
⎢⎣
⎡ −≈ εβω (57)
where .12 εβ > The numerical estimates of the condi-
tion vk e
y ω=)(
2 for the abovementioned parameters of
the system show that the Vavilov-Cherenkov radiation
exists over the narrow range of frequencies -510Δ ∝ω
in the vicinity of 81.1VCH ≈ω at .3.0−=β These cir-
cumstances are regarded to be new as compared to the
known results obtained from the analysis of the transi-
tion radiation in the case where an electron crosses an
interface of two isotropic media [2].
It is worthwhile to emphasis that the electron excites
not only the above-considered bulk electromagnetic
waves, but also the so-called oblique surface electro-
magnetic waves (OSWs) in the interface plane. The
properties of the OSWs have recently been investigated
in [20, 21]. Indeed, the value OSWΔ in the denomina-
tors of equations (34) - (36) corresponds to the disper-
sion relation of the OSWs 0ΔOSW = . In order to derive
the spatial and time dependences of the OSW fields in
the explicit form, we need to integrate the expressions
(34) - (39) with respect to ,xk ,zk and ω taking into
account the poles of the integrands in equations (34) -
(39). We will consider the case of the OSWs excitation
by means of the transition radiation effect in a subse-
quent paper.
CONCLUSIONS
The problem of the transition radiation of an elec-
tron moving along the normal to the interface between
an isotropic dielectric and a layered superconductor has
been theoretically examined. It has been assumed that
the layers of the superconductor are perpendicular to the
interface. At azimuth angles oo 900 << ϕ the radiation
field of excited bulk electromagnetic waves is shown to
be a superposition of the ordinary and extraordinary
electromagnetic waves. At angles o0≈ϕ and o90≈ϕ
the radiation field becomes TM polarized. At o0=ϕ
the position of the maximum of the spectral energy den-
sity varies with frequency over a wide range of the tilt
angle .ϑ At o90=ϕ the position of the maximum of
the spectral energy density is close to o90≈ϑ for all
frequencies which have a physical meaning. It has been
established that for the case under study the Vavilov-
Cherenkov radiation generated by the electron entering
the layered superconductor cannot be reversed. In the
case where the electron escapes from the layered super-
conductor the Vavilov-Cherenkov radiation is mainly
concentrated in the plane that comprises the normal to
the interface and the crystallographic c
r
-axis. Besides,
the so-called oblique surface electromagnetic waves can
also be excited along with the bulk waves.
REFERENCES
1. V.L. Ginzburg, I.M. Frank. Radiation of a uniformly
moving electron due to its transition from one medium
into another // Zhurnal eksperimentalnoi i teo-
reticheskoi fiziki. 1946, v.16, №1, p.15-28 (in Russian).
2. F.G. Bass, V.M. Yakovenko. Theory of radiation
from a charge passing through an electrically inho-
mogeneous medium // Soviet Physics Uspekhi. 1965,
v. 8, № 3, p. 420-444.
3. V.L. Ginzburg, V.N. Tsytovich. Transition radiation
and transition scattering. Bristol, Eng. New York,
NY: «A. Hilger», 1990, p. 433.
4. M.L. Ter-Mikhaelyan. Electromagnetic radiative
processes in periodic media at high energies // Phys-
ics-Uspekhi. 2001, v. 44, № 6, p. 571-596.
5. K.Yu. Platonov, G.D. Fleishman. Transition radia-
tion in media with random inhomogeneities // Phys-
ics-Uspekhi. 2002, v. 45, № 3, p. 235-291.
6. B.M. Bolotovskii, A.V. Serov. Features of the transi-
tion radiation field // Physics-Uspekhi. 2009, v. 52,
№ 5, p. 487-493.
7. V.A. Balakirev, I.N. Onishchenko, D.Yu. Sidorenko,
G.V. Sotnikov. Broadband emission from a relativis-
tic electron bunch in a semi-infinite waveguide //
Technical Physics. 2002, v. 47, № 2, p. 227-234.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 20
8. I.I. Zalubovskii, Yu.A. Bizukov, V.I. Muratov,
V.D. Fedorchenko. Transition radiation of coherent
electron bunches // Reports of National Academy of
Sciences of Ukraine. 2000, № 10, p. 66-70.
9. V.N. Bolotov, S.I. Kononenko, V.I. Muratov,
V.D. Fedorchenko. Transition radiation of nonrela-
tivistic electron bunches passing through diaphragms
// Technical Physics. 2004, v. 49, № 4, p. 466-470.
10. N.N. Beletskii, S.N. Khar’kovskii, V.M. Yakovenko.
Transition radiation of electromagnetic waves by a
charge crossing a two-dimensional electron gas // Iz-
vestiya vuzov. Radiofizica. 1983, v. 26, № 9,
p. 1149-1153 (in Russian).
11. Yu.O. Averkov, V.M. Yakovenko. Transition radia-
tion of nonstationary waves by an electron bunch
that crosses a two-dimensional electron gas // Prob-
lems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of Accelera-
tion”. 2006, № 5, p. 10-14.
12. I.A. Anisimov, S.M. Levitskii. Excitation of the sur-
face waves by the modulated electron beam falling
normally on the plasma border // Radiotekhnika i
elektronika. 1986, v. 31, № 3, p. 614-615. (in Rus-
sian).
13. V.M. Yakovenko, I.V. Yakovenko. On transition
radiation of surface polaritons by a modulated flow
of charged particles // Radiofizika i elektronika
(Kharkov). 2001, v. 6, № 1, p. 97-102.
14. K.A. Barsukov, L.G. Naryshkina. Transition radia-
tion on an cylindrically anisotropic conducting plane
// Izvestiya vuzov. Radiofizica. 1965, v. 8, № 5,
p. 936-941.
15. B.M. Bolotovskii, A.V. Serov. A possibility to pro-
duce elliptically polarized transition radiation //
Technical Physics. 2004, v. 49, № 8, p. 1028-1034.
16. Yu.O. Averkov, V.M. Yakovenko. Transition radia-
tion of modulated electron beam traversing the wire
shield // Telecommunications and Radio Engineer-
ing. 2011, v. 70, № 4, p. 353-366.
17. V.E. Pafomov. On transition radiation and the
Vavilov-Cherenkov radiation // Zhurnal eksperimen-
talnoi i teoreticheskoi fiziki. 1959, v. 36, № 6,
p. 1853-1858 (in Russian).
18. S.N. Galyamin, A.V. Tyukhtin. Electromagnetic
field of a charge traveling into an anisotropic me-
dium // Physical Review E. 2011, v. 84, № 5,
p. 056608(16).
19. M.I. Kontorovich, Yu.K. Murav’ev. The derivation
of the laws of reflection of geometrical optics on the
basis of the asymptotic treatment of the diffraction
problems // Zhurnal tekhicheskoi fiziki. 1952, v. 22,
№ 3, p. 394-407 (in Russian).
20. Yu.O. Averkov, V.M. Yakovenko, V.A. Yam-
pol’skii, F. Nori. Conversion of terahertz wave po-
larization at the boundary of a layered superconduc-
tor due to the resonance excitation of oblique surface
waves // Physical review letters. 2012, v. 109, № 2,
p. 027005(5).
21. Yu.O. Averkov, V.M. Yakovenko, V.A. Yam-
pol’skii, F. Nori. Oblique surface Josephson plasma
waves in layered superconductors // Physical Review
B. 2013, v. 87, № 5, p. 054505(8).
Article received 06.03.2013.
ПЕРЕХОДНОЕ ИЗЛУЧЕНИЕ ЭЛЕКТРОНА, ПЕРЕСЕКАЮЩЕГО ГРАНИЦУ РАЗДЕЛА
ДИЭЛЕКТРИКА И СЛОИСТОГО СВЕРХПРОВОДНИКА
Ю.О. Аверков, В.М. Яковенко, В.А. Ямпольский
Исследовано переходное излучение электрона, пересекающего границу раздела диэлектрика и слоистого
сверхпроводника. Направление движения электрона и слои сверхпроводника ориентированы перпендику-
лярно границе. Анализ диаграмм направленности излучения показал сильную анизотропию его интенсивно-
сти по азимутальному углу в плоскости границы раздела сред.
ПЕРЕХІДНЕ ВИПРОМІНЮВАННЯ ЕЛЕКТРОНА, ЯКИЙ ПЕРЕТИНАЄ МЕЖУ ПОДІЛУ
ДІЕЛЕКТРИКА І ШАРУВАТОГО НАДПРОВІДНИКА
Ю.О. Аверков, В.М. Яковенко, В.О. Ямпольський
Досліджено перехідне випромінювання електрона, який перетинає межу поділу діелектрика і шаруватого
надпровідника. Напрямок руху електрона і шари надпровідника орієнтовані перпендикулярно цієї межі.
Аналіз діаграм спрямованості випромінювання показав сильну анізотропію його інтенсивності щодо азиму-
тального кута у площині межі поділу середовищ.
|