Mathematical optimization model for alternating-phase focusing (APF) linac

Mathematical model of beam dynamic optimization in an equivalent traveling wave is suggested. The problem of the APF linac parameters optimization is being discussed. Beam dynamics in the 14 MeV deuteron accelerator are considered.

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Ovsyannikov, D.A., Altsybeyev, V.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/111927
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Mathematical optimization model for alternating-phase focusing (APF) linac / D.A. Ovsyannikov, V.V. Altsybeyev // Вопросы атомной науки и техники. — 2013. — № 4. — С. 93-96. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-111927
record_format dspace
spelling irk-123456789-1119272017-01-16T03:03:59Z Mathematical optimization model for alternating-phase focusing (APF) linac Ovsyannikov, D.A. Altsybeyev, V.V. Новые методы ускорения заряженных частиц Mathematical model of beam dynamic optimization in an equivalent traveling wave is suggested. The problem of the APF linac parameters optimization is being discussed. Beam dynamics in the 14 MeV deuteron accelerator are considered. Запропоновано математичну модель оптимізації на основі рівнянь динаміки часток в полі еквівалентної біжучої хвилі. Вирішена задача оптимізації параметрів прискорювача з ПФФ. Розглянуто динаміку пучка в прискорювачі дейтронів на 14 МеВ. Предложена математическая модель оптимизации на основе уравнений динамики частиц в поле эквивалентной бегущей волны. Решена задача оптимизации параметров ускорителя с ПФФ. Рассмотрена динамика пучка в ускорителе дейтронов на 14 МэВ. 2013 Article Mathematical optimization model for alternating-phase focusing (APF) linac / D.A. Ovsyannikov, V.V. Altsybeyev // Вопросы атомной науки и техники. — 2013. — № 4. — С. 93-96. — Бібліогр.: 19 назв. — англ. 1562-6016 PACS: 29.27.-a http://dspace.nbuv.gov.ua/handle/123456789/111927 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Новые методы ускорения заряженных частиц
Новые методы ускорения заряженных частиц
spellingShingle Новые методы ускорения заряженных частиц
Новые методы ускорения заряженных частиц
Ovsyannikov, D.A.
Altsybeyev, V.V.
Mathematical optimization model for alternating-phase focusing (APF) linac
Вопросы атомной науки и техники
description Mathematical model of beam dynamic optimization in an equivalent traveling wave is suggested. The problem of the APF linac parameters optimization is being discussed. Beam dynamics in the 14 MeV deuteron accelerator are considered.
format Article
author Ovsyannikov, D.A.
Altsybeyev, V.V.
author_facet Ovsyannikov, D.A.
Altsybeyev, V.V.
author_sort Ovsyannikov, D.A.
title Mathematical optimization model for alternating-phase focusing (APF) linac
title_short Mathematical optimization model for alternating-phase focusing (APF) linac
title_full Mathematical optimization model for alternating-phase focusing (APF) linac
title_fullStr Mathematical optimization model for alternating-phase focusing (APF) linac
title_full_unstemmed Mathematical optimization model for alternating-phase focusing (APF) linac
title_sort mathematical optimization model for alternating-phase focusing (apf) linac
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Новые методы ускорения заряженных частиц
url http://dspace.nbuv.gov.ua/handle/123456789/111927
citation_txt Mathematical optimization model for alternating-phase focusing (APF) linac / D.A. Ovsyannikov, V.V. Altsybeyev // Вопросы атомной науки и техники. — 2013. — № 4. — С. 93-96. — Бібліогр.: 19 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT ovsyannikovda mathematicaloptimizationmodelforalternatingphasefocusingapflinac
AT altsybeyevvv mathematicaloptimizationmodelforalternatingphasefocusingapflinac
first_indexed 2025-07-08T02:54:30Z
last_indexed 2025-07-08T02:54:30Z
_version_ 1837045667181101056
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 93 MATHEMATICAL OPTIMIZATION MODEL FOR ALTERNATING- PHASE FOCUSING (APF) LINAC D.A. Ovsyannikov, V.V. Altsybeyev Saint-Petersburg State University, Saint-Petersburg, Russia E-mail: altsybeyev@gmail.com Mathematical model of beam dynamic optimization in an equivalent traveling wave is suggested. The problem of the APF linac parameters optimization is being discussed. Beam dynamics in the 14 MeV deuteron accelerator are considered. PACS: 29.27.-a INTRODUCTION At present time the design of accelerators with ac- celerating field focusing has become important. For ex- ample, feasibility of this focusing is possible in RFQ and APF accelerators. Problems of design and optimiza- tion of these structures were developed in [1 - 17]. Among these, we mention [15], which was first ob- tained synchronous phase sequence for focusing period in APF structure. RFQ structures are usually used as the initial part of the high-energy accelerators. Also, they are used independently for different application pur- poses. However, their applying is limited to low ener- gies (2…5 MeV). Therefore a combination of RFQ and APF is considered to be a good solution for a high- energy accelerator. A high acceleration rate and an ab- sence of magnetic field focusing in APF structure makes it more efficient and less expensive in comparison with Alvarez linac. Therefore, the development problems of these accelerators and improving the quality of beams are still important and vital. Various mathematical optimization models in RFQ structures were proposed in [1, 9-12, 14, 16]. In particu- lar, some models allow us to analyze the longitudinal and transversal motions separately. Beam dynamic optimization in an equivalent traveling wave is carried out and the limitation of the defocusing factor is taken into account. It is possible to obtain a guaranteed good transversal dynamics. These ideas are considered in the case of acceleration in the APF structures too. In this paper we examine an approach of beam dy- namics simulations in an equivalent traveling wave. To estimate the beam quality we introduce the integral functional. The numerical gradient method is suggested to minimize this functional. 1. THE APF PRINCIPLE The main parameter that determines the beam dynam- ics in an APF accelerator is the synchronous phase se- quence sϕ . The concept of APF is to obtain this se- quence providing longitudinal and transversal motions stability alternately so that in general motion is stable. For example, we can obtain this sequence using the analysis of stability diagrams for Hill equation. Next we consider the possibility of optimizing the phase of synchronous particle in order to improve the beam dynamics. 2. MATHEMATICAL MODEL OF BEAM DYNAMICS Denote by Li coordinate of the i -th acceletaring cell and by Di coordinate of this center. Then accelerating field approximation may be assumed as .)(cos )( cos1)(=),( 1 t LL Dz EtzE ii i max i i ω π ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − − − − This standing wave approximation allows to accept the following mathematical model of beam dynamics in the equivalent traveling wave [18, 19]. )),((cos1= 2 τϕβα τ β ss s d d − (1) , )(12 = 2 3/22 p d d s s β βπ τ ψ − (2) )),)((cos))((cos(= ψτϕτϕαβ τ +− sssd dp (3) ,2= 21 11 S d dS τ (4) ,))((sin )(1 = 2211 3/22 21 SS d dS s s s ++ − − ψτϕ β βαπ τ (5) .))((sin )(1 2= 21 3/22 22 S d dS s s s ψτϕ β βαπ τ + − − (6) Where ,= sϕϕψ − ,= γγ −sp ),(τϕs ,/= λτ ct )/(2= 2 0cmEq maxλα is the accelerating amplitude pa- rameter, 222111 ,, SSS is the element of matrix ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ 2221 2111= SS SS G , that describe dynamics of initial ellipse 0G in the radial plane ),,( ηρ where λρ /= r is the radial position of particle, τρη dd /= . Step-wise function )(τϕs defined as [ ] .)/2(= 2,2 ],,[if,=)( 11 1 ππϕϕττ ππϕ τττϕϕ +−− −∈ ∈ −− − iiii i iiit Thus, )(τϕs is parameterized only by parameters )(i sϕ . 3. OPTIMIZATION PROBLEM Let us consider the formalization of the beam dynamics optimization problem. We may consider (1)- (6) as equations that described program and disturbed motions of charged particles [9]. )),(),(,(= tutxtf dt dx )),(),(),(,(= tutytxtF dt dy 00 0(0) = , (0) = .x x y y M∈ ISSN 1562-6016. ВАНТ. 2013. №4(86) 94 Where x is a scalar and y is a n - dimensional vector of phase coordinates, f is a scalar function and F is a n - dimensional vector function. Control )(tu is correspond to function )(τϕs . Accordingly, the con- trol function will be parameterized as [ ] .)/2(= 2,2 ],,[if,=)( 11 1 ππ ππ +−− −∈ ∈ −− − iiii i iii uutt u tttutu (7) Such control is admissible. Let us consider the following functional .)()(=)( 21 , TTT uTM xgdyyguI +∫ (8) This functional is an integral estimate the beam quality at the moment Tt = . Here the set uTM , is a cross-section of the beam of trajectories at the moment Tt = , i.e. uTT MTyy ,)(= ∈ , non-negative functions 1g and 2g is characterization the dynamics of the dis- turbed and program motions. We consider the problem of functional (8) minimizing for the admissible controls. To solve the problem of reducing the loss of parti- cles and decrease the beam radius it is possible to take ),()(= 1122111 SFcFcg T +ψ where ⎪⎩ ⎪ ⎨ ⎧ − ⎪ ⎩ ⎪ ⎨ ⎧ − ∈ −+ .>if ,)( ,<if 0, = ,> if ,)( ],,[ if ,0 ,<if ,)( = 11 2 11 11 2 2 2 2 21 1 2 1 1 SSSS SS F F TT T TT ψψψψ ψψϕ ψψψψ Where Scc , , , , 2121 ψψ are the non-negative constants. 4. SOLUTION METHOD The variation of functional (8) can be written as [9] ( ) ,= ,0 dtfdyfFI u T tu T u T utM T ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ Δ+Δ+Δ− ∫∫ ψνμδ where ,ψ ,μ ν are satisfying the following equations . ,= ,= ψψ μνν μμ T TT T x f dt d x F x f dt d y F dt d ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ −= ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ −⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ − .)(=))(,( ,0=))(,( ,)(=))(,( 2 1 T T T T x xgTxT TxT y ygTxT ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ − ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ∂ ∂ − ψ ν μ Having considered the parameterization (7) we can obtain the functional gradient ( ) .] )),(,( )( )),(),(,( )([ ])),(,()),(,( )())),(),(,( )),(),(,()(([ ,2 1= , 1 1 1 dtdy u utxtf t u utytxtF t dyutxtfutxtf tutytxtF utytxtFt uu I t iT iT utM it it tiiiiii i T iiii iiiii T it Mi ∂ ∂ + + ∂ ∂ − −−× ×+− − ∂ ∂ ∫∫ ∫ + − − ν μ ν μ π (9) By using the analytic representation (9) of the func- tional gradient we can build gradient methods for opti- mizing the accelerator parameters. 5. NUMERICAL SIMULATIONS 5.1. ACCELERATOR PARAMETERS To illustrate the approach described earlier, we con- sider the problem of design parameters for 433 MHz, 3.5 m long deuteron accelerator for 14 MeV output en- ergy. Input energy is 3.5 MeV, amplitude of accelerat- ing field is 110 kV/cm, and 6 focusing periods consist of 115 accelerating cells. Provided NIIEFA input emit- tances are present at Figs. 1, 2. Main parameters of structure are present at Figs. 3, 4. Fig. 1. Input longitudinal emittance Fig. 2. Input transversal emittance Fig. 3. Synchronous particle velocity and lengh of cells ISSN 1562-6016. ВАНТ. 2013. №4(86) 95 Fig. 4. Synchronous phase sequence 5.2. SIMULATIONS WITHOUT INTERACTION OF CHARGED PARTICLES The results of beam dynamics simulations without interaction between charged particles are presented at Figs. 5 - 9. There are no particle losses at this model. Fig. 5. Beam envelopes for phase motion Fig. 6. Beam envelopes for radial motion Fig. 7. Beam envelopes for energy motion Fig. 8. Output longitudinal emittance Fig. 9. Output transversal emittance 5.3. SIMULATIONS WITH 14 mA BEAM CURRENT In this section the results of beam dynamics simulations with 14 mA beam current are presented. It should be noted that the optimization of the structure was carried out without taking into account the interaction of charged particles, but the results of this simulations show good beam quality. Output emittances are present at Figs. 10, 11. Particle losses are 8 %. Fig. 10. Output longitudinal emittance Fig. 11. Output transversal emittance ISSN 1562-6016. ВАНТ. 2013. №4(86) 96 CONCLUSIONS In this paper the problem of optimizing the parame- ters of longitudinal and transverse motion of the beam in an APF accelerator is examined. This problem is formalized and the solution based on analyzing the beam dynamics in an equivalent traveling wave is pro- posed. This approach does not impose rigid restrictions on the structure geometry, which later on allows to pro- vide precision tuning of resonators to produce the de- sired field distribution. Analytic representation of the gradient of the quality functional allows us to provide the numerical optimization by other motion parameters. For instance it can be the width of the output energy and phase spectrum, the radial divergence of the beam, the effective emittance or the acceleration intensity. ACKNOWLEDGEMENTS This work was supported by St. Petersburg State University, scientific project No. 9.38.673.2013. The authors also thank professor Yu.A. Svistunov for the deep interest he took in this work and for his active in- volvement in its discussion. REFERENCES 1. B.I. Bondarev, A.P. Durkin, A.D. Ovsyannikov. New mathematical optimization models for RFQ structures // Proceedings of the IEEE Particle Accelerator Conference. 1999, v. 4, p. 2808-2810. 2. B. Bondarev, A. Durkin, Y. Ivanov, I. Shumakov, S. Vinogradov, A. Ovsyannikov, D. Ovsyannikov. The LIDOS.RFQ.Designer development // Particle Accelerator Conference, 2001. PAC 2001. Proceedings of the 2001, v. 4, p. 2947-2949. 3. Y. Iwata, T. Fujisawa, T. Furukawa, et al. Alternating- phase-focused linac with interdigital H-mode struc- ture for medical injector // Proceedings of the IEEE Particle Accelerator Conference 2005, Volume 2005, Article number 1590666, p. 1084-1086. 4. R.A. Jameson. Design and Simulation of Practical Alternating-Phase-Focused (APF) Linacs – Synthesis and Extension in Tribute to Pioneering Russian APF Research // Proceedings of RuPAC- 2012, Saint-Petersburg, Russia. 2012, p. 12-14. 5. V.V. Kapin, A.V. Nesterovich. Feasibility of alternative phase focusing for a chain of short independently-phased resonators // Proceedings of RuPAC-2010, Protvino, Russia. 2010, p. 322-324. 6. V. Kapin, S. Yamada, Y. Iwata. Design of APhF-IH Linac for a Compact Medical Accelerator // Na- tional Institute of Radiological Sciences, Japan. 7. Y. Kondo, K. Hasegawa, T. Morishita, R.A. Jameson. Beam dynamics design of a new radio frequency quadrupole for beam-current upgrade of the Japan proton accelerator research complex Linac // Physical Review Special Topics-Accelerators and Beams. August 2012, v. 15, issue 8, 23, Article number 080101. 8. V.V. Kushin. On improving the phase-alternating focusing in linear accelerators // Nuclear Energy. 1970, v. 29, № 2, p. 123-124. 9. A.D. Ovsyannikov. Control of program and disturbed motions // St.Petersburg, Vestnik SPbGU, 2006, v. 10 (4), p. 111-124. 10. A.D. Ovsyannikov, D.A. Ovsyannikov, M.Yu. Balabanov, S.-L. Chung. On the beam dynamics optimization problem // International Journal of Modern Physics A. 20 February 2009, v. 24, Issue 5, p. 941-951. 11. A.D. Ovsyannikov, D.A. Ovsyannikov, S.-L. Chung. Optimization of a radial matching section // International Journal of Modern Physics A. 20 February 2009, v. 24, issue 5, p. 952-958. 12. A.D. Ovsyannikov, D.A. Ovsyannikov, A.P. Durkin, S.-L. Chang. Optimization of Matching Section of an Accelerator with a Spatially Uniform Quadrupole Focusing // Technical Physics. The Russian Journal off Applied Physics. 2009, v. 54, № 11, p. 1663-1666. 13. D.A. Ovsyannikov. Modeling and Optimization of Charged Particle Beam Dynamics. Leningrad State University, Leningrad, 1990, 312 p. 14. D.A. Ovsyannikov, A.D. Ovsyannikov, M.F. Vorogushin, Yu.A. Svistunov, A.P. Durkin. Beam dynamics optimization: Models, methods and applications // Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1 March 2006, v. 558, Issue 1, p. 11-19. 15. D.A. Ovsyannikov, V.G. Papkovich. On the design of structures with accelerating field focusing // Problems of Atomic Science and Technology. Section: Linear accelerators. Kharkov. 1977, Issue 2(3), p. 66-68. 16. D.A. Ovsyannikov, A.D. Ovsyannikov, I.V. Antropov, V.A. Kozynchenko. BDO-RFQ code and optimization models // Physics and Control, Proceedings 2005 International Conference. 2005, p. 282-288. 17. Yu.A. Svistunov, Yu.V. Zuev, A.D. Ovsyannikov, D.A. Ovsyannikov. Compact deuteron accelerator design for 1 MeV neutron source // Vestnik SPbGU. 2011, v. 10(1), p. 49-59. 18. I.M. Kapchinsky. Theory of linear resonance accelerator. Moscow: «Energoizdat», 1982, 310 p. 19. A.D. Ovsyannikov, A.Y. Shirokolobov. Mathematical model of beam dynamic optimization in traveling wave // Proceedings of RuPAC-2012, Saint- Petersburg, Russia. 2012, p. 355-357. Article received 24.05.2013. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ОПТИМИЗАЦИИ ПАРАМЕТРОВ УСКОРИТЕЛЯ С ПЕРЕМЕННО-ФАЗОВОЙ ФОКУСИРОВКОЙ Д.А. Овсянников, В.В. Алцыбеев Предложена математическая модель оптимизации на основе уравнений динамики частиц в поле эквивалентной бегущей волны. Решена задача оптимизации параметров ускорителя с ПФФ. Рассмотрена динамика пучка в ускорителе дейтронов на 14 МэВ. МАТЕМАТИЧНА МОДЕЛЬ ОПТИМІЗАЦІЇ ПАРАМЕТРІВ ПРИСКОРЮВАЧА З ПЕРЕМІННО-ФАЗОВИМ ФОКУСУВАННЯМ Д.О. Овсянников, В.В. Алцибєєв Запропоновано математичну модель оптимізації на основі рівнянь динаміки часток в полі еквівалентної біжучої хвилі. Ви- рішена задача оптимізації параметрів прискорювача з ПФФ. Розглянуто динаміку пучка в прискорювачі дейтронів на 14 МеВ.