Beam dynamics optimization in electrostatic field
The problem of optimization of charged particle beam dynamics in an axially symmetric electric field is considered. The complex potential is represented as a Cauchy integral of a function defined on the boundary of the region and considered as the control function. Using a complex representation all...
Збережено в:
Дата: | 2013 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/111928 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Beam dynamics optimization in electrostatic field / A.D. Ovsyannikov // Вопросы атомной науки и техники. — 2013. — № 4. — С. 90-92. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111928 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1119282017-01-16T03:02:58Z Beam dynamics optimization in electrostatic field Ovsyannikov, A.D. Новые методы ускорения заряженных частиц The problem of optimization of charged particle beam dynamics in an axially symmetric electric field is considered. The complex potential is represented as a Cauchy integral of a function defined on the boundary of the region and considered as the control function. Using a complex representation allows to get the explicit form of the field strength inside the area dependency on the control function and obtain the necessary optimality conditions for the entered functional. Сучасні вимоги до прискорювальної техніки, до параметрів прискорючого пучка заряджених частинок вимагають і нових підходів до розрахунку прискорючих і фокусуючих структур на стадії проектування. У даній роботі розглядається задача оптимізації динаміки пучка заряджених частинок в аксіально- симетричному електричному полі. Комплексний потенціал представляється у вигляді інтеграла типу Коші від функції, заданої на межі області і розглядається в якості керуючої функції. Використання комплексного уявлення дозволяє отримати явний вигляд залежностей напруженості поля в середині області від керуючої функції і отримати необхідні умови оптимальності для введеного функціоналу. Современные требования к ускорительной технике, к параметрам ускоряемого пучка заряженных частиц требуют и новых подходов к расчету ускоряющих и фокусирующих структур на стадии проектирования. В данной работе рассматривается задача оптимизации динамики пучка заряженных частиц в аксиально- симметрическом электрическом поле. Комплексный потенциал представляется в виде интеграла типа Коши от функции, заданной на границе области и рассматриваемой в качестве управляющей функции. Использование комплексного представления позволяет получить явный вид зависимостей напряженности поля внутри области от управляющей функции и получить необходимые условия оптимальности для введенного функционала. 2013 Article Beam dynamics optimization in electrostatic field / A.D. Ovsyannikov // Вопросы атомной науки и техники. — 2013. — № 4. — С. 90-92. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 29.20.-c; 29.27.Bd http://dspace.nbuv.gov.ua/handle/123456789/111928 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Новые методы ускорения заряженных частиц Новые методы ускорения заряженных частиц |
spellingShingle |
Новые методы ускорения заряженных частиц Новые методы ускорения заряженных частиц Ovsyannikov, A.D. Beam dynamics optimization in electrostatic field Вопросы атомной науки и техники |
description |
The problem of optimization of charged particle beam dynamics in an axially symmetric electric field is considered. The complex potential is represented as a Cauchy integral of a function defined on the boundary of the region and considered as the control function. Using a complex representation allows to get the explicit form of the field strength inside the area dependency on the control function and obtain the necessary optimality conditions for the entered functional. |
format |
Article |
author |
Ovsyannikov, A.D. |
author_facet |
Ovsyannikov, A.D. |
author_sort |
Ovsyannikov, A.D. |
title |
Beam dynamics optimization in electrostatic field |
title_short |
Beam dynamics optimization in electrostatic field |
title_full |
Beam dynamics optimization in electrostatic field |
title_fullStr |
Beam dynamics optimization in electrostatic field |
title_full_unstemmed |
Beam dynamics optimization in electrostatic field |
title_sort |
beam dynamics optimization in electrostatic field |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Новые методы ускорения заряженных частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111928 |
citation_txt |
Beam dynamics optimization in electrostatic field / A.D. Ovsyannikov // Вопросы атомной науки и техники. — 2013. — № 4. — С. 90-92. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT ovsyannikovad beamdynamicsoptimizationinelectrostaticfield |
first_indexed |
2025-07-08T02:54:34Z |
last_indexed |
2025-07-08T02:54:34Z |
_version_ |
1837045671964704768 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №4(86) 90
BEAM DYNAMICS OPTIMIZATION IN ELECTROSTATIC FIELD
A.D. Ovsyannikov
Saint-Petersburg State University, Saint-Petersburg, Russia
E-mail: ovs74@mail.ru
The problem of optimization of charged particle beam dynamics in an axially symmetric electric field is consid-
ered. The complex potential is represented as a Cauchy integral of a function defined on the boundary of the region
and considered as the control function. Using a complex representation allows to get the explicit form of the field
strength inside the area dependency on the control function and obtain the necessary optimality conditions for the
entered functional.
PACS: 29.20.-c; 29.27.Bd
1. PROBLEM STATEMENT
Modern requirements to the accelerator technology
and the parameters of the accelerated beam of charged
particles require new approaches to the calculation of
the accelerating and focusing structures at the design
stage. Many works [1 - 8] are devoted to the problems
of optimization of the dynamics of charged particles in
electromagnetic fields. In particular, in works [9 - 10]
electrostatic injectors for linear accelerator were inves-
tigated. Geometric parameters of systems and the poten-
tial values at the electrodes were considered as optimi-
zation parameters. However, these studies are not given
analytical representations of variations in the optimized
parameters. In this paper, the problem of optimization of
beam dynamics of charged particles in the axial-
symmetric electric field is considered. Analytical repre-
sentation of variation is found and the optimality condi-
tions are formulated.
In a simply connected bounded area G let us con-
sider dynamics of charged particles described by a sys-
tem of ordinary differential equations:
( )ϕ,, zrEr r=&& , (1)
( )ϕ,, zrEz z=&& . (2)
Note that the field intensity in the equations (1) and
(2) is defined by specifying the function ϕ of the
curve L . Here L − boundary of area G , assumed to be
smooth closed curve, and the function ϕ is defined and
continuous on the curve L , and satisfies the Hölder
condition [11]:
( ) ( ) νηηηϕηϕ 2121 −≤− M , 0>ν , 0>M . (3)
In this case, the complex potential of the field is rep-
resented as a Cauchy integral [11]:
( ) ( )
∫ −
=
L
d
i
F η
ξη
ηϕ
π
ϕξ
2
1, . (4)
Here Gzir ∈⋅+=ξ , Lyix ∈⋅+=η . Here and
further the real plane 2R will be identified with the
complex plane C .
The complex potential is an analytic function de-
fined in a domain G , and its real and imaginary parts are
harmonic functions of real variables r and z . Let us
consider the function FU Re= as defining a potential
electric field in the region G . Then the electric field
intensity is given by
( ) ( )
( )∫ −
−=
∂
∂
−=⋅−
L
zr d
i
FEiE η
ξη
ηϕ
πξ
ϕξ
22
1, . (5)
Note that the dynamic equation (1), (2) may be con-
verted to the form:
( )
⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
−=
ξ
ϕξ
ξ
,F&& , (6)
where zir &&& ⋅+=ξ и zir &&&&&& ⋅+=ξ , bar over the right-
hand side denotes the complex conjugate.
For convenience we introduce the vector of phase
variables ( )Tzzrr && ,,,=a .
Equations (1) and (2) we will consider with the ini-
tial conditions
( ) ( ) 4
000000 ,,,0 RMvzvr T
zr ⊂∈== aa , (7)
where 0M a compact set such that for any point
( ) 00 M∈a satisfies ( ) Gzir ∈⋅+ 00 .
Function ϕ will be referred to hereafter as boundary
control or simply control. The class of admissible con-
trols D is the set of continuous functions ϕ on a curve
L satisfying the Hölder condition (3) and such that
( ) Φ∈ηϕ when L∈η , where Φ is a convex compact
set in the complex plane.
We assume further that the solutions of system (1),
(2) are defined and are unique to some fixed interval
[ ]T,0 , for all initial conditions (7) and for all admissible
controls.
On the trajectories of the system (1), (2), we intro-
duce the functional of quality of the form
( ) ( ) ( ) T
TM
Tt
T
tM
t dqdtdtpI aaaa ∫∫ ∫ +=
ϕϕ
ϕ
,0 ,
, . (8)
Here p and q are given non-negative, continuously
differentiable functions, ( )ϕ,, 0aaa tt = is a vector of
phase variables corresponding to the solution of system
(1), (2) at the time t with the selected control function
ϕ on a curve L and the initial condition (7). Set ϕ,tM
is a section of the beam of trajectories of the system (1),
(2) coming from the initial set 0M at the time t with the
given control functionϕ .
Let us consider further the minimization of the func-
tional on the admissible class of controls. Let ϕ is an
admissible control. Variation of the control ϕΔ is ad-
missible if the control ϕϕϕ Δ+=~ is also admissible
control.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 91
2. VARIATION OF FUNCTIONAL
Variation functional (8) with admissible variation of
the control function ϕ such that
( ) 0max →Δ=Δ
∈
ηϕϕ
η L
, can be represented as follows:
( )
( ) ( )
( )( ) .
,2
1,Re
0 ,
2∫ ∫ ∫ ⎥
⎦
⎤
⎢
⎣
⎡
−
Δ
⋅=
=Δ
T
t
tM L t
t dtdd
ti
t
I
a
a
a
ϕ
η
ξη
ηϕ
π
λ
ϕδ
(9)
This complex function λ satisfies the following
complex system defined on the trajectories of the sys-
tem (1), (2)
( )
,
,,
2
2
ρσλ
θλ
ξ
ϕξσ
+−=
+⎟⎟
⎠
⎞
⎜⎜
⎝
⎛
∂
∂
=
&
&
F
(10)
with terminal conditions
( ) ( ) ( )
( ) ( ) ( ) ,
,
42
31
a
qi
a
qT
a
qi
a
qT
TT
TT
∂
∂
−
∂
∂
−=
∂
∂
−
∂
∂
−=
aa
aa
λ
σ
(11)
where
31 a
pi
a
p
∂
∂
⋅+
∂
∂
=θ ,
42 a
pi
a
p
∂
∂
⋅+
∂
∂
=ρ .
3. NECESSARY EXTREMUM CONDITIONS
Let the boundary L has the following parameteriza-
tion:
( ) ( ) ( )syisxs ⋅+== χη , [ ]Ss ,0∈ . (12)
Then the integral over the complex circuit in the for-
mula (9) may be replaced by definite integral. The result
is
( )
( ) ( )( ) ( )
( ) ( )( ) .
,2
1,Re
0 , 0
2∫ ∫ ∫ ⎥
⎦
⎤
⎢
⎣
⎡
−
Δ
=Δ
T
tM
t
S
t
t dtd
ts
dsss
i
t
I
ϕ
ξχ
χχϕ
π
λ
ϕδ
a
a
a
& (13)
By changing the order of integration in (13), we ob-
tain:
( )
( )( ) ( ) ( )
( ) ( )( )
( )( ) ( ) ( )∫
∫ ∫ ∫
Δ=
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
−
Δ
=
=Δ
S
S
t
T
tM t
t
dssss
dsdtd
ts
tss
i
I
0
0 0 ,
2
.Re
,
,
2
1Re
ωχχϕ
ξχ
λχχϕ
π
ϕδ
ϕ
&
&
a
a
a (14)
Here ( ) ( )
( ) ( )( )∫ ∫ −
=
T
t
tM t
t dtd
ts
t
i
s
0 ,
2,
,
2
1 a
a
a
ϕ
ξχ
λ
π
ω .
Theorem 1. Let 0ϕ minimizes the functional (8).
Then for any admissible variation of control function
ϕΔ the functional variation is non-negative
( ) ( )( ) ( ) ( )∫ ≥Δ=Δ
S
dssssI
0
0 0Re, ωχχϕϕϕδ & .
Proof. Assume that there is an admissible varia-
tion ϕΔ such that ( ) 0,0 <ΔϕϕδI . Variation of control
is 0
~ ϕϕϕ −=Δ , where ϕ~ is admissible control. Since
Φ the convex set then the control ϕεϕϕε Δ+= 0 will
also be permitted, where [ ]1,0∈ε . From the representa-
tion of variation (9) follows that
( ) ( )ϕϕεδϕεϕδ Δ=Δ ,, 00 II .
Thus
( ) ( ) ( )εϕϕεδϕεϕ oII +Δ=ΔΔ ,, 00 .
It is clear that for sufficiently small ε , we obtain
0<ΔI that contrary to the assumption that the con-
trol 0ϕ provides a minimum of the functional (8).
Theorem 2. Let the 0ϕ minimizes the functional
(8). Then for any admissible variation ϕΔ
( )( ) ( ) ( )[ ] 0Re ≥⋅Δ sss ωχχϕ &
for all [ ]Ss ,0∈ .
Proof. Suppose this is not the case. Then there is
( )Ss ,00 ∈ that
( )( ) ( ) ( )[ ] 0Re 000 <⋅Δ sss ωχχϕ &
at some admissible variation ϕΔ . By continuity there
will be an interval [ ]21, ss containing inside point 0s and
such that
( )( ) ( ) ( )[ ] 0Re <⋅Δ sss ωχχϕ & , (15)
For all [ ]21 , sss∈ .
We choose a neighborhood of point ( )00 sχη = so
small that to get into it could only points of the curve L
corresponding to the parameter s values within the in-
terval [ ]21, ss , and the points of intersection of the circle
R=− 0ηη with the curve there were only two. Denote
the resulting neighborhood
( ) { }RSR ≤−= 00 ηηη .
We construct the variation of the control function in
the following way
( )( ) ( ) ( )( )RsKss ,,~
0ηηϕηϕ Δ=Δ ,
where
( )
( )
⎪
⎩
⎪
⎨
⎧
>−
≤−−−
=
. ,0
; ,1
,,
00
00
22
0
2
04
000
rzz
rzzrzz
rrzzK
The function K takes real values of the range [ ]1,0 .
It is easy to see that the introduced variation will be
valid.
With this choice of variation of control obviously be
violated condition of Theorem 1:
( )( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( )( ) ,0,,Re
,,Re
~Re
4
3
0
0
0
0
<⋅Δ=
=⋅Δ=
=⋅Δ
∫
∫
∫
s
s
S
S
dsRssKsss
dsRssKsss
dssss
χχωχχϕ
χχωχχϕ
ωχχϕ
&
&
&
where 3s and 4s correspond to the points of intersection
of the curve L with the circle R=− 0ηη . Hence 0ϕ
cannot deliver the minimum of the functional (8). This
contradiction proves the theorem.
Remark. Obtained results obviously can be ex-
tended to the case of piecewise smooth boundary of area
G .
ISSN 1562-6016. ВАНТ. 2013. №4(86) 92
CONCLUSIONS
In this paper a new approach to optimization prob-
lems in electrostatic axially symmetric field was pro-
posed. Analytical representation for the variation of the
optimized functional and the necessary optimality con-
ditions are found. On the basis of the expression for the
variation of the functional can be built directed methods
of optimization. Various practical implementations of
fields obtained in the optimization process are possible.
ACKNOWLEDGEMENT
This work was supported by Saint-Petersburg State
University, scientific research project 9.38.673.2013.
REFERENCES
1. D.A. Ovsyannikov, A.D. Ovsyannikov, Yu.A. Svis-
tunov, A.P. Durkin, M.F. Vorogushin. Beam dynam-
ics optimization: models, methods and applications
// Nuclear Instruments and Methods in Physics Re-
search, section A 558. 2006, p. 11-19.
2. A.D. Ovsyannikov. Transverse motion parameters
optimization in accelerators // Problems of Atomic
Science and Technology. 2012, p. 74-77.
3. Yu.A. Svistunov, A.D. Ovsyannikov. Designing of
compact accelerating structures for applied com-
plexes with accelerators // Problems of Atomic Sci-
ence and Technology. 2011, p. 48-51.
4. B. Bondarev, A. Durkin, Y. Ivanov, I. Shumakov,
S. Vinogradov, A. Ovsyannikov, D. Ovsyannikov.
The LIDOS. RFQ. Designer development // Pro-
ceedings of Particle Accelerator Conference 2001.
2001, v. 4, p. 2947-2949.
5. A.D. Ovsyannikov, D.A. Ovsyannikov, S.-L. Chung.
Optimization of a radial matching section // Interna-
tional Journal of Modern Physics A. 2009, v. 24, is-
sue 5, p. 952-958.
6. A.D. Ovsyannikov, D.A. Ovsyannikov, A.P. Durkin,
S.-L. Chung. Optimization of matching section of
an accelerator with a spatially uniform quadrupole
focusing // Technical Physics, The Russian Journal
of Applied Physics (11). 2009, v. 54, p. 1663-1666.
7. D.A. Ovsyannikov, A.D. Ovsyannikov, I.V. Antro-
pov, V.A. Kozynchenko. BDO-RFQ code and op-
timization models // Proceedings of International
Conference Physics and Control. 2005, p. 282-288.
8. D.A. Ovsyannikov, V.G. Papkovich. On calculation
of accelerating structures with focusing by acceler-
ating field // Problems of Atomic Science and Tech-
nology. 1977, № 2(3), p. 66-68.
9. S.A. Kozynchenko, D.A. Ovsyannikov. Optimiza-
tion mathematical models of beam dynamics in the
injection systems with real geometry // 4th Interna-
tional Scientific Conference on Physics and Con-
trol, PhysCon 2009, 1-4 September 2009, Catania,
Italy. (www.physcon 2009.diees.unit.it)
10. S.A. Kozynchenko, Yu.A. Svistunov. Application of
field and dynamics code to LEBT optimization //
Nuclear Instruments and Methods in Physics Re-
search, section A 558. 2006, p. 295-298.
11. A. Hurwits, R. Courant. Functions theory. Mos-
kow: «Nauka». 1968, 648 p.
Article received 25.05.2013.
ОПТИМИЗАЦИЯ ДИНАМИКИ ПУЧКА В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ
А.Д. Овсянников
Современные требования к ускорительной технике, к параметрам ускоряемого пучка заряженных частиц
требуют и новых подходов к расчету ускоряющих и фокусирующих структур на стадии проектирования. В
данной работе рассматривается задача оптимизации динамики пучка заряженных частиц в аксиально-
симметрическом электрическом поле. Комплексный потенциал представляется в виде интеграла типа Коши
от функции, заданной на границе области и рассматриваемой в качестве управляющей функции. Использо-
вание комплексного представления позволяет получить явный вид зависимостей напряженности поля внут-
ри области от управляющей функции и получить необходимые условия оптимальности для введенного
функционала.
ОПТИМІЗАЦІЯ ДИНАМІКИ ПУЧКА В ЕЛЕКТРОСТАТИЧНОМУ ПОЛІ
О.Д. Овсянников
Сучасні вимоги до прискорювальної техніки, до параметрів прискорючого пучка заряджених частинок
вимагають і нових підходів до розрахунку прискорючих і фокусуючих структур на стадії проектування. У
даній роботі розглядається задача оптимізації динаміки пучка заряджених частинок в аксіально-
симетричному електричному полі. Комплексний потенціал представляється у вигляді інтеграла типу Коші
від функції, заданої на межі області і розглядається в якості керуючої функції. Використання комплексного
уявлення дозволяє отримати явний вигляд залежностей напруженості поля в середині області від керуючої
функції і отримати необхідні умови оптимальності для введеного функціоналу.
|