Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal
Представлены результаты определения механических характеристик монокристаллов алюмината самария (SmAlO₃) путем индентирования в диапазоне сжимающих нагрузок 0,098... ...0,98 Н. Установлена нелинейная зависимость микротвердости от уровня нагрузки, которая соответствует закону Хейза–Кенделла. Испо...
Gespeichert in:
Datum: | 2010 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2010
|
Schriftenreihe: | Проблемы прочности |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/111990 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Микромеханические характеристики монокристалла SmAlO3, выращенного из расплава / K.K. Bamzai, Vishal Singh, Nidhi, P.N. Kotru, B.M. Wanklyn // Проблемы прочности. — 2010. — № 4. — С. 38-49. — Бібліогр.: 34 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-111990 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1119902017-01-17T03:03:18Z Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal Bamzai, K.K. Vishal Singh Nidhi Kotru, P.N. Wanklyn, B.M. Научно-технический раздел Представлены результаты определения механических характеристик монокристаллов алюмината самария (SmAlO₃) путем индентирования в диапазоне сжимающих нагрузок 0,098... ...0,98 Н. Установлена нелинейная зависимость микротвердости от уровня нагрузки, которая соответствует закону Хейза–Кенделла. Использование этого закона позволяет рассчитать значение твердости, инвариантное к уровню нагрузки. При индентировании микрокристаллов трещинообразование наблюдается только при высоких нагрузках (0.686 Н), причем конфигурация инициируемых трещин относится к типу Палмквиста. Для монокристаллов SmAlO₃ по результатам измерения твердости и растрескивания при индентировании оценены вязкость разрушения Kc , показатель хрупкости Bi и предел текучести σт . Представлено результати визначення механічних характеристик монокристалів алюмінату самарію (SmAlO₃) шляхом індентування в інтервалі навантаження стиском 0,098...0,98 Н. Установлено нелінійну залежність мікротвердості від рівня навантаження, яке відповідає закону Хейза–Кенделла. За допомогою цього закону можна розрахувати значення твердості, інваріантне до рівня навантаження. При індентуванні мікрокристалів тріщиноутворення має місце за високого навантаження (0,686 Н), причому конфігурація ініційова- них тріщин відноситься до типу Палмквіста. Для монокристалів SmAlO₃ за результатами вимірювання твердості і розтріскування при індентуванні оцінено в’язкість руйнування Kc , показник крихкості Bi і границю текучості σт . 2010 Article Микромеханические характеристики монокристалла SmAlO3, выращенного из расплава / K.K. Bamzai, Vishal Singh, Nidhi, P.N. Kotru, B.M. Wanklyn // Проблемы прочности. — 2010. — № 4. — С. 38-49. — Бібліогр.: 34 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/111990 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Bamzai, K.K. Vishal Singh Nidhi Kotru, P.N. Wanklyn, B.M. Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal Проблемы прочности |
description |
Представлены результаты определения механических характеристик монокристаллов алюмината самария (SmAlO₃) путем индентирования в диапазоне сжимающих нагрузок 0,098...
...0,98 Н. Установлена нелинейная зависимость микротвердости от уровня нагрузки, которая
соответствует закону Хейза–Кенделла. Использование этого закона позволяет рассчитать
значение твердости, инвариантное к уровню нагрузки. При индентировании микрокристаллов
трещинообразование наблюдается только при высоких нагрузках (0.686 Н), причем конфигурация инициируемых трещин относится к типу Палмквиста. Для монокристаллов SmAlO₃ по
результатам измерения твердости и растрескивания при индентировании оценены вязкость
разрушения Kc , показатель хрупкости Bi и предел текучести σт . |
format |
Article |
author |
Bamzai, K.K. Vishal Singh Nidhi Kotru, P.N. Wanklyn, B.M. |
author_facet |
Bamzai, K.K. Vishal Singh Nidhi Kotru, P.N. Wanklyn, B.M. |
author_sort |
Bamzai, K.K. |
title |
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal |
title_short |
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal |
title_full |
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal |
title_fullStr |
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal |
title_full_unstemmed |
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal |
title_sort |
micromechanical characteristics of flux-grown smalo3 single crystal |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2010 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/111990 |
citation_txt |
Микромеханические характеристики монокристалла SmAlO3,
выращенного из расплава / K.K. Bamzai, Vishal Singh, Nidhi, P.N. Kotru, B.M. Wanklyn // Проблемы прочности. — 2010. — № 4. — С. 38-49. — Бібліогр.: 34 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT bamzaikk micromechanicalcharacteristicsoffluxgrownsmalo3singlecrystal AT vishalsingh micromechanicalcharacteristicsoffluxgrownsmalo3singlecrystal AT nidhi micromechanicalcharacteristicsoffluxgrownsmalo3singlecrystal AT kotrupn micromechanicalcharacteristicsoffluxgrownsmalo3singlecrystal AT wanklynbm micromechanicalcharacteristicsoffluxgrownsmalo3singlecrystal |
first_indexed |
2025-07-08T03:08:45Z |
last_indexed |
2025-07-08T03:08:45Z |
_version_ |
1837046565970116608 |
fulltext |
UDC 539.4
Micromechanical Characteristics of Flux-Grown SmAlO3 Single
Crystal
K. K. Bamzai,
a
Vishal Singh,
a
Nidhi,
a
P. N. Kotru,
a
and B. M. Wanklyn
b
a Crystal Growth and Material Research Laboratory, University of Jammu, India
b Clarendon Laboratory, Oxford University, UK
ÓÄÊ 539.4
Ìèêðîìåõàíè÷åñêèå õàðàêòåðèñòèêè ìîíîêðèñòàëëà SmAlO3,
âûðàùåííîãî èç ðàñïëàâà
Ê. Ê Áàìçàé
à
, Âèøàë Ñèíãõ
à
, Íèäõè
à
, Ï. Í. Êîòðó
à
, Á. Ì. Âàíêëèí
á
à Ëàáîðàòîðèÿ êðèñòàëëîãðàôèè è ìàòåðèàëîâåäåíèÿ, Óíèâåðñèòåò ã. Äæàììó, Èíäèÿ
á Êëàðåíäîíñêàÿ ëàáîðàòîðèÿ, Îêñôîðäñêèé óíèâåðñèòåò, Âåëèêîáðèòàíèÿ
Ïðåäñòàâëåíû ðåçóëüòàòû îïðåäåëåíèÿ ìåõàíè÷åñêèõ õàðàêòåðèñòèê ìîíîêðèñòàëëîâ àëþ-
ìèíàòà ñàìàðèÿ (SmAlO3) ïóòåì èíäåíòèðîâàíèÿ â äèàïàçîíå ñæèìàþùèõ íàãðóçîê 0,098...
...0,98 Í. Óñòàíîâëåíà íåëèíåéíàÿ çàâèñèìîñòü ìèêðîòâåðäîñòè îò óðîâíÿ íàãðóçêè, êîòîðàÿ
ñîîòâåòñòâóåò çàêîíó Õåéçà–Êåíäåëëà. Èñïîëüçîâàíèå ýòîãî çàêîíà ïîçâîëÿåò ðàññ÷èòàòü
çíà÷åíèå òâåðäîñòè, èíâàðèàíòíîå ê óðîâíþ íàãðóçêè. Ïðè èíäåíòèðîâàíèè ìèêðîêðèñòàëëîâ
òðåùèíîîáðàçîâàíèå íàáëþäàåòñÿ òîëüêî ïðè âûñîêèõ íàãðóçêàõ (�0.686 Í), ïðè÷åì êîíôèãó-
ðàöèÿ èíèöèèðóåìûõ òðåùèí îòíîñèòñÿ ê òèïó Ïàëìêâèñòà. Äëÿ ìîíîêðèñòàëëîâ SmAlO3 ïî
ðåçóëüòàòàì èçìåðåíèÿ òâåðäîñòè è ðàñòðåñêèâàíèÿ ïðè èíäåíòèðîâàíèè îöåíåíû âÿçêîñòü
ðàçðóøåíèÿ Kc, ïîêàçàòåëü õðóïêîñòè Bi è ïðåäåë òåêó÷åñòè � ò .
Êëþ÷åâûå ñëîâà: ìèêðîïðî÷íîñòü, òðåùèíà, ðàçðóøåíèå, ìîíîêðèñòàëë àëþ-
ìèíàòà ñàìàðèÿ SmAlO3.
Introduction. Aluminates are interesting series within which at room
temperature there exist compounds belonging to at least two different structure
types. Rare earth based oxides occupy an important place among the materials
having high temperature application [1]. Rare earth aluminates serve as neutron
absorber, flux suppressers and high temperature container materials. These
materials are also of considerable interest on account of their magnetic and optical
properties [2]. Thermal conductivity of the aluminates of samarium and dysprosium
was investigated employing laser flash technique covering a temperature range
from 673 to 1373 K [3]. Raman spectra of an oriented single crystal of SmAlO3
have been obtained at temperature 10–970 K [4]. Etching kinetics and assessment
of defect was carried out by Bamzai et al. [5] at different temperatures viz., 443 to
523 K on ErAlO3 crystal where as fracture mechanics, crack propagation and
hardness on ErAlO3 as well as DyAlO3 crystals were also reported by the same
author [6, 7].
© K. K. BAMZAI, VISHAL SINGH, NIDHI, P. N. KOTRU, B. M. WANKLYN, 2010
38 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4
Microhardness is one of the important mechanical property of materials and
its measurement include diverse properties like Young’s modulus, bulk modulus,
dislocation contents and their configuration etc. It is now well-accepted fact that
hardness is a measure of the resistance that a lattice offers to the motion of
dislocations and deformation. As the hardness properties are related to the crystal
structure of the material [8], so microhardness studies have been applied to
understand the strength and deformation characteristics of the material. The interest
in the microhardness studies does not only result from a technical point of view but
also from the opportunity to characterize the degree of lattice order of single
crystalline material by microhardness. Indentation-induced microhardness testing
studies provide useful information about the mechanical behavior of different
materials. It is also strongly related to structure and composition of solids. It is
well-known that the microhardness of crystalline material is influenced by the
following factors [9]:
1. Solid solution effects connected with the chemical nature of the implanted
atoms.
2. Defects aggregates and amorphous region.
3. Point defects, which hinder the motion of dislocations.
The above factors suggest that hardness is a strength microprobe. Kotru et al.
[10] carried out microhardness measurement on the crystals of flux-grown rare
earth perovskite (RFeO3, R = Gd, Ho, Tb, Dy, Er, and Yb; RCrO3, R = La, Eu, and
Dy; RAlO3, R = La, Eu, Gd, and Ho). They re-affirmed the application of the idea
of material resistance pressure in the law proposed by Hays and Kendall [11] in the
explanation of hardness results. To the best of our knowledge, no results regarding
microhardness, crack propagation, fracture toughness and brittleness index of
SmAlO3 crystals have been reported. The aim of the present investigation is to
report the detailed analysis of microhardness and the laws governing the variation
of hardness with applied load. In addition, the present study also discusses the
indentation-induced crack propagation; thereby giving values of the fracture
toughness, brittleness index and yield strength.
1. Experimental.
1.1. Sample Preparation. The single crystals of SmAlO3 have been grown by
flux technique [12] using PbO, PbF2 as flux, heated in a crucible upto 1290�C,
soaked for 24 h and then allowed to cool. Flux grown SmAlO3 single crystal
belongs to distorted orthorhombic with lattice parameter a� 5.285Å, b� 5.290Å,
and c� 7.473Å with 208.9Å3 as volume per unit cell [13]. Flux-grown SmAlO3
single crystals, microscopically free from sign of any damage, were selected and
properly cleaned with CCl4 and then mounted on galva for indentation purposes.
1.2. Indentation Tests. The indentations were performed at room temperature
(25�C) using Vickers’ microhardness tester (mhp-100) equipped with diamond
indenter attached to an incident light camera microscope (Neophot-2 of Carl Zeiss,
Germany). On having confirmed that hardness is independent of time, loads
ranging from 0.098 to 0.98 N were used for indentation, keeping the indenter at
right angle to the surface for 10 s in all cases. At least five indentations were
performed for each load on each sample. The distances between two consecutive
indentations were kept more than five times the diagonal length of indentation
mark to avoid the surface effects. Precautions were taken to ensure that the axis of
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4 39
the indenter was at right angle to the plane of crystals. Diagonal lengths of these
marks were measured using filar micrometer eyepiece at a magnification of �500
and averages of the diagonal lengths were computed for calculations. The micro-
hardness value (HV ) was calculated using formula
H P dV � �2 68 2sin ( ) (1)
or
H P dV �18544 2. ( ), (2)
where P is the applied load (in N) and d is the average diagonal length of
indentation mark (in �m). The error on HV was estimated through the relation
� � �H P Y P Y YV � �18544 2 2 1 2. [( ) ( )] ,/
(3)
where Y d� 2 , � �Y d d�2 , �P , �Y , and �d denote errors on P , Y , and d,
respectively.
For each measurement only well-defined cracks developed during indentations
were considered and the average crack lengths of all such cracks were taken for a
particular indentation impression. The crack length was measured from the centre
of the indentation mark to the tip of crack. A program in Fortran 77 using the least
square method was written and run on computer to calculate the values of various
parameters listed in Table 1.
The fracture toughness (K c), the brittleness index (Bi ), and the yield strength
( )�Y were determined using the relevant expressions.
2. Results and Discussion.
2.1. Effect of Indentation Time on Vickers’ Microhardness. Hardness of some
crystals are reported to be independent of time [14], where as in some others it is
shown to be dependent on time [15–17]. In the present case, the impression
obtained with a constant load of 10 s, 30 s, 60 s, 2 min, 4 min, 8 min, and 10 min
on the selected faces lead to the conclusion that the microhardness in this case is
independent of loading time at room temperature.
2.2. Load Dependence of Hardness. Various materials behave differently so
far as the dependence of their microhardness on applied load is concerned. It is
reported that microhardness is:
K. K. Bamzai, Vishal Singh, Nidhi, et al.
40 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4
T a b l e 1
Results of Microhardness Analysis for SmAlO3
HV ,
GN m� 2
nK nHK K1 ,
GN m� 2
W K1 ,
10 12 2 m
K K2 1 K2 ,
GN m� 2
W ,
N
12.45–16.69 1.75 1.92 12.62 3.24 0.52 6.59 0.0409
Comment: nK represents the value of n on operation of Kick’s law (P K dn� 1 ) and nHK represents
the value of n on operation of the Hays–Kendall law (P W K d � 2
2).
(i) independent of load [18];
(ii) increases or decreases with load [19, 20];
(iii) shows complex variation with change in load [21, 22];
(iv) increases at low loads and decreases at high loads [23].
It is interesting to find how the materials under investigation (SmAlO3)
behave with change in load.
Figure 1 shows the micrographs of the indentation impression taken at various
loads (i.e., lower as well as higher). It is clear from Fig. 1 that size of the
indentation mark increases with the increase in applied load. Figure 2 is a graph
showing variation of microhardness value with applied load. This value of
microhardness HV is found to vary from 16.69 to 12.45 GN m
�2 at the load
ranging from 0.098–0.98 N. The curve in the graph shows that microhardness
value decreases nonlinearly as the applied load increases until about 0.686 N of
applied load after which microhardness value tends to attain saturation. This
particular behavior can be qualitatively explained on the basis of the indenter
penetration depth. At small load, the indenter penetrates layers which are nearer to
the exposed surface under indentation, and small volumes are stressed. However,
as the depth of the penetration increases, the effect of inner layers become more
and more prominent and larger volume are stressed resulting into a more or less
constant value of hardness with load [24]. This explanation is also favored by
Brookes [16], who associated the hardness increase at low loads with early stages
of plastic deformation.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4 41
Fig. 1. Micrographs showing indentation impressions at different loads.
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal
2.3. Application of the Hays–Kendall Law. This type of nonlinear behavior is
explained by the Hays–Kendall law [11], which is a modification of Kick’s law
[25],
P K d n� 1 , (4)
where K1 is the standard hardness constant and n is Mayer’s index (or work-
hardening coefficient), which is assumed to be equal to 2. However, in case of
SmAlO3 crystal, the value of n was found to be less than 2 (i.e., n�1 75. ). This
discrepancy was explained by using the Hays–Kendall law which implies that
P W K d� � 2
2 , (5)
where W is the sample resistance pressure and represents the minimum load that
causes an indentation, K 2 is a constant, and n�2 is the logarithmic index.
From (5) we have
W P K d� � 2
2 . (6)
Substituting the value of (4) in (6), we have
W K d K dn� �1 2
2
or
42 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4
Fig. 2. Graph between microhardness (HV ) and load (P) showing the nonlinear behavior of the
SmAlO3 single crystal.
K. K. Bamzai, Vishal Singh, Nidhi, et al.
d K K d W Kn � ( ) .2 1
2
1 (7)
A graph of log P versus log d is shown in Fig. 3. From this graph slope n
and intercept K1 is calculated. The values of K 2 and W can be calculated from a
graph between d n and d 2 as shown in Fig. 4. The values of these constants have
been determined by using the least square fitting method using a software program
in Fortran language. A plot of log( )P W� vs. log d as shown in Fig. 5 yields the
value of n�2 thereby involving concept of resistance pressure (W ) as proposed by
Hays and Kendall. The data on nK (on application of Kick’s law), nHK (on
application of the Hays–Kendall law), K1 , K 2 , and W thus determined is given in
the Table 1.
The application of the Hays–Kendall law leads us to a modified formula of
Eq. (1), which gives load-independent value of microhardness ( ) .HV l i :
( ) . ( ).H P W dV l i � �18544 2
(8)
or
( ) . ..H KV l i �18544 2 (9)
Knowing the value of K 2 , the load independent values are calculated using
the above relation which comes out to be 12.23 GN m
�2 . This load-independent
value is in quite good agreement with the experimental values where the saturation
in the values of hardness is obtained at higher loads.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4 43
Fig. 3. A linear graph logP vs. logd giving the value of slope n and intercept K1.
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal
2.4. Fracture Mechanics. There are two modeling approaches to the crack
systems, which can develop in material as a result of indentation. These are:
(i) median or half penny cracks and (ii) Palmqvist cracks system shown
schematically in Fig. 6, respectively.
Thus, depending upon which of those two modules they are based on, various
indentation toughness equations in the literature are referred to as half penny or
44 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4
Fig. 4. Graph dn vs. d2 giving the value of slope K2 and intercept W K1.
Fig. 5. Graph log( )P W� vs. logd giving the value of slope n � 2.
Fig. 4 Fig. 5
Fig. 6. Geometries of median (a) and Palmqvist crack (b) around Vickers indentation.
a b
K. K. Bamzai, Vishal Singh, Nidhi, et al.
Palmqvist equations. Resistance to fracture indicates the toughness of material. The
fracture toughness (K c) determines the fracture stress level applied under uniform
loading and is important property for selection of materials for application where
the load exceeds the limit or yield point.
In the flux-grown SmAlO3 crystal, no cracks are detected at loads less than
0.588 N. The indentation load for crack initiation reflects the intrinsic deformation
and fracture properties of the material [26–28]. The crack developed in a crystal
determines the fracture toughness K c . If P is the applied load (in N) and c is the
crack length (in �m), then under equilibrium conditions [29]:
K P cc � �0
3 2/ for c d
2. (10)
Here �0 is numerical constant that depends upon the indenter geometry. For
Vickers’ indenter �0 is equal to 7. However, this equation gives a satisfactory
value of the fracture toughness only if c a
2 5. (where a d� 2), that is for
median cracks [30, 31]. The crack system with c a�2 5. is a Palmqvist or radial
crack. The fracture toughness for a Palmqvist crack system may be calculated by
K P alc � �0
1 2/ , (11)
where l is the mean Palmqvist crack length [32], l c a� � .
Table 2 gives the c a value for SmAlO3 crystal. As the ratio of c a in the
present case is found to be less than 2.5, the cracks developed are Palmqvist in
nature. Accordingly Eq. (11) is used to calculate the value of fracture toughness
K c . The value K c in case of SmAlO3 crystal has been found to vary between 5.06
to 2 31 10 2.
� GN m
�3 2/ for the loads ranging from 0.686 to 0.98 N and is given in
Table 2.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4 45
T a b l e 2
Vickers’ Hardness Value (HV ), Nature of Cracks, Fracture Toughness (Kc),
Brittleness Index (Bi), and Yield Strength (�Y )
P, N HV ,
GN m
�2
c a Nature
of crack
Kc ,
10 2 3 2� �
GN m /
Bi ,
m�1 2/
�Y ,
GN m
�2
0.098 16.69 – – – – 5.56
0.196 15.78 – – – – 5.26
0.294 14.65 – – – – 4.88
0.392 14.02 – – – – 4.67
0.490 13.85 – – – – 4.62
0.588 13.77 – – – – 4.54
0.686 12.98 1.06 Palmqvist 5.06 2565 4.33
0.784 12.67 1.12 Palmqvist 3.64 3476 4.22
0.882 12.65 1.26 Palmqvist 2.52 5019 4.22
0.980 12.45 1.32 Palmqvist 2.31 5373 4.15
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal
A graph of crack length c versus load P is shown in Fig. 7, which indicates
the dependence of crack length on applied load. It is clear that the crack length
increases with the increase in applied load.
2.5. Brittleness Index. Another important mechanical parameter is the brittleness
index that affects the mechanical behavior of a material and gives an idea about the
fracture induced in a material without any appreciable deformation. The value of
brittleness index (Bi ) is calculated by using relation [31]
B H Ki V c� . (12)
The value of Bi is found to vary between 2565 to 5373 m�1 2/ for the load
ranging from 0.686 to 0.98 N, respectively, and is given in Table 2.
2.6. Yield Strength. From the hardness value, the yield strength (�Y ) can be
calculated [33].
For Mayer’s index n�2, the yield strength is given by
�Y V
nH n n n� � � � � � �2 9 1 2 12 5 2 1 2 2. [ ( )]{ . ( ) ( )} . (13)
For Mayer’s index n�2 [34], the yield strength becomes:
�Y VH� 3. (14)
46 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4
Fig. 7. Graph between crack length and load shows increase in crack length with increase in applied
load.
K. K. Bamzai, Vishal Singh, Nidhi, et al.
Since, in the present case, n is less than 2 (i.e., n�192. ), the Eq. (14) is
applied to calculate the value of yield strength and the above values vary from 5.56
to 4.15 GN m� �2 in the load range from 0.098 to 0.98 N and are given in Table 2.
Table 2 contains compiled data including Vickers’ hardness value, nature of
crack, fracture toughness, brittleness index and yield strength in case of SmAlO3
crystal.
C o n c l u s i o n s
1. The variation of microhardness with applied load is non linear and fits into
the concept of Newtonian resistance pressure as proposed by the Hays–Kendall
law. The Vickers’ hardness value of SmAlO3 crystals in the load range of 0.098 to
0.98 N is of the order of 16.69 to 12.45 GN m� �2 .
2. Application of the Hays–Kendall law suggests that the load-independent
value of microhardness HV for SmAlO3 crystals is 12.23 GN m� �2 . The calculated
load-independent values of microhardness fit very well with the experimental ones.
3. The crack is initiated at an applied load of 0.686 N and the nature of cracks
is of Palmqvist type for loads ranging from 0.686 to 0.98 N.
4. The fracture toughness value varies from 5 06 10 2. � � to 2 31 10 2. � � GN m� �3 2/
for the load ranging from 0.686 to 0.98 N, respectively, whereas the brittleness
index in this load range varies from 2565 to 5373 m�1 2/ , respectively.
5. The value of yield strength as calculated from HV 3 comes out to be 5.56
to 4.15 GN m� �2 in the load range of 0.898 to 0.98 N, respectively.
Acknowledgements. The authors are thankful to Defense Research and
Development Organization, New Delhi for providing funds under the Scheme No.
03(0982)/03/EMR–II.
Ð å ç þ ì å
Ïðåäñòàâëåíî ðåçóëüòàòè âèçíà÷åííÿ ìåõàí³÷íèõ õàðàêòåðèñòèê ìîíîêðèñòà-
ë³â àëþì³íàòó ñàìàð³þ (SmAlO3) øëÿõîì ³íäåíòóâàííÿ â ³íòåðâàë³ íàâàíòà-
æåííÿ ñòèñêîì 0,098...0,98 Í. Óñòàíîâëåíî íåë³í³éíó çàëåæí³ñòü ì³êðîòâåð-
äîñò³ â³ä ð³âíÿ íàâàíòàæåííÿ, ÿêå â³äïîâ³äຠçàêîíó Õåéçà–Êåíäåëëà. Çà äîïî-
ìîãîþ öüîãî çàêîíó ìîæíà ðîçðàõóâàòè çíà÷åííÿ òâåðäîñò³, ³íâàð³àíòíå äî
ð³âíÿ íàâàíòàæåííÿ. Ïðè ³íäåíòóâàíí³ ì³êðîêðèñòàë³â òð³ùèíîóòâîðåííÿ ìàº
ì³ñöå çà âèñîêîãî íàâàíòàæåííÿ (�0,686 Í), ïðè÷îìó êîíô³ãóðàö³ÿ ³í³ö³éîâà-
íèõ òð³ùèí â³äíîñèòüñÿ äî òèïó Ïàëìêâ³ñòà. Äëÿ ìîíîêðèñòàë³â SmAlO3 çà
ðåçóëüòàòàìè âèì³ðþâàííÿ òâåðäîñò³ ³ ðîçòð³ñêóâàííÿ ïðè ³íäåíòóâàíí³ îö³íå-
íî â’ÿçê³ñòü ðóéíóâàííÿ Kc , ïîêàçíèê êðèõêîñò³ Bi ³ ãðàíèöþ òåêó÷îñò³ � ò .
1. J. D. Cashion, A. H. Cooke, J. M. Leask, et al. “Crystal growth and magnetic
susceptibility of some rare earth compounds,” J. Mat. Sci., 3, 402–407 (1968).
2. W. K. Anderson, “Nuclear applications of yttrium and lanthanon,” in: F. H.
Speeddingand and A. Hdaane (Eds.), Krieger Publishing Co., Huntington,
New York (1971), p. 522.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4 47
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal
3. G. Suresh, G. Seenivasan, M. V. Krishanaiah, and P. S. Murti, “Investgation
of thermal conductivity of selected rare earth aluminates,” J. Therm. Anal., 54,
873–879 (1998).
4. J. F. Scott and J. P. Rameika, “High temperature Raman study of samarium
aluminate,” Phys. Rev. B, 1, 4182–4185 (1970).
5. K. K. Bamzai, P. R. Dhar, P. N. Kotru, and B. M. Wanklyn, “Studies on
etching kinetics and assessment of defects in flux grown ErAlO3,” Mat. Chem.
Phys., 62, 214–225 (2000).
6. K. K. Bamzai, P. N. Kotru, and B. M. Wanklyn, “Fracture mechanics, crack
propogation and microhardness studies on ErAlO3 single crystal,” J. Mat. Sci.
Technol., 16, 405–410 (2000).
7. K. K. Bamzai, P. R. Dhar, P. N. Kotru, and B. M. Wanklyn, “Investigations
on indentation induced hardness and fractured mechanism in flux grown
DyAlO3 crystal,” Appl. Surf. Sci., 133, 195–204 (1998).
8. B. W. Mott, Microindentation Hardness Testing, Butterworths Scientific
Publication, London (1956).
9. T. Hioki, A. Itoh, M. Ohkubo, et al. “Mechanical property changes in sapphire
by nickel ion implantation and their dependence on implantation temperature,”
J. Mat. Sci., 21, 1321–1328 (1986).
10. P. N. Kotru, K. K. Raina, and S. K. Kachroo, “Microhardness measurements
on single crystals of flux-grown rare earth perovskites (orthoferrites,
orthochromites and aluminates),” Ibid, 19, 2582–2592 (1984).
11. C. Hays and E. G. Kendall, “An analysis of Knoop microhardness,” Metallo-
graphy, 6, 275–282 (1973).
12. B. M. Wanklyn, “The flux growth of single crystal of rare earth perovskite
(orthoferrites, orthochromites and aluminates),” J. Cryst. Growth, 5, 323–328
(1969).
13. S. Geller and V. B. Bala, “Crystallographic studies of perovskite like
compounds. II. Rare earth aluminate,” Acta. Cryst., 9, 1019–1025 (1956).
14. S. Beigh, P. N. Kotru, and B. M. Wanklyn, “Indentation induced micro-
hardness studies on (110) and (001) phase of flux grown dysprosium
orthoferrite single crystal,” Mat. Chem. Phys., 40, 99–104 (1995).
15. V. P. Bhatt and C. F. Desai, “Temperature dependence of Vicker micro-
hardness and creep of InBi single crystal,” Bull. Mater. Sci., 4, 23–28 (1982).
16. C. A. Brookes, “The mechanical properties of cubic boron nitride – a
perspective view,” 2nd Int. Conf. on Hard Materials (Rhodes, Greece, Sept.
23–28, 1984), Inst. Phys. Conf. Ser. 75, Ch. 3, Hilger, Bristol (1984), pp. 207–
220.
17. Y. Deslandes, E. Alva Rosa, F. Brisse, and T. Meneghini, “Correlation of
microhardness and morphology of poly (ether-ether-ketone) films,” J. Mat.
Sci., 26, 2769–2777 (1991).
18. C. Ascheron, G. Kuhn, C. Haase, and H. Neumann, “Microhardness of
Sn-doped InP, Cryst. Res. Technol., 24, K33–K35 (1989).
48 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4
K. K. Bamzai, Vishal Singh, Nidhi, et al.
19. K. Balakrishan, B. Vengatesan, N. Kanniah, and P. Ramaswami, “Growth and
microhardness studies of CuInSe2 single crystal,” J. Mater. Sci. Lett., 9, 785–
787 (1990).
20. P. N. Kotru, A. K. Razdan, and B. M. Wanklyn, “Microhardness of flux
grown pure doped and mixed rare-earth aluminates,” J. Mat. Sci., 24, 793–803
(1989).
21. V. P. Bhatt, R. M. Patel, and C. F. Desai, “Deformation and microhardness
studies on KClO4 single crystal,” Cryst. Res. Technol., 18, 1173–1179 (1983).
22. P. R. Dhar, K. K. Bamzai, and P. N. Kotru, “Deformation and microhardness
studies on natural apophyllite crystal,” Ibid, 32, 537–544 (1997).
23. D. J. Clinton and R. Morell, “Hardness testing of ceramic material,” Mat.
Chem. Phys., 17, 461–473 (1987).
24. J. R. Pandya, L. J. Bhagia, and A. J. Shah, “Microhardness of rhombohedral
crystal carlcite and sodium nitrate,” Bull. Mater. Sci., 5, 79–82 (1983).
25. F. Kick, Das Gesetz der proportionalen Widerstand und seine Anwendung,
Arthus Felix, Leipzig (1885).
26. H. Ishinkaa and N. Shinkai, “Critical load for median crack initation in
Vicker’s indentation of glass,” J. Amer. Ceram. Soc., 65, C124–C127 (1982).
27. B. R. Lawn and A. G. Evans, “A model for crack initiation in elastic/plastic
indentation fields,” J. Mat. Sci., 12, 2195–2199 (1977).
28. B. R. Lawn, A. G. Evans, and D. B. Marshall, “Elastic/plastic indentation
damage in ceramics: the median/radial crack system,” J. Amer. Ceram. Soc.,
63, 574–581 (1980).
29. B. R. Lawn and E. R. Fuller, “Equilibrium penny-like cracks in indentation
fracture,” J. Mat. Sci., 9, 2016–2024 (1975).
30. D. G. Bhat, “Elastic/plastic indentation damage in ceramics: the median/radial
crack system,” J. Amer. Ceram. Soc., 64, 165–166 (1981).
31. K. Nihara, R. Morena, and D. P. H. Hasselman, “Evaluation of K cI of brittle
solids by indentation method with low crack to indent ratios,” J. Mater. Sci.
Lett., 1, 13–16 (1982).
32. C. B. Ponton and R. D. Rawling, “Dependence of the Vickers indentation
fracture toughness on the surface crack length,” J. Brit. Ceram. Trans., 88,
83–90 (1989).
33. J. P. Cahoon, W. H. Broughton, and A. R. Katzuk, “The determination of
yield strength from hardness measurement,” Metall. Trans., 2, 979–983 (1971).
34. D. H. Wytt, Metals, Ceramics, and Polymers, Cambridge University Press,
London, (1974).
Received 15. 07. 2009
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2010, ¹ 4 49
Micromechanical Characteristics of Flux-Grown SmAlO3 Single Crystal
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /All
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJDFFile false
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile ()
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|