The influence of HF discharge on plasma parameters of gas source with incandescent cathode

An experimental study of the influence of HF power and configuration of the magnetic field on the plasma parameters of the gas source with incandescent cathode was carried out. It is shown that the application HF power into discharge results in reduction of electron temperature. For discharge in dec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Shariy, S.V., Yuferov, V.B., Tkachova, T.I., Svichkar, A.S., Shvets, M.O., Tkachov, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112100
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The influence of HF discharge on plasma parameters of gas source with incandescent cathode / S.V. Shariy, V.B. Yuferov, T.I. Tkachova, A.S. Svichkar, M.O. Shvets, V.I. Tkachov // Вопросы атомной науки и техники. — 2015. — № 3. — С. 136-138. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112100
record_format dspace
spelling irk-123456789-1121002017-01-18T03:03:11Z The influence of HF discharge on plasma parameters of gas source with incandescent cathode Shariy, S.V. Yuferov, V.B. Tkachova, T.I. Svichkar, A.S. Shvets, M.O. Tkachov, V.I. Теория и техника ускорения частиц An experimental study of the influence of HF power and configuration of the magnetic field on the plasma parameters of the gas source with incandescent cathode was carried out. It is shown that the application HF power into discharge results in reduction of electron temperature. For discharge in decreasing magnetic field the radial distribution of the plasma density in the axial region is more uniform compared with increasing magnetic field. Проведено експериментальне дослідження впливу ВЧ-потужності та конфігурації магнітного поля на параметри плазми газового джерела з розжарюваним катодом. Показано, що введення в розряд ВЧ-потужності призводить до зниження електронної температури. Для розряду в спадаючому магнітному полі радіальне розподілення щільності плазми в привісевій області більш однорідним в порівнянні із зростаючим магнітним полем. Проведено экспериментальное исследование влияния ВЧ-мощности и конфигурации магнитного поля на параметры плазмы газового источника с накаливаемым катодом. Показано, что введение в разряд ВЧ-мощности приводит к снижению электронной температуры. Для разряда в убывающем магнитном поле радиальное распределение плотности плазмы в приосевой области более однородное по сравнению с нарастающим магнитным полем. 2015 Article The influence of HF discharge on plasma parameters of gas source with incandescent cathode / S.V. Shariy, V.B. Yuferov, T.I. Tkachova, A.S. Svichkar, M.O. Shvets, V.I. Tkachov // Вопросы атомной науки и техники. — 2015. — № 3. — С. 136-138. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.50.Dg http://dspace.nbuv.gov.ua/handle/123456789/112100 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Теория и техника ускорения частиц
Теория и техника ускорения частиц
spellingShingle Теория и техника ускорения частиц
Теория и техника ускорения частиц
Shariy, S.V.
Yuferov, V.B.
Tkachova, T.I.
Svichkar, A.S.
Shvets, M.O.
Tkachov, V.I.
The influence of HF discharge on plasma parameters of gas source with incandescent cathode
Вопросы атомной науки и техники
description An experimental study of the influence of HF power and configuration of the magnetic field on the plasma parameters of the gas source with incandescent cathode was carried out. It is shown that the application HF power into discharge results in reduction of electron temperature. For discharge in decreasing magnetic field the radial distribution of the plasma density in the axial region is more uniform compared with increasing magnetic field.
format Article
author Shariy, S.V.
Yuferov, V.B.
Tkachova, T.I.
Svichkar, A.S.
Shvets, M.O.
Tkachov, V.I.
author_facet Shariy, S.V.
Yuferov, V.B.
Tkachova, T.I.
Svichkar, A.S.
Shvets, M.O.
Tkachov, V.I.
author_sort Shariy, S.V.
title The influence of HF discharge on plasma parameters of gas source with incandescent cathode
title_short The influence of HF discharge on plasma parameters of gas source with incandescent cathode
title_full The influence of HF discharge on plasma parameters of gas source with incandescent cathode
title_fullStr The influence of HF discharge on plasma parameters of gas source with incandescent cathode
title_full_unstemmed The influence of HF discharge on plasma parameters of gas source with incandescent cathode
title_sort influence of hf discharge on plasma parameters of gas source with incandescent cathode
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Теория и техника ускорения частиц
url http://dspace.nbuv.gov.ua/handle/123456789/112100
citation_txt The influence of HF discharge on plasma parameters of gas source with incandescent cathode / S.V. Shariy, V.B. Yuferov, T.I. Tkachova, A.S. Svichkar, M.O. Shvets, V.I. Tkachov // Вопросы атомной науки и техники. — 2015. — № 3. — С. 136-138. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT shariysv theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT yuferovvb theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT tkachovati theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT svichkaras theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT shvetsmo theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT tkachovvi theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT shariysv influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT yuferovvb influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT tkachovati influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT svichkaras influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT shvetsmo influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
AT tkachovvi influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode
first_indexed 2025-07-08T03:23:45Z
last_indexed 2025-07-08T03:23:45Z
_version_ 1837047509487190016
fulltext THE INFLUENCE OF HF DISCHARGE ON PLASMA PARAMETERS OF GAS SOURCE WITH INCANDESCENT CATHODE S.V.Shariy∗, V.B.Yuferov, T. I.Tkachova, A.S.Svichkar, M.O.Shvets, V. I.Tkachov National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine (Received February 16, 2015) An experimental study of the influence of HF power and configuration of the magnetic field on the plasma parameters of the gas source with incandescent cathode was carried out. It is shown that the application HF power into discharge results in reduction of electron temperature. For discharge in decreasing magnetic field the radial distribution of the plasma density in the axial region is more uniform compared with increasing magnetic field. PACS: 52.50.Dg 1. INTRODUCTION The experiments about dynamics of radial and longitudinal flows of multicomponent plasma rotat- ing in crossed electric and magnetic fields are pre- sented in works [1, 2]. The received results indicate the possibility of spatial separation of extracted mass flows. However the results must be confirmed by di- rect mass-spectrometry of outgoing ions flows in ax- ial direction and analysis of ions spectra injected into standard target in lateral direction. Complication for such analysis is comparatively small plasma density ∼ 1010 cm−3 and high density of neutral component (3.5 ·1012...3.5 ·1013) cm−3, i.e. low ionization degree of neutral gas. Inefficient ionization results in the sig- nificant impact of charge exchange processes and so difficulty of received results interpretation. Therefore carrying out of additional work directed to increase of ionization degree and improvement of vacuum condi- tions during discharge was necessary. These param- eters directly depend on work characteristics of the source creating a plasma. 2. DESCRIPTION OF EXPERIMENT AND RECEIVED RESULTS The requirements early formulated in works [3, 4] to plasma sources for carrying out of experiments on installation DIS-1 are given below: – gas source must create multicomponent plasma (ionization of gas mixture with greatly different masses); – vacuum conditions up to (10−4...10−5)Torr (mean free path of ions before charge exchange onto neutrals must be higher than system size: λ = 1m at T = 5 eV ); – low plasma temperature (low temperature of electron component reduces the probability of the multiple-charge ions appearance); – stationary or quasi-stationary work mode (for quasi-stationary mode plasma pulse duration must be 2...5 times higher than transit time of the system by the heaviest plasma ions, i.e. τ = L/Vp, where L – system length, Vp – plasma rate); – the creation of uniform plasma with density range (1010...1013) cm−3 (higher densities are un- desirable as they will bring to collision-dominated regime). Currently there are many different types of plasma sources [5, 6, 7]. All of them have a number of advantages and disadvantages and partly satisfy re- quirements mentioned above, but do not satisfy them completely. The paper deals with an experimental study of the gas source with incandescent cathode. For a station- ary source with incandescent cathode time-of-flight factor is not important. However problems of plasma uniformity, ionization degree and created plasma den- sity are still important. The purpose of the article is to explore the possi- bility of decreasing of the electron temperature and increasing of the uniformity of the plasma density radial distribution of the stationary gas source with incandescent cathode. Two variants of magnetic field configuration in plasma source region are realized during the experi- ments (Fig.1). The switching on the solenoids 2 leads to the creation of the decreasing magnetic field (see Fig.1,a) and solenoids 3 – to the increasing magnetic field (see Fig.1,b) in the plasma source region. Parameters of arc discharge are similar to those ∗Corresponding author E-mail address: s.v.shariy@gmail.com 136 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, N3(97). Series: Nuclear Physics Investigations (64), p.136-138. described in [1]:Ua−c = 150V , Idisch = (3...5)A. Initially, the cryopump housing – annular cylinder with L = 35 cm, D = 34 cm, located in discharge region, was used as HF antenna. HF field was created by generator with frequency (3...8)MHz, power 1.5 kW . The parameters of created plasma were measured by using a single electric Lang- muir probe with d = 0.5mm, h = 5mm. The probe construction allowed to carry out the mea- surements both in radial and longitudinal directions. Magnetic field – (0...1.5) kOe, discharge voltage – (0...300)V , vacuum – (10−3...10−4)Torr. The mag- nitudes of magnetic fields and neutral gas density considerably differ from mentioned in works [8,9]. Fig.1 Schematic view of the experimental installation and two variants of the magnetic field intensity distribu- tion: 1 – plasma source; 2, 3 – magnetic system; 4 – HF antenna; 5 – single Longmuir probe The results of probe measurements of plasma parameters radial distribution with a combina- tion of arc and HF discharges are presented on Figs.2 and 3. The probe was located at a dis- tance 27 cm from outlet section of plasma source. 0 2 4 6 8 10 12 5,5 6,0 6,5 7,0 7,5 8,0 8,5 Te, eV Ne, 1010 cm-3 r, cm Te 0 1 2 3 4 5 6 7 8 Ne Fig.2 The radial distribution of density and temperature of plasma created in decreasing magnetic field H = 390Oe, P = 4 · 10−3 Torr 0 2 4 6 8 10 5 6 7 8 9 10 11 12 13 14 Te, eV Ne, 1010 cm-3 r, cm Te 0 1 2 3 4 5 6 7 Ne Fig.3 The radial distribution of density and temper- ature of plasma created in increasing magnetic field H = 390Oe, P = 4 · 10−3 Torr Comparative analysis of probe measurements showed that in the case of decreasing magnetic field the plasma density distribution in the axial field is more uniform and the average value of plasma density is higher. And, despite the fact that the electron tem- perature on the axis is higher than in the increasing field, in the rest region temperature is lower. Low electron temperature reduces the probability of the multiple-charge ions appearance. Tables 1 and 2 show the probe measurement results of the plasma of arc discharge and arc discharge with the introduction of HF power for two configurations of the magnetic field. The measurements of plasma density and tempera- ture were carried out at the axis (r = 0) and at Hmax = 390Oe and P = 2 · 10−3 Torr. Table 1. The parameters of plasma created in decreasing magnetic field Inc. Inc. cathode cathode+HF discharge Te, eV 12.4 8 Ne, cm −3 3.8 · 1010 3.8 · 1010 Table 2. The parameters of plasma created in increasing magnetic field Inc. Inc. cathode cathode+HF discharge Te, eV 4.8 4.4 Ne, cm −3 5.8 · 1010 5.9 · 1010 As seen the combination of discharges as in the case of decreasing as in the case of increasing the magnetic 137 field reduces the temperature of the electron plasma component. In this case the application of HF power into the arc discharge does not change the plasma density. The difference of the results obtained from those presented in [8, 9] can be explained by the difference in the discharge parameters. 3. SUMMARY The studies have shown the possibility of increas- ing the uniformity of the plasma density distribution together with a decreasing of the electron tempera- ture in the axial region. With the introduction of high-frequency power into the plasma created by the gas source with incandescent cathode, the plasma density is not changed, and the temperature of the electron plasma component is decreased. The plasma of discharge in the decreasing magnetic field has more uniform radial distribution of density. The results ob- tained in the case of decreasing magnetic field better satisfy the requirements to plasma sources. References 1. A.M.Yegorov, V.B.Yuferov, S.V. Shariy, V.A. Seroshtanov, O.S.Druy, V.V.Yegorenkov, E.V.Ribas, S.N.Khizhnyak, D.V.Vinnikov. Pre- liminary Study of the Demo Plasma Separator // Problems of Atomic Science and Technology. 2009, N1(59), p.122-124. 2. A.M.Yegorov, V.B.Yuferov, S.V. Shariy, O.S.Druy, V.O. Ilichova, M.O. Shvets, V.I. Tkachev, T.I.Olhovskaya, A.S. Svichkar. The experimen- tal electromagnetic plasma installation DIS-1 for imitating separation of spent nuclear fuel. Prelim- inary results // Vestnik NTU KhPI. N41, 2009, p.78-90 (in Russian). 3. V.A. Seroshtanov, S.V. Shariy, V.B.Yuferov, O.S.Druy, V.V.Yegorenkov, E.V.Ribas. The double-stage plasma source with vacuum arc dis- charge for separator // Vestnik KNU. Physical series “Nuclei, Particles, Fields”, iss.1/37, N.794, 2008. p.111-114 (in Russian). 4. V.B.Yuferov, S.V. Shariy, V.A. Seroshtanov, O.S.Druy, V.V.Yegorenkov, E.V.Rybas. Sta- tionary Gas Plasma Source of Heavy Ions With Closed Electron Drift // Vestnik KNU. “Physical series Nuclei, particles, fields”, iss.1/37, N794, 2008, p.121-124 (in Russian). 5. I.G.Brown //The Physics and Technology of Ion Sources, Second, Revised and Extended Edition, Wi- ley, Weinheim, 2004, p.396. 6. V.L. Paperny, A.A.Chernih, N.V.Astrakchantsev, N.V. Lebedev. Ion acceleration at different stages of a pulsed vacuum arc // J. Phys. D: Appl. Phys. 2009, v.42, p.155201– 155210. 7. A.V. Sagalovych, V.V. Sagalovych, S.V.Dudin, V.I. Farenik. Comparative analysis of reactive depo- sition of coatings and diffugion saturation of metals// PSE. 2014, v.12, N2, p.285-298 (in Russian). 8. V.M. Slobodyan, V.F.Virko, G.S.Kirichenko, K.P. Shamrai. Helicon discharge, generated by plane antenna along the magnetic field // Problems of Atomic Science and Technology. Ser. “Plasma Elec- tronics and New Acceleration Methods” (3), 2003, N4, p.235-240 (in Russian). 9. V.F.Virko, G.S.Kirichenko, K.P. Shamrai, Yu.V.Virko. Increasing of helicon discharge effi- ciency in the increasing magnetic field // Problems of Atomic Science and Technology. Ser. “Plasma Electronics and New Acceleration Methods” (3), 2003, N4, p.241-246 (in Russian). ÂËÈßÍÈÅ Â×-ÐÀÇÐßÄÀ ÍÀ ÏÀÐÀÌÅÒÐÛ ÏËÀÇÌÛ ÃÀÇÎÂÎÃÎ ÈÑÒÎ×ÍÈÊÀ Ñ ÍÀÊÀËÈÂÀÅÌÛÌ ÊÀÒÎÄÎÌ Ñ.Â.Øàðûé, Â.Á.Þôåðîâ, Ò.È.Òêà÷îâà, À.Ñ.Ñâè÷êàðü, Ì.Î.Øâåö, Â.È.Òêà÷îâ Ïðîâåäåíî ýêñïåðèìåíòàëüíîå èññëåäîâàíèå âëèÿíèÿ Â×-ìîùíîñòè è êîíôèãóðàöèè ìàãíèòíîãî ïîëÿ íà ïàðàìåòðû ïëàçìû ãàçîâîãî èñòî÷íèêà ñ íàêàëèâàåìûì êàòîäîì. Ïîêàçàíî, ÷òî ââåäåíèå â ðàçðÿä Â×-ìîùíîñòè ïðèâîäèò ê ñíèæåíèþ ýëåêòðîííîé òåìïåðàòóðû. Äëÿ ðàçðÿäà â óáûâàþùåì ìàãíèòíîì ïîëå ðàäèàëüíîå ðàñïðåäåëåíèå ïëîòíîñòè ïëàçìû â ïðèîñåâîé îáëàñòè áîëåå îäíîðîäíîå ïî ñðàâíåíèþ ñ íàðàñòàþùèì ìàãíèòíûì ïîëåì. ÂÏËÈ Â×-ÐÎÇÐßÄÓ ÍÀ ÏÀÐÀÌÅÒÐÈ ÏËÀÇÌÈ ÃÀÇÎÂÎÃÎ ÄÆÅÐÅËÀ Ç ÐÎÇÆÀÐÞÂÀËÜÍÈÌ ÊÀÒÎÄÎÌ Ñ.Â.Øàðèé, Â.Á.Þôåðîâ, Ò. I.Òêà÷îâà, À.Ñ.Ñâi÷êàðü, Ì.Î.Øâåöü, Â. I.Òêà÷îâ Ïðîâåäåíî åêñïåðèìåíòàëüíå äîñëiäæåííÿ âïëèâó Â×-ïîòóæíîñòi òà êîíôiãóðàöi¨ ìàãíiòíîãî ïîëÿ íà ïàðàìåòðè ïëàçìè ãàçîâîãî äæåðåëà ç ðîçæàðþâàíèì êàòîäîì. Ïîêàçàíî, ùî ââåäåííÿ â ðîçðÿä Â×- ïîòóæíîñòi ïðèçâîäèòü äî çíèæåííÿ åëåêòðîííî¨ òåìïåðàòóðè. Äëÿ ðîçðÿäó â ñïàäàþ÷îìó ìàãíiòíîìó ïîëi ðàäiàëüíå ðîçïîäiëåííÿ ùiëüíîñòi ïëàçìè â ïðèâiñåâié îáëàñòi ¹ áiëüø îäíîðiäíèì â ïîðiâíÿííi iç çðîñòàþ÷èì ìàãíiòíèì ïîëåì. 138