The influence of HF discharge on plasma parameters of gas source with incandescent cathode
An experimental study of the influence of HF power and configuration of the magnetic field on the plasma parameters of the gas source with incandescent cathode was carried out. It is shown that the application HF power into discharge results in reduction of electron temperature. For discharge in dec...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/112100 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | The influence of HF discharge on plasma parameters of gas source with incandescent cathode / S.V. Shariy, V.B. Yuferov, T.I. Tkachova, A.S. Svichkar, M.O. Shvets, V.I. Tkachov // Вопросы атомной науки и техники. — 2015. — № 3. — С. 136-138. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112100 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121002017-01-18T03:03:11Z The influence of HF discharge on plasma parameters of gas source with incandescent cathode Shariy, S.V. Yuferov, V.B. Tkachova, T.I. Svichkar, A.S. Shvets, M.O. Tkachov, V.I. Теория и техника ускорения частиц An experimental study of the influence of HF power and configuration of the magnetic field on the plasma parameters of the gas source with incandescent cathode was carried out. It is shown that the application HF power into discharge results in reduction of electron temperature. For discharge in decreasing magnetic field the radial distribution of the plasma density in the axial region is more uniform compared with increasing magnetic field. Проведено експериментальне дослідження впливу ВЧ-потужності та конфігурації магнітного поля на параметри плазми газового джерела з розжарюваним катодом. Показано, що введення в розряд ВЧ-потужності призводить до зниження електронної температури. Для розряду в спадаючому магнітному полі радіальне розподілення щільності плазми в привісевій області більш однорідним в порівнянні із зростаючим магнітним полем. Проведено экспериментальное исследование влияния ВЧ-мощности и конфигурации магнитного поля на параметры плазмы газового источника с накаливаемым катодом. Показано, что введение в разряд ВЧ-мощности приводит к снижению электронной температуры. Для разряда в убывающем магнитном поле радиальное распределение плотности плазмы в приосевой области более однородное по сравнению с нарастающим магнитным полем. 2015 Article The influence of HF discharge on plasma parameters of gas source with incandescent cathode / S.V. Shariy, V.B. Yuferov, T.I. Tkachova, A.S. Svichkar, M.O. Shvets, V.I. Tkachov // Вопросы атомной науки и техники. — 2015. — № 3. — С. 136-138. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.50.Dg http://dspace.nbuv.gov.ua/handle/123456789/112100 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Теория и техника ускорения частиц Теория и техника ускорения частиц |
spellingShingle |
Теория и техника ускорения частиц Теория и техника ускорения частиц Shariy, S.V. Yuferov, V.B. Tkachova, T.I. Svichkar, A.S. Shvets, M.O. Tkachov, V.I. The influence of HF discharge on plasma parameters of gas source with incandescent cathode Вопросы атомной науки и техники |
description |
An experimental study of the influence of HF power and configuration of the magnetic field on the plasma parameters of the gas source with incandescent cathode was carried out. It is shown that the application HF power into discharge results in reduction of electron temperature. For discharge in decreasing magnetic field the radial distribution of the plasma density in the axial region is more uniform compared with increasing magnetic field. |
format |
Article |
author |
Shariy, S.V. Yuferov, V.B. Tkachova, T.I. Svichkar, A.S. Shvets, M.O. Tkachov, V.I. |
author_facet |
Shariy, S.V. Yuferov, V.B. Tkachova, T.I. Svichkar, A.S. Shvets, M.O. Tkachov, V.I. |
author_sort |
Shariy, S.V. |
title |
The influence of HF discharge on plasma parameters of gas source with incandescent cathode |
title_short |
The influence of HF discharge on plasma parameters of gas source with incandescent cathode |
title_full |
The influence of HF discharge on plasma parameters of gas source with incandescent cathode |
title_fullStr |
The influence of HF discharge on plasma parameters of gas source with incandescent cathode |
title_full_unstemmed |
The influence of HF discharge on plasma parameters of gas source with incandescent cathode |
title_sort |
influence of hf discharge on plasma parameters of gas source with incandescent cathode |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Теория и техника ускорения частиц |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112100 |
citation_txt |
The influence of HF discharge on plasma parameters of gas source with incandescent cathode / S.V. Shariy, V.B. Yuferov, T.I. Tkachova, A.S. Svichkar, M.O. Shvets, V.I. Tkachov // Вопросы атомной науки и техники. — 2015. — № 3. — С. 136-138. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT shariysv theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT yuferovvb theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT tkachovati theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT svichkaras theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT shvetsmo theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT tkachovvi theinfluenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT shariysv influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT yuferovvb influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT tkachovati influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT svichkaras influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT shvetsmo influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode AT tkachovvi influenceofhfdischargeonplasmaparametersofgassourcewithincandescentcathode |
first_indexed |
2025-07-08T03:23:45Z |
last_indexed |
2025-07-08T03:23:45Z |
_version_ |
1837047509487190016 |
fulltext |
THE INFLUENCE OF HF DISCHARGE ON PLASMA
PARAMETERS OF GAS SOURCE WITH INCANDESCENT
CATHODE
S.V.Shariy∗, V.B.Yuferov, T. I.Tkachova, A.S.Svichkar,
M.O.Shvets, V. I.Tkachov
National Science Center ”Kharkov Institute of Physics and Technology”, 61108, Kharkov, Ukraine
(Received February 16, 2015)
An experimental study of the influence of HF power and configuration of the magnetic field on the plasma parameters
of the gas source with incandescent cathode was carried out. It is shown that the application HF power into discharge
results in reduction of electron temperature. For discharge in decreasing magnetic field the radial distribution of the
plasma density in the axial region is more uniform compared with increasing magnetic field.
PACS: 52.50.Dg
1. INTRODUCTION
The experiments about dynamics of radial and
longitudinal flows of multicomponent plasma rotat-
ing in crossed electric and magnetic fields are pre-
sented in works [1, 2]. The received results indicate
the possibility of spatial separation of extracted mass
flows. However the results must be confirmed by di-
rect mass-spectrometry of outgoing ions flows in ax-
ial direction and analysis of ions spectra injected into
standard target in lateral direction. Complication for
such analysis is comparatively small plasma density
∼ 1010 cm−3 and high density of neutral component
(3.5 ·1012...3.5 ·1013) cm−3, i.e. low ionization degree
of neutral gas. Inefficient ionization results in the sig-
nificant impact of charge exchange processes and so
difficulty of received results interpretation. Therefore
carrying out of additional work directed to increase of
ionization degree and improvement of vacuum condi-
tions during discharge was necessary. These param-
eters directly depend on work characteristics of the
source creating a plasma.
2. DESCRIPTION OF EXPERIMENT AND
RECEIVED RESULTS
The requirements early formulated in works [3, 4]
to plasma sources for carrying out of experiments on
installation DIS-1 are given below:
– gas source must create multicomponent plasma
(ionization of gas mixture with greatly different
masses);
– vacuum conditions up to (10−4...10−5)Torr
(mean free path of ions before charge exchange onto
neutrals must be higher than system size: λ = 1m
at T = 5 eV );
– low plasma temperature (low temperature of
electron component reduces the probability of the
multiple-charge ions appearance);
– stationary or quasi-stationary work mode (for
quasi-stationary mode plasma pulse duration must
be 2...5 times higher than transit time of the system
by the heaviest plasma ions, i.e. τ = L/Vp, where L
– system length, Vp – plasma rate);
– the creation of uniform plasma with density
range (1010...1013) cm−3 (higher densities are un-
desirable as they will bring to collision-dominated
regime).
Currently there are many different types of
plasma sources [5, 6, 7]. All of them have a number of
advantages and disadvantages and partly satisfy re-
quirements mentioned above, but do not satisfy them
completely.
The paper deals with an experimental study of the
gas source with incandescent cathode. For a station-
ary source with incandescent cathode time-of-flight
factor is not important. However problems of plasma
uniformity, ionization degree and created plasma den-
sity are still important.
The purpose of the article is to explore the possi-
bility of decreasing of the electron temperature and
increasing of the uniformity of the plasma density
radial distribution of the stationary gas source with
incandescent cathode.
Two variants of magnetic field configuration in
plasma source region are realized during the experi-
ments (Fig.1). The switching on the solenoids 2 leads
to the creation of the decreasing magnetic field (see
Fig.1,a) and solenoids 3 – to the increasing magnetic
field (see Fig.1,b) in the plasma source region.
Parameters of arc discharge are similar to those
∗Corresponding author E-mail address: s.v.shariy@gmail.com
136 ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, N3(97).
Series: Nuclear Physics Investigations (64), p.136-138.
described in [1]:Ua−c = 150V , Idisch = (3...5)A.
Initially, the cryopump housing – annular cylinder
with L = 35 cm, D = 34 cm, located in discharge
region, was used as HF antenna. HF field was
created by generator with frequency (3...8)MHz,
power 1.5 kW . The parameters of created plasma
were measured by using a single electric Lang-
muir probe with d = 0.5mm, h = 5mm. The
probe construction allowed to carry out the mea-
surements both in radial and longitudinal directions.
Magnetic field – (0...1.5) kOe, discharge voltage –
(0...300)V , vacuum – (10−3...10−4)Torr. The mag-
nitudes of magnetic fields and neutral gas density
considerably differ from mentioned in works [8,9].
Fig.1 Schematic view of the experimental installation
and two variants of the magnetic field intensity distribu-
tion: 1 – plasma source; 2, 3 – magnetic system; 4 – HF
antenna; 5 – single Longmuir probe
The results of probe measurements of plasma
parameters radial distribution with a combina-
tion of arc and HF discharges are presented on
Figs.2 and 3. The probe was located at a dis-
tance 27 cm from outlet section of plasma source.
0 2 4 6 8 10 12
5,5
6,0
6,5
7,0
7,5
8,0
8,5
Te, eV
Ne, 1010 cm-3
r, cm
Te
0
1
2
3
4
5
6
7
8
Ne
Fig.2 The radial distribution of density and temperature
of plasma created in decreasing magnetic field
H = 390Oe, P = 4 · 10−3 Torr
0 2 4 6 8 10
5
6
7
8
9
10
11
12
13
14
Te, eV
Ne, 1010 cm-3
r, cm
Te
0
1
2
3
4
5
6
7
Ne
Fig.3 The radial distribution of density and temper-
ature of plasma created in increasing magnetic field
H = 390Oe, P = 4 · 10−3 Torr
Comparative analysis of probe measurements showed
that in the case of decreasing magnetic field the
plasma density distribution in the axial field is more
uniform and the average value of plasma density is
higher. And, despite the fact that the electron tem-
perature on the axis is higher than in the increasing
field, in the rest region temperature is lower. Low
electron temperature reduces the probability of the
multiple-charge ions appearance.
Tables 1 and 2 show the probe measurement
results of the plasma of arc discharge and arc
discharge with the introduction of HF power for
two configurations of the magnetic field. The
measurements of plasma density and tempera-
ture were carried out at the axis (r = 0) and
at Hmax = 390Oe and P = 2 · 10−3 Torr.
Table 1. The parameters of plasma created in
decreasing magnetic field
Inc. Inc.
cathode cathode+HF
discharge
Te, eV 12.4 8
Ne, cm
−3 3.8 · 1010 3.8 · 1010
Table 2. The parameters of plasma created in
increasing magnetic field
Inc. Inc.
cathode cathode+HF
discharge
Te, eV 4.8 4.4
Ne, cm
−3 5.8 · 1010 5.9 · 1010
As seen the combination of discharges as in the case
of decreasing as in the case of increasing the magnetic
137
field reduces the temperature of the electron plasma
component. In this case the application of HF power
into the arc discharge does not change the plasma
density. The difference of the results obtained from
those presented in [8, 9] can be explained by the
difference in the discharge parameters.
3. SUMMARY
The studies have shown the possibility of increas-
ing the uniformity of the plasma density distribution
together with a decreasing of the electron tempera-
ture in the axial region. With the introduction of
high-frequency power into the plasma created by the
gas source with incandescent cathode, the plasma
density is not changed, and the temperature of the
electron plasma component is decreased. The plasma
of discharge in the decreasing magnetic field has more
uniform radial distribution of density. The results ob-
tained in the case of decreasing magnetic field better
satisfy the requirements to plasma sources.
References
1. A.M.Yegorov, V.B.Yuferov, S.V. Shariy,
V.A. Seroshtanov, O.S.Druy, V.V.Yegorenkov,
E.V.Ribas, S.N.Khizhnyak, D.V.Vinnikov. Pre-
liminary Study of the Demo Plasma Separator //
Problems of Atomic Science and Technology. 2009,
N1(59), p.122-124.
2. A.M.Yegorov, V.B.Yuferov, S.V. Shariy, O.S.Druy,
V.O. Ilichova, M.O. Shvets, V.I. Tkachev,
T.I.Olhovskaya, A.S. Svichkar. The experimen-
tal electromagnetic plasma installation DIS-1 for
imitating separation of spent nuclear fuel. Prelim-
inary results // Vestnik NTU KhPI. N41, 2009,
p.78-90 (in Russian).
3. V.A. Seroshtanov, S.V. Shariy, V.B.Yuferov,
O.S.Druy, V.V.Yegorenkov, E.V.Ribas. The
double-stage plasma source with vacuum arc dis-
charge for separator // Vestnik KNU. Physical series
“Nuclei, Particles, Fields”, iss.1/37, N.794, 2008.
p.111-114 (in Russian).
4. V.B.Yuferov, S.V. Shariy, V.A. Seroshtanov,
O.S.Druy, V.V.Yegorenkov, E.V.Rybas. Sta-
tionary Gas Plasma Source of Heavy Ions With
Closed Electron Drift // Vestnik KNU. “Physical
series Nuclei, particles, fields”, iss.1/37, N794, 2008,
p.121-124 (in Russian).
5. I.G.Brown //The Physics and Technology of Ion
Sources, Second, Revised and Extended Edition, Wi-
ley, Weinheim, 2004, p.396.
6. V.L. Paperny, A.A.Chernih, N.V.Astrakchantsev,
N.V. Lebedev. Ion acceleration at different stages of a
pulsed vacuum arc // J. Phys. D: Appl. Phys. 2009,
v.42, p.155201– 155210.
7. A.V. Sagalovych, V.V. Sagalovych, S.V.Dudin,
V.I. Farenik. Comparative analysis of reactive depo-
sition of coatings and diffugion saturation of metals//
PSE. 2014, v.12, N2, p.285-298 (in Russian).
8. V.M. Slobodyan, V.F.Virko, G.S.Kirichenko,
K.P. Shamrai. Helicon discharge, generated by plane
antenna along the magnetic field // Problems of
Atomic Science and Technology. Ser. “Plasma Elec-
tronics and New Acceleration Methods” (3), 2003,
N4, p.235-240 (in Russian).
9. V.F.Virko, G.S.Kirichenko, K.P. Shamrai,
Yu.V.Virko. Increasing of helicon discharge effi-
ciency in the increasing magnetic field // Problems
of Atomic Science and Technology. Ser. “Plasma
Electronics and New Acceleration Methods” (3),
2003, N4, p.241-246 (in Russian).
ÂËÈßÍÈÅ Â×-ÐÀÇÐßÄÀ ÍÀ ÏÀÐÀÌÅÒÐÛ ÏËÀÇÌÛ ÃÀÇÎÂÎÃÎ ÈÑÒÎ×ÍÈÊÀ
Ñ ÍÀÊÀËÈÂÀÅÌÛÌ ÊÀÒÎÄÎÌ
Ñ.Â.Øàðûé, Â.Á.Þôåðîâ, Ò.È.Òêà÷îâà, À.Ñ.Ñâè÷êàðü, Ì.Î.Øâåö, Â.È.Òêà÷îâ
Ïðîâåäåíî ýêñïåðèìåíòàëüíîå èññëåäîâàíèå âëèÿíèÿ Â×-ìîùíîñòè è êîíôèãóðàöèè ìàãíèòíîãî ïîëÿ
íà ïàðàìåòðû ïëàçìû ãàçîâîãî èñòî÷íèêà ñ íàêàëèâàåìûì êàòîäîì. Ïîêàçàíî, ÷òî ââåäåíèå â ðàçðÿä
Â×-ìîùíîñòè ïðèâîäèò ê ñíèæåíèþ ýëåêòðîííîé òåìïåðàòóðû. Äëÿ ðàçðÿäà â óáûâàþùåì ìàãíèòíîì
ïîëå ðàäèàëüíîå ðàñïðåäåëåíèå ïëîòíîñòè ïëàçìû â ïðèîñåâîé îáëàñòè áîëåå îäíîðîäíîå ïî ñðàâíåíèþ
ñ íàðàñòàþùèì ìàãíèòíûì ïîëåì.
ÂÏËÈ Â×-ÐÎÇÐßÄÓ ÍÀ ÏÀÐÀÌÅÒÐÈ ÏËÀÇÌÈ ÃÀÇÎÂÎÃÎ ÄÆÅÐÅËÀ
Ç ÐÎÇÆÀÐÞÂÀËÜÍÈÌ ÊÀÒÎÄÎÌ
Ñ.Â.Øàðèé, Â.Á.Þôåðîâ, Ò. I.Òêà÷îâà, À.Ñ.Ñâi÷êàðü, Ì.Î.Øâåöü, Â. I.Òêà÷îâ
Ïðîâåäåíî åêñïåðèìåíòàëüíå äîñëiäæåííÿ âïëèâó Â×-ïîòóæíîñòi òà êîíôiãóðàöi¨ ìàãíiòíîãî ïîëÿ íà
ïàðàìåòðè ïëàçìè ãàçîâîãî äæåðåëà ç ðîçæàðþâàíèì êàòîäîì. Ïîêàçàíî, ùî ââåäåííÿ â ðîçðÿä Â×-
ïîòóæíîñòi ïðèçâîäèòü äî çíèæåííÿ åëåêòðîííî¨ òåìïåðàòóðè. Äëÿ ðîçðÿäó â ñïàäàþ÷îìó ìàãíiòíîìó
ïîëi ðàäiàëüíå ðîçïîäiëåííÿ ùiëüíîñòi ïëàçìè â ïðèâiñåâié îáëàñòi ¹ áiëüø îäíîðiäíèì â ïîðiâíÿííi iç
çðîñòàþ÷èì ìàãíiòíèì ïîëåì.
138
|