Analysis of 400 kV pulse generator operation

The injector provides linac by 400 keV protons with energy stability ±0.1%, pulsed ion current - up to 100 mA, 50 Hz pulse repetition rate (PRR) with 200 μs duration. The results of the high-voltage pulse generator operation analysis which have been done with the aim of pulse repetition rate increas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Nikulin, E.S., Belov, A.S., Frolov, O.T., Nechaeva, L.P., Turbabin, A.V., Zubets, V.N.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112115
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Analysis of 400 kV pulse generator operation / E.S. Nikulin, A.S. Belov, O.T. Frolov, L.P. Nechaeva, A.V. Turbabin, V.N. Zubets // Вопросы атомной науки и техники. — 2015. — № 3. — С. 123-126. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112115
record_format dspace
spelling irk-123456789-1121152017-01-18T03:03:42Z Analysis of 400 kV pulse generator operation Nikulin, E.S. Belov, A.S. Frolov, O.T. Nechaeva, L.P. Turbabin, A.V. Zubets, V.N. Теория и техника ускорения частиц The injector provides linac by 400 keV protons with energy stability ±0.1%, pulsed ion current - up to 100 mA, 50 Hz pulse repetition rate (PRR) with 200 μs duration. The results of the high-voltage pulse generator operation analysis which have been done with the aim of pulse repetition rate increasing up to 100 Hz are given. Special attention is paid to operation of the multi-cascade capacitance-diode discriminator with inductances. Інжектор постачає лінійний прискорювач протонами з енергією 400 кеВ, стабільністю енергії ±0.1%, тривалістю імпульсів 200 мкс і частотою повторення 50 Гц. Приводяться результати аналізу роботи генератора високовольтних імпульсів, проведеного з метою підвищення частоти проходження імпульсів до 100 Гц. Особлива увага приділена роботі багатокаскадного ємкістно-діодного дискримінатора з індуктивностями. Инжектор снабжает линейный ускоритель протонами с энергией 400 кэВ, стабильностью энергии ±0.1%, длительностью импульсов 200 мкс и частотой повторения 50 Гц. Приводятся результаты анализа работы генератора высоковольтных импульсов, проведённого с целью повышения частоты следования импульсов до 100 Гц. Особое внимание уделено работе многокаскадного ёмкостно-диодного дискриминатора с индуктивностями. 2015 Article Analysis of 400 kV pulse generator operation / E.S. Nikulin, A.S. Belov, O.T. Frolov, L.P. Nechaeva, A.V. Turbabin, V.N. Zubets // Вопросы атомной науки и техники. — 2015. — № 3. — С. 123-126. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 29.17.+w http://dspace.nbuv.gov.ua/handle/123456789/112115 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Теория и техника ускорения частиц
Теория и техника ускорения частиц
spellingShingle Теория и техника ускорения частиц
Теория и техника ускорения частиц
Nikulin, E.S.
Belov, A.S.
Frolov, O.T.
Nechaeva, L.P.
Turbabin, A.V.
Zubets, V.N.
Analysis of 400 kV pulse generator operation
Вопросы атомной науки и техники
description The injector provides linac by 400 keV protons with energy stability ±0.1%, pulsed ion current - up to 100 mA, 50 Hz pulse repetition rate (PRR) with 200 μs duration. The results of the high-voltage pulse generator operation analysis which have been done with the aim of pulse repetition rate increasing up to 100 Hz are given. Special attention is paid to operation of the multi-cascade capacitance-diode discriminator with inductances.
format Article
author Nikulin, E.S.
Belov, A.S.
Frolov, O.T.
Nechaeva, L.P.
Turbabin, A.V.
Zubets, V.N.
author_facet Nikulin, E.S.
Belov, A.S.
Frolov, O.T.
Nechaeva, L.P.
Turbabin, A.V.
Zubets, V.N.
author_sort Nikulin, E.S.
title Analysis of 400 kV pulse generator operation
title_short Analysis of 400 kV pulse generator operation
title_full Analysis of 400 kV pulse generator operation
title_fullStr Analysis of 400 kV pulse generator operation
title_full_unstemmed Analysis of 400 kV pulse generator operation
title_sort analysis of 400 kv pulse generator operation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Теория и техника ускорения частиц
url http://dspace.nbuv.gov.ua/handle/123456789/112115
citation_txt Analysis of 400 kV pulse generator operation / E.S. Nikulin, A.S. Belov, O.T. Frolov, L.P. Nechaeva, A.V. Turbabin, V.N. Zubets // Вопросы атомной науки и техники. — 2015. — № 3. — С. 123-126. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT nikulines analysisof400kvpulsegeneratoroperation
AT belovas analysisof400kvpulsegeneratoroperation
AT frolovot analysisof400kvpulsegeneratoroperation
AT nechaevalp analysisof400kvpulsegeneratoroperation
AT turbabinav analysisof400kvpulsegeneratoroperation
AT zubetsvn analysisof400kvpulsegeneratoroperation
first_indexed 2025-07-08T03:25:06Z
last_indexed 2025-07-08T03:25:06Z
_version_ 1837047594199547904
fulltext THEORY AND TECHNICS OF PARTICLE ACCELERATION ANALYSIS OF 400 kV PULSE GENERATOR OPERATION E.S.Nikulin∗, A.S.Belov, O.T.Frolov, L.P.Nechaeva, A.V.Turbabin, V.N.Zubets Institute for Nuclear Research of RAS, 117312, Moscow, Russia (Received February 16, 2015) The injector provides linac by 400 keV protons with energy stability ±0.1%, pulsed ion current – up to 100 mA, 50 Hz pulse repetition rate (PRR) with 200 µs duration. The results of the high-voltage pulse generator operation analysis which have been done with the aim of pulse repetition rate increasing up to 100 Hz are given. Special attention is paid to operation of the multi-cascade capacitance-diode discriminator with inductances. PACS: 29.17.+w INTRODUCTION The INR linac proton injector provides at the ac- celerating tube exit a hydrogen ion beam with the following parameters: ion energy 400 keV ; energy (pulse amplitude of accelerating voltage) stability ±0.1%; pulse top duration 200 µs, pulse repetition rate 50 Hz; pulsed ion current 100 mA; normalized transverse emittance 0.15 π cm · mrad for 90% of beam current. PRR of the injector has been doubling with goal of linac average beam current increasing [1]. The abbreviations made in the text: HVPG - high-voltage pulse generator; PRR - pulse repetition rate; HV - high voltage; MD - multi-cascade capacitance-diode discriminator with inductances; PTSCS - pulse top slope compensation system; PFN - pulse forming network; PT-400 - 400 kV pulse transformer. Currently, a project of increasing of proton linac average beam current is realized now by PRR doubling [2]. This requires a correspond- ing increasing of the proton injector PRR. How- ever, tests conducted earlier [3] have shown that pulse shape of the accelerating voltage produced by the high-voltage pulse generator (HVPG) at 100 Hz PRR has been distorted (Fig.1). Fig.1. Oscillogram of the HVPG pulse at 100 Hz PRR (the pulse with smaller amplitude is the top of the HV pulse on a larger scale) It is seen that the high voltage (HV) value change in last forty microseconds of pulse duration is approxi- mately 3% of the total pulse amplitude. Fig.2. The proton injector HVPG electrical circuit ∗Corresponding author E-mail address: nikulin@inr.ru ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, N3(97). Series: Nuclear Physics Investigations (64), p.123-126. 123 This is unacceptable because the specified voltage change during pulse for the proton injector is ±0.1%. Besides achieving a desired shape of HV pulse at 100 Hz PRR we have revealed two additional prob- lems to be solved: first - instability of pulse amplitude and shape, associated with presence of a second 50 Hz series of pulses (”doubling of pulses”) and second - overheating of the HVPG individual components and elements. This article contains, basically, the infor- mation relating to achievement of desired HV pulse shape. The HVPG circuit diagram is shown in Fig.2. The HVPG consists of: the PT-400; the MD, which stabilizes amplitude of HV pulses; the submod- ulator providing pulses with amplitude up to 20 kV to the PT-400 primary winding and made on the PFN basis. The HVPG structure also includes three- phase 0. . . 380 V , 100 kV A auto transformer; step-up 380 V/22 kV , 100 kV A transformer; the stabiliza- tion system of accelerating voltage which is intended to compensate 50 Hz power supply slow changes and the PTSCS system. HVPG voltage pulse is measured using the precision capacitive voltage divider embed- ded in the PT-400. Switching of sub-modulator volt- age pulses is carried out with HV thyratrons. HVPG voltage pulse is measured using the preci- sion capacitive voltage divider embedded in the PT- 400. Switching of the sub-modulator voltage pulses is carried out with high-voltage thyratrons. The HVPG is developed in the 1970’s at the D.V.Efremov Scientific Research Institute of Electro- physical Apparatus (NIIEFA, St. Petersburg) [4]. The HVPG operates as follows: C4 storage capac- itor of 11 µF is charged up to 12.5 kV by full-wave doubler. C11 leading edge shaper storage capacitor of 2.5 µF is charged up to 6 kV by six phase rectifier. The PFN capacitors are charged in a quasires- onant way from C4 storage capacitor through 8 H choke to a voltage of about 1.6 UC4 . When T2 thyratron is opened then C11 capacitor is discharged through D19, D20 diodes and L9, R9 buffer circuit to the PT-400 primary winding. As a result, the forced charge of constructive capacitance connected with the PT-400 secondary winding is oc- curred and the pulse leading edge of 40 µs base du- ration and of 400 kV amplitude is formed. The trailing edge of pulse is formed by T1 thyra- tron triggering. The charge which is stored in the constructive capacitance of the injector equipment is recurred in C11 capacity. HV pulse voltage is applied to the accelerating tube which has the capacitive-resistive (water) volt- age divider (R11 and C13) as well as to the MD via R12 resistor and C14 capacitor. 200 µs HV pulse top is formed during the PFN discharge to the PT-400 primary winding through T3 thyratron, L10 choke and D21 diode assembly. Pa- rameters of C5 . . . C10 capacitors (0.15 µF ), L2 . . . L7 inductivities (2.5 mH) and amount of the PFN cells (6) are selected so as to provide the required 200 µs pulse top duration. The MD stabilizes HVPG pulse top as follows: when HV pulse is supplied to the MD and provid- ing that the PT-400 pulse voltage amplitude exceeds C49 . . . C80 capacitors sum voltage, D31 . . . D62 diodes are opened and C49 . . . C80 capacitors are connected in series, giving the stable (as a first approximation) 400 kV total voltage. During the HV pulse top there is a current in the MD. It is limited by inner HVPG impedance and proportional to difference between the PT-400 secondary winding open-circuit voltage and the MD voltage. But: current passage charges the capacitors. The MD voltage increasing is determined during the pulse flattop by the relation: UMD ∼ 32∑ j=1 (IjT )/CMD, (1) where j — the MD cascade number (amount of cas- cades equals to 32), Ij – capacitor current in j-th cas- cade, T — HV pulse flattop duration (T = 200 µs), CMD – capacity of cascade capacitor (CMD = 0.5 µF ). The MD voltage rise that has been occurred dur- ing pulse flattop is compensated by the PTSCS which represents decreasing sawtooth voltage generator [5]. The amplitude of sawtooth voltage is chosen for the most complete MD voltage rise compensation. L12 . . . L43 series-connected chokes are connected in parallel to C49 . . . C80 capacitors during the pulse top. Choke currents increase under influence of the UCi pulse voltage, which value is determined by rela- tion: ICi = (UCi∆T )/LMD, (2) where: ICi – current change in the ith MD choke during the pulse, ∆T – pulse duration, LMD - choke inductivity. Between pulses MD state is changed: - D31 . . . D62 diodes are closed, D63 . . . D94 diodes are opened and serial connection of C49 . . . C80 ca- pacitors during pulse top is switched into PFN type circuit; - an energy stored during pulse top in the MD chokes and capacitors is recurred to C4 storage ca- pacitor. Herewith some energy is lost, mainly in R7 resistor. Reactive energy stored during the pulse top in C49 . . . C80 capacitors and L12 . . . L43 chokes at 10. . . 100 Hz PRR does not have time to recur be- tween pulses to C4 storage capacitance due to the MD discharge time constant which is exceeding 100 ms. So at the beginning of a new pulse there is a current in the most part of the MD chokes. It is associated with energy recuperation from previous pulses. As a result, at higher PRR the chokes average current is increased. Advanced analysis of the HVPG circuit has been performed with the software package Micro-Cap 9.0 [6]. It makes possible to receive information about processes in the HVPG which is not available by means of direct measurements when using the real HV equipment. 124 In particular it has been found that voltage of the MD capacitors is redistributed during a pulse: voltage of C65 . . . C80 capacitors (”upper” MD ca- pacitors) decreases relative to the middle MD capac- itor voltage, while voltage of C49 . . . C64 capacitors (”lower” MD capacitors) increases. C49 capacitor voltage reaches 18 kV amplitude at 100 Hz PRR, while C80 capacitor voltage is about 7 kV . I.e., the non-uniformity of the capacitors voltage distribution reaches a significant value. The MD element’s volt- ages/currents non-uniform distribution leads to a re- distribution of the MD total current between capaci- tor and choke in each cascade so that the MD capac- itors current decreases as we move from the ”upper” cascades to the ”lower” ones during the pulse flattop. This process can lead to failure of the MD normal op- eration if ”lower” cascades capacitor current has been vanished before the end of 200 µs pulse top duration. After tuning of the Micro-Cap model at the 4- core CPU, 3.8 GHz, 8 GB RAM personal computer with 64-bit Win7 OS the standard account times are as follows: the conventional operating mode release schedule takes up to 30 minutes and the process of obtaining of results (for example, a HV pulse wave- form) when a single key circuit element parameter is changed – up to 3 minutes. A cascade capacitor voltage has been decreased to the C4 capacitor voltage value if transition pro- cesses are ending before next HV pulse begin- ning. The example of simulation at 100 Hz PRR with 7 H choke inductivity is shown in Fig.3. Fig.3. Simulation results for HV pulse top (3a) and for ”upper“ and ”lower“ MD capacitors current shape (3b upper and lower curve, respectively) From the HVPG simulation results for 100 Hz PRR and 7 H choke inductivity it follows that at the end of pulse flattop there is a ”decline” with a volt- age difference of about 10 kV . This decline begins at ≈ 160-th microsecond of the 200 µs pulse flattop duration (Fig.3, a). At this moment the ”lower” ca- pacitor current is vanished to zero. It means closure of the corresponding ”direct” diode and failure of the MD normal operation. That leads to appearance of HVPG pulse flattop ”decline”. But we do not ob- serve the HVPG pulse flat-top ”decline” (Fig.4, a) as well as vanishing of the MD ”lower” capacitor cur- rent (Fig.4, b) when increasing choke inductivity up to 20 H. In Fig.4 – similar curves for 20 H choke induc- tivity (PTSCS system is ”OFF” in those simulation variants). We do not observe the HVPG pulse top ”decline” (Fig.4, a) as well as vanishing of the MD ”lower” ca- pacitor current (Fig.4, b) when increasing choke in- ductivity up to 20 H. The MD chokes were replaced by the new ones (Fig.5) which have parameters as follows: L = 20 H; operating voltage — 25 kV ; magnetic core – type of PL40x45-120; core material – cold-rolled 3408 electro-technical steel of 0.3 mm thick; coil body ma- terial – caprolon (PA6), the number of turns – 6000 for two coils (one choke); copper wire – ⊘ 0.67 mm. Fig.4. Simulation results with choke inductivity of 20 H Fig.5. General view of two installed MD cascades with the new chokes The HVPG tests have been carried out at 100 Hz PRR after installing the new MD chokes. The HV pulse oscillograms are shown in Fig.6. From the tests conducted it follows that the changes have improved the stability during HV pulse flat- top at 100 Hz PRR to a desired value of ±0.1%. 125 Fig.6. The HVPG pulse oscillograms at 100 Hz PRR and the MD 20 H chokes (pulse with smaller amplitude - HV pulse waveform on a larger scale, the PTSCS system is ”ON“) CONCLUSIONS The model of the high-voltage pulse generator is de- veloped. We have achieved satisfying accuracy and reliability of simulation results. Simulation allows us to get information about processes in the HVPG which is difficult to obtain by direct measurements. The analysis has identified a number of necessary HVPG constructive changes. Its realization has al- lowed us to get 100 Hz PRR operation mode with 200 µs pulse duration and energy instability less than ±0.1%. ACKNOWLEDGEMENTS Work is supported by PhEI, Obninsk, contract # 7- 2011/5722 under the auspices of Russian Federation Ministry of Education and Science. We would like to thank A.V. Feshenko and V.L. Serov for support and help. The crucial assistance of A.V. Turbabin and Yu.Ya. Gavrilyuk in construction of the equipment is gratefully acknowledged. References 1. A.N.Drugakov, A.V. Feschenko, A. I.Kvasha, A.N.Naboka, V. L. Serov. Investigation of INR DTL RF system operation of 100 Hz repeti- tion rate // Proc. of RuPAC-2012, St. Peterburg, Russia, September 24-28, p.296. 2. A.V. Feschenko, A. I.Kvasha, V. L. Serov. Some peculiarities of the INR DTL RF system oper- ation at doubling of average RF power level // PAST. Series ”Nuclear Physics Investigations”. 2014, N3(91), p.32. 3. V. I. Derbilov, S.K. Esin, E. S.Nikulin, O.T. Frolov, V. P.Yakushev. Average pro- ton beam current increasing at the MMFL injector // PAST. Series ”Nuclear Physics Investigations”. 2004, N1(42), p.13. 4. Yu.V.Belov et al. // Proc. of VIII All-Union Conference on charged particle accelerators, Dubna, 1983, v.2, p.159 (in Russian). 5. V.N. Zubetz, V. I. Derbilov, S.K. Esin, E. S.Nikulin, O.T. Frolov, V. P.Yakushev. The stabilization system of 400...750 kV pulsed accelerating voltage // PAST. Series ”Nuclear Physics Investigations”. 1999, N3(34), p.52. 6. Micro-Cap 9.0, Electronic Circuit Analysis Pro- gram. Spectrum Software. 1021, South Wolfe Road, Sunnyvale, CA, 94086, www.spectrum- soft.com. ÀÍÀËÈÇ ÐÀÁÎÒÛ ÃÅÍÅÐÀÒÎÐÀ Ñ ÀÌÏËÈÒÓÄÎÉ ÈÌÏÓËÜÑΠ400 ê Å.Ñ.Íèêóëèí, À.Ñ.Áåëîâ, Î.Ò.Ôðîëîâ, Ë.Ï.Íå÷àåâà, À.Â.Òóðáàáèí, Â.Í.Çóáåö Èíæåêòîð ñíàáæàåò ëèíåéíûé óñêîðèòåëü ïðîòîíàìè ñ ýíåðãèåé 400 êýÂ, ñòàáèëüíîñòüþ ýíåðãèè ±0, 1%, äëèòåëüíîñòüþ èìïóëüñîâ 200 ìêñ è ÷àñòîòîé ïîâòîðåíèÿ 50 Ãö. Ïðèâîäÿòñÿ ðåçóëüòàòû àíà- ëèçà ðàáîòû ãåíåðàòîðà âûñîêîâîëüòíûõ èìïóëüñîâ, ïðîâåä¼ííîãî ñ öåëüþ ïîâûøåíèÿ ÷àñòîòû ñëå- äîâàíèÿ èìïóëüñîâ äî 100 Ãö. Îñîáîå âíèìàíèå óäåëåíî ðàáîòå ìíîãîêàñêàäíîãî ¼ìêîñòíî-äèîäíîãî äèñêðèìèíàòîðà ñ èíäóêòèâíîñòÿìè. ÀÍÀËIÇ ÐÎÁÎÒÈ ÃÅÍÅÐÀÒÎÐÀ Ç ÀÌÏËIÒÓÄÎÞ IÌÏÓËÜÑI 400 ê �.Ñ.Íiêóëií, À.Ñ.Áåëîâ, Î.Ò.Ôðîëîâ, Ë.Ï.Íå÷à¹âà, À.Â.Òóðáàáií, Â.Ì.Çóáåöü Iíæåêòîð ïîñòà÷๠ëiíiéíèé ïðèñêîðþâà÷ ïðîòîíàìè ç åíåðãi¹þ 400 êåÂ, ñòàáiëüíiñòþ åíåðãi¨ ±0, 1%, òðèâàëiñòþ iìïóëüñiâ 200 ìêñ i ÷àñòîòîþ ïîâòîðåííÿ 50 Ãö. Ïðèâîäÿòüñÿ ðåçóëüòàòè àíàëiçó ðîáîòè ãåíåðàòîðà âèñîêîâîëüòíèõ iìïóëüñiâ, ïðîâåäåíîãî ç ìåòîþ ïiäâèùåííÿ ÷àñòîòè ïðîõîäæåííÿ iìïóëü- ñiâ äî 100 Ãö. Îñîáëèâà óâàãà ïðèäiëåíà ðîáîòi áàãàòîêàñêàäíîãî ¹ìêiñòíî-äiîäíîãî äèñêðèìiíàòîðà ç iíäóêòèâíîñòÿìè. 126