Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations
In this paper, we report the prediction of thermoluminescence responses of Neodymium-doped SiO₂ optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6MeV - electron irradiations without requirement for experimental measurements. A technique has been developed to calculate prediction of 6M...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/112122 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations / I. Hossain, M.A. Saeed, H.Wagiran, N. Hida, N.H. Yaakob, A A.Moburak // Вопросы атомной науки и техники. — 2015. — № 3. — С. 65-68. — Бібліогр.: 10 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112122 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121222017-01-18T03:03:42Z Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations Hossain, I. Saeed, M.A. Wagiran, H. Hida, N. Yaakob, N.H. Moburak, A.A. Ядерно-физические методы и обработка данных In this paper, we report the prediction of thermoluminescence responses of Neodymium-doped SiO₂ optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6MeV - electron irradiations without requirement for experimental measurements. A technique has been developed to calculate prediction of 6MeV - electron response of Neodymium-doped SiO₂ optical fibre by observing the measured TL response of 6MV - photon and the ratio of known measured photon/electron yield ratio distribution for Ge-doped, Al-doped optical fibre and standard TLD 100 dosimeter. The samples were kept in gelatin capsule an irradiated with 6MV - photon at the dose range from 0.5 Gy to 4.0 Gy. Siemens model Primus 3368 linear accelerator located at Hospital Sultan Ismail, Johor Bahru has been used to deliver the photon beam to the samples. We found the average response ratio of 6MV - photon and 6MeV - electron in Ge-doped, Al-doped optical fibre and standard TLD-100 dosimeter are 0.83(3). Observing the measured value of 6MV - photon irradiation this average ratio is useful to find the prediction of thermoluminescence responses by 6MeV - electron irradiation of Neodymium-doped SiO₂ optical fibre by the requirement for experimental measurements with various dose ranges from 0.5 Gy to 4.0 Gy by 6MV - photon irradiations. Ми доповідаемо передбачення термолюмінесцентного відгука SiO₂ оптичного волокна з добавками неодиму при різних дозах опромінення 6 МеВ-електронами в інтервалі доз від 0.5 Gy до 0.4 Gy без необхідності експериментальної перевірки. Була развинута техніка розрахунку передбачення термолюмінесцентного вігука SiO₂ оптичного волокна на 6 МеВ-електрони шляхом спостереження термолюмінесцентного відгука на 6 МВ-фотони і відомогого виміряного відношення photon/electron виходів оптичного волокна з добавками Ge і Al та стандартного TLD 100 дозимента. Зразки були розміщені в желатинових капсулах і опромінені 6 МВ-фотонами в діапазоні доз від 0.5 Gy до 0.4 Gy. Лінійний прискорювач моделі Siemens Primus 3368, розміщений в Hospital Sultan Ismail, Johor Bahru був викорисаний для опрмінення зразків фотонами. Ми знайшли середнє відношення відгуків для 6 МВ-фотонів и 6 МеВ-електронів в оптичному волокні з добавками Ge і Al та стандартним дозиметром TLD 100 , яке дорівнює 0.83(3). Виміряна величина цього усередненого відношения при опроміненні 6 МВ-фотонами є корисною для знаходждення очікуваного термолюмінесцентного відгука SiO₂ оптичного волокна з добавками неодиму, які потрібні для экспериментальних вимірювань доз в інтервалі від 0.5 Gy до 0.4 Gy при опроміненні 6 МеВ-електронами. Мы докладываем предсказания термолюминесцентного отклика SiO₂ оптического волокна с добавлением неодима при разных дозах облучения 6 МэВ-электронами в интервале доз от 0.5 Gy до 0.4 Gy без необходимости экспериментальной проверки. Была развита техника расчета предсказания термолюминесцентного отклика SiO₂ оптического волокна на 6 МэВ-электроны путем наблюдения термолюминесцентного отклика на 6 МВ -фотоны и известного измеренного отношения photon/electron выходов оптического волокна с добавлением Ge и Al и стандартного TLD 100 дозимента. Образцы были заключены в желатиновые капсулы и облучены 6 МВ-фотонами в диапазоне доз от 0.5 Gy до 0.4 Gy. Линейный ускоритель модели Siemens Primus 3368, расположенный в Hospital Sultan Ismail, Johor Bahru был использован для облучения образцов фотонами. Мы нашли среднее отношение откликов для 6 МВ-фотонов и 6 МэВ-электронов в оптическом волокне с добавлением Ge и Al и стандартным дозиметром TLD 100 равным 0.83(3). Измеренная величина этого усредненного отношения при облучении 6 МВ-фотонами является полезной для нахождения ожидаемого термолюминесцентного отклика SiO₂ оптического волокна с добавлением неодима требуемых для экспериментальных измерений доз в интервале от 0.5 Gy до 0.4 Gy при облучении 6 МэВ-электронами. 2015 Article Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations / I. Hossain, M.A. Saeed, H.Wagiran, N. Hida, N.H. Yaakob, A A.Moburak // Вопросы атомной науки и техники. — 2015. — № 3. — С. 65-68. — Бібліогр.: 10 назв. — англ. 1562-6016 PACS: 03.65.Pm, 03.65.Ge, 61.80.Mk http://dspace.nbuv.gov.ua/handle/123456789/112122 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Ядерно-физические методы и обработка данных Ядерно-физические методы и обработка данных |
spellingShingle |
Ядерно-физические методы и обработка данных Ядерно-физические методы и обработка данных Hossain, I. Saeed, M.A. Wagiran, H. Hida, N. Yaakob, N.H. Moburak, A.A. Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations Вопросы атомной науки и техники |
description |
In this paper, we report the prediction of thermoluminescence responses of Neodymium-doped SiO₂ optical fibre with various dose ranges from 0.5 Gy to 4.0 Gy by 6MeV - electron irradiations without requirement for experimental measurements. A technique has been developed to calculate prediction of 6MeV - electron response of Neodymium-doped SiO₂ optical fibre by observing the measured TL response of 6MV - photon and the ratio of known measured photon/electron yield ratio distribution for Ge-doped, Al-doped optical fibre and standard TLD 100 dosimeter. The samples were kept in gelatin capsule an irradiated with 6MV - photon at the dose range from 0.5 Gy to 4.0 Gy. Siemens model Primus 3368 linear accelerator located at Hospital Sultan Ismail, Johor Bahru has been used to deliver the photon beam to the samples. We found the average response ratio of 6MV - photon and 6MeV - electron in Ge-doped, Al-doped optical fibre and standard TLD-100 dosimeter are 0.83(3). Observing the measured value of 6MV - photon irradiation this average ratio is useful to find the prediction of thermoluminescence responses by 6MeV - electron irradiation of Neodymium-doped SiO₂ optical fibre by the requirement for experimental measurements with various dose ranges from 0.5 Gy to 4.0 Gy by 6MV - photon irradiations. |
format |
Article |
author |
Hossain, I. Saeed, M.A. Wagiran, H. Hida, N. Yaakob, N.H. Moburak, A.A. |
author_facet |
Hossain, I. Saeed, M.A. Wagiran, H. Hida, N. Yaakob, N.H. Moburak, A.A. |
author_sort |
Hossain, I. |
title |
Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations |
title_short |
Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations |
title_full |
Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations |
title_fullStr |
Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations |
title_full_unstemmed |
Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations |
title_sort |
thermoluminescence response of ge-, al- and nd-doped optical fibers by 6 mev - electron and 6 mv - photon irradiations |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Ядерно-физические методы и обработка данных |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112122 |
citation_txt |
Thermoluminescence response of Ge-, Al- and Nd-doped optical fibers by 6 MeV - electron and 6 MV - photon irradiations / I. Hossain, M.A. Saeed, H.Wagiran, N. Hida, N.H. Yaakob, A A.Moburak // Вопросы атомной науки и техники. — 2015. — № 3. — С. 65-68. — Бібліогр.: 10 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT hossaini thermoluminescenceresponseofgealandnddopedopticalfibersby6mevelectronand6mvphotonirradiations AT saeedma thermoluminescenceresponseofgealandnddopedopticalfibersby6mevelectronand6mvphotonirradiations AT wagiranh thermoluminescenceresponseofgealandnddopedopticalfibersby6mevelectronand6mvphotonirradiations AT hidan thermoluminescenceresponseofgealandnddopedopticalfibersby6mevelectronand6mvphotonirradiations AT yaakobnh thermoluminescenceresponseofgealandnddopedopticalfibersby6mevelectronand6mvphotonirradiations AT moburakaa thermoluminescenceresponseofgealandnddopedopticalfibersby6mevelectronand6mvphotonirradiations |
first_indexed |
2025-07-08T03:25:45Z |
last_indexed |
2025-07-08T03:25:45Z |
_version_ |
1837047633380638720 |
fulltext |
THERMOLUMINESCENCE RESPONSE OF Ge-, Al- AND
Nd- DOPED OPTICAL FIBERS BY 6MeV - ELECTRON AND
6MV - PHOTON IRRADIATIONS
I.Hossain2∗, M.A.Saeed1, H.Wagiran1, N.Hida1, N.H.Yaakob1,
A.A.Moburak2
1Department of Physics, Universiti Teknologi Malaysia, 81310, Skudai, Johor Darul Takzim, Malaysia;
2Department of Physics, Rabigh College of Science and arts, King Abdulaziz University,
Post Box 344, Rabigh 21911, Saudi Arabia
(Received August 28, 2014)
In this paper, we report the prediction of thermoluminescence responses of Neodymium-doped SiO2 optical fibre
with various dose ranges from 0.5Gy to 4.0Gy by 6MeV - electron irradiations without requirement for experimental
measurements. A technique has been developed to calculate prediction of 6MeV - electron response of Neodymium-
doped SiO2 optical fibre by observing the measured TL response of 6MV - photon and the ratio of known measured
photon/electron yield ratio distribution for Ge-doped, Al-doped optical fibre and standard TLD 100 dosimeter. The
samples were kept in gelatin capsule an irradiated with 6MV - photon at the dose range from 0.5Gy to 4.0Gy. Siemens
model Primus 3368 linear accelerator located at Hospital Sultan Ismail, Johor Bahru has been used to deliver the
photon beam to the samples. We found the average response ratio of 6MV - photon and 6MeV - electron in Ge-doped,
Al-doped optical fibre and standard TLD−100 dosimeter are 0.83(3). Observing the measured value of 6MV - photon
irradiation this average ratio is useful to find the prediction of thermoluminescence responses by 6MeV - electron
irradiation of Neodymium-doped SiO2 optical fibre by the requirement for experimental measurements with various
dose ranges from 0.5Gy to 4.0Gy by 6MV - photon irradiations.
PACS: 03.65.Pm, 03.65.Ge, 61.80.Mk
1. INTRODUCTION
The study of the thermoluminescence (TL) response
of optical fibres to ionizing photon and electron ra-
diation is of great practical importance for dosimet-
ric applications [1, 2] because it has TLD phosphor
whose atomic properties are almost equal to atomic
properties of the human tissues. In regard to the
TL response of doped SiO2 optical fibres, such ma-
terials have attracted attention due to their possible
application as radiation dosimeters, as they offer a
higher chemical stability and a relatively lower effec-
tive atomic number than for instance films. The pres-
ence of impurities or the addition of dopants to SiO2
can greatly enhance the sensitivity of the medium to
ionizing radiation and indeed even to ultraviolet ra-
diation by providing an increased number of traps.
In addition, new defects and absorption bands are
formed [3].
Recently, we have started to use doped SiO2 opti-
cal fibers as a radiation dosimeter in order to measure
absorbed doses in radiotherapy patients, seeking to
overcome a number of limitations of existing dosime-
try system [1, 4-7]. These TLDs are also impervious
to water to the extent that in some instances it be-
comes possible to locate the fiber dosimeter within
a particular tissue of interest [8-10]. These optical
fibers are also able to maintain a consistent TL re-
sponse after repeated exposures. The SiO2 commer-
cial optical fiber demonstrates useful TL properties
and is an excellent candidate for use in TL dosimetry
of ionizing radiation. Based on the previous studies,
this study is very important to find the prediction of
TL response of commercially Nd − 107 doped silica
fiber by 6MeV electron irradiations. This material is
irradiated at doses from (0.5...4.0)Gy using photons
of 6MV energy to measure the TL response.
2. MATERIAL AND METHODS
2.1. Nd-doped SiO2 optical fibres
Silicon dioxide, also known as silica, is an amorphous
material, devoid of long-range periodic order. In the
current research, we focus on the TL response of
doped SiO2 commercially available optical fibre. The
doped SiO2 optical fibres have an outer diameter of
124.7 ± 0.1µm and a doped core diameter of 9µm.
In fibre optics, doping with selected atoms permits
∗Corresponding author E-mail address: mihossain@kau.edu.sa
ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, N3(97).
Series: Nuclear Physics Investigations (64), p.65-68.
65
the creation of a refractive index radial profile that
leads to total internal reflection. This is essential for
an optical guide [1]. In this study, neodymium has
been chosen due to their high sensitivity exhibition
to irradiations and has low attenuation. We cut the
fibres into individual lengths of 5mm and accommo-
dated the variations in actual length by normalizing
the TL response to unit mass of the TL medium.
The details of Ge-doped and Al-doped optical fibre
and TLD − 100 were presented [1].
3. EXPERIMENTAL PROCEDURE
For this experiment, the TL materials were kept in
a suitable container to avoid the places of high tem-
perature and ultraviolet radiation. The Nd − 107
doped fiber and TLD−100 were placed in the gelatin
capsule for routine storage, handling, and for irradi-
ations. Each capsule contained 5 pieces of Nd− 107
doped fiber, each capsule contained 1 chip. The ex-
perimental details was presented [4, 5]. In annealing,
the TL materials were put in a furnace. The furnace
was connected to a computer and Thermosoft soft-
ware was used to control the process in the furnace.
Before starting the annealing process, Time Temper-
ature Profile (TTP ) for Nd− 107 doped silica fibers
were set at the computer and fibers were placed in a
planchet which was placed inside the annealing oven.
Samples were exposed to 6MV - photon by
using Siemens model Primus 3368 linear acceler-
ator located in the Department of Radiotherapy
and Oncology, Hospital Sultan Ismail, Johor Bahru,
Malaysia. The dose delivered by the LINAC machine
was 20...400MU (monitor unit) with a field size of
10 cm×10 cm. By using TLD Reader and WinREMS
software, readings were obtained after irradiation. In
this research, Harshaw 3500TLD Reader with hot
nitrogen gas as a heat transfer medium was used.
Pre-heat temperature was 50◦C and the maximum
temperature during data acquisition was 300◦C. To
acquire temperature, the rate was 10◦C per second.
4. RESULTS AND DISCUSSION
Thermoluminescence sensitivity is a measure of the
amount of TL signal per unit mass produced by a
given material after exposure to a radiation dose.
The effects of TL light yield proportionality to dose
and by establishing the ability to accurately calcu-
late electron response, the experimental implications
of dosimeter TL yield proportionality to dose can
be studied without the requirement for experimental
measurements. This technique also provides a more
detailed characterization of electron response than
experimental techniques that rely on the use of multi-
ple radiation sources. To demonstrate this technique,
we have calculated the ratio of measured response of
Ge-doped, Al-doped optical fibre and TLD− 100 by
6MV - photon and 6MeV - electron irradiation [4].
Fig.1 shows comparative studies of TL response
of Ge-doped, Al-doped optical fibre and TLD − 100
with various dose ranges from 0.2Gy to 4.0Gy by
6MV - photon and 6MeV - electron irradiation.
The TL yield as a function of dose is linear; the
response for electron irradiations in each case is
greater than that for photon irradiations. The re-
sponse of Al-doped optical fibre is negligible to
TLD − 100 and distribution of photon and elec-
tron response as a function of dose is overlap to each
other for Al-doped fibre. We have calculated aver-
age ratios of response of 6MV - photon and 6MeV
- electron irradiation numerically and were found
0.81(3), 0.85(2) and 0.84(3) for TLD − 100, Ge-
doped and Al-doped optical fibre respectively. There-
fore the average of response ratios of 6MV photon
and 6MeV - electron for any dosimeter is 0.83(3).
We found that the Nd − 107 doped optical fibre
have a significant linear dose to signal relationship.
0 1 2 3 4
0
100
200
300
400
500
600
700
Ge-doped fibre (6 MV photon)
Ge-doped fibre (6MeV electron)
Al-doped fibre (6 MV photon)
Al-doped fibre (6 MeV electron)
TLD-100 (6 MV Photon)
TLD-100 (6 MeV electron)
T
L
re
rs
p
o
n
se
(n
C
/m
g
)
Dose (Gy)
Fig.1. TL-response (nC/mg) of Ge-and Al-doped
optical fibres, and TLD − 100 rods for 6MV -
photon and 6MeV - electron irradiation
Fig.2 shows comparative studies of TL re-
sponse (arbitrary unit) of Neodymium-doped
SiO2 optical fibre with various dose ranges from
0.5Gy to 4.0Gy predicted by 6MeV - electrons
and measured by 6MV - photon irradiations.
0 1 2 3 4
0
100
200
300
400
500
6 MV photon (measured))
6 MeV electron (predicted value)
R
e
la
tiv
e
re
sp
o
n
se
(a
rb
itr
a
ry
u
n
it)
Dose (Gy)
Fig.2. Relative response of Nd-doped optical fibre
by 6MV - photon (measured) and 6MeV - electrons
(predicted) irradiation
By comparing previous results of TLD − 100, Ge-
doped and Al-doped optical fibre to both measured
66
photon and electron responses and measured value
of Nd-doped optical fibre by photon responses, this
technique has been validated for 6MeV - electron
irradiation.
5. CONCLUSIONS
We have demonstrated TL linearity and TL response
ratio of 6MV - photon/ 6MeV - electron irradiation
for Ge-and Al-doped optical fibres, and TLD − 100.
The average response ratio is 0.83(3). The sensitivi-
ties of electron response are larger than those of pho-
ton irradiation. We have predicted the TL response
of Nd − 107 doped silica fibers by 6MeV - electron
comparer to measured value by 6MV - photon irra-
diated with dose range from 0.5Gy to 4.0Gy.
ACKNOWLEDGEMENTS
The authors thanks to king Abdulaziz University to
support this work.
The authors would like to thanks for the fi-
nancial support of Ministry of Higher Education
(MOHE) Malaysia/Universiti Teknologi Malaysia
(UTM) for this research work through grant no.
Q.J130000.2526.02H93/Q.J13000.7126.00J66/FAVF
Vote No.4D035 and Department of Radiotherapy and
Oncology, Hospital Sultan Ismail, Johor Bahru for
irradiation permission.
References
1. N.H.Yaakob, H.Wagiran, I. Hossain,
A.T.Ramli, D.A.Bradley, S.Hashim, and
H.Ali // Nucl. Instr. and Meth. Phys. Res.
2011, v.A637, p.185.
2. N.H.Yaakob, H.Wagiran, I. Hossain,
A.T.Ramli, D.A.Bradley, S.Hashim, H.Ali
// J. Nucl. Sci. and Tech. 2011, v.48(7), p.1115.
3. L. Juan, Z.C.T.Qiang, H. Jingquan, Z.Yanli,
S.Qiang, W. Shubin // Journal of Rare Earths.
2008, v.26, p.203.
4. H.Wagiran, I. Hossain, D.Bradley, N.H.Yaakob,
A.T.Ramli // Chin. Phys. Lett. 2012, v.29(2),
p.027802.
5. M.A. Saeed, N.A. Fauzia, I. Hossain,
A.T.Ramli, B.A.Tahir // Chin. Phys. Lett.
2012, v.29(7), p.078701.
6. S.Hashim, S.Al-Ahbabi, D.A.Bradley,
M.Webb, C. Jeynes, A.T.Ramli, H.Wagiran //
Appl. Radiat. Isot. 2009, v.67, p.423.
7. Y.A.Abdulla, Y.M.Amin, H.B.Khoo //
J.Radiol Prot. 2012, v.22(4), p.417.
8. A.T.Ramli, D.A.Bradley, S.Hashim,
H.Wagiran // Appl. Radiat. Isot. 2009, v.67(3),
p.428.
9. A. L.Yusoff, R. P.Hugtenburg, D.A.Bradley //
Rad. Phys. Chem. 2005, v.74, p.459.
10. G.Espinosa, J. I. Golzarri, J. Bogard, J.Garcia-
Macedo // J. Radiat Prot. Dosimetry. 2006,
v.119(1-4), p.197.
ÒÅÐÌÎËÞÌÈÍÅÑÖÅÍÒÍÛÉ ÎÒÊËÈÊ ÎÏÒÈ×ÅÑÊÎÃÎ ÂÎËÎÊÍÀ Ñ
ÄÎÁÀÂËÅÍÈÅÌ Ge-, Al- È Nd ÍÀ ÎÁËÓ×ÅÍÈÅ 6Ìý - ÝËÅÊÒÐÎÍÀÌÈ È
6ÌÂ - ÔÎÒÎÍÀÌÈ
I.Hossain, M.A.Saeed, H.Wagiran, N.Hida, N.H.Yaakob, A.A.Moburak
Ìû äîêëàäûâàåì ïðåäñêàçàíèÿ òåðìîëþìèíåñöåíòíîãî îòêëèêà SiO2 îïòè÷åñêîãî âîëîêíà ñ äîáàâëå-
íèåì Íåîäèìà ïðè ðàçíûõ äîçàõ îáëó÷åíèÿ 6Ìý - ýëåêòðîíàìè â èíòåðâàëå äîç îò 0.5Gy äî 4.0Gy
áåç íåîáõîäèìîñòè ýêñïåðèìåíòàëüíîé ïðîâåðêè. Áûëà ðàçâèòà òåõíèêà ðàñ÷åòà ïðåäñêàçàíèÿ òåðìî-
ëþìèíåñöåíòíîãî îòêëèêà SiO2 îïòè÷åñêîãî âîëîêíà íà 6Ìý - ýëåêòðîíû ïóòåì íàáëþäåíèÿ òåð-
ìîëþìèíåñöåíòíîãî îòêëèêà íà 6ÌÂ - ôîòîíû è èçâåñòíîãî èçìåðåííîãî îòíîøåíèÿ photon/electron
âûõîäîâ îïòè÷åñêîãî âîëîêíà ñ äîáàâëåíèåì Ge è Al è ñòàíäàðòíîãî TLD − 100 äîçèìåòðà. Îáðàçöû
áûëè çàêëþ÷åíû â æåëàòèíîâûå êàïñóëû è îáëó÷åíû 6MB ôîòîíàìè â äèàïàçîíå äîç îò 0.5Gy äî
4.0Gy. Ëèíåéíûé óñêîðèòåëü ìîäåëè Siemens Primus 3368, ðàñïîëîæåííûé â Hospital Sultan Ismail,
Johor Bahru, áûë èñïîëüçîâàí äëÿ îáëó÷åíèÿ îáðàçöîâ ôîòîíàìè. Ìû íàøëè ñðåäíåå îòíîøåíèå îò-
êëèêîâ äëÿ 6Ì - ôîòîíîâ è 6Ìý - ýëåêòðîíîâ â îïòè÷åñêîì âîëîêíå ñ äîáàâëåíèåì Ge è Al è ñòàí-
äàðòíûì äîçèìåòðîì TLD−100, ðàâíûì 0.83(3). Èçìåðåííàÿ âåëè÷èíà ýòîãî óñðåäíåííîãî îòíîøåíèÿ
ïðè îáëó÷åíèè 6Ì ôîòîíàìè ÿâëÿåòñÿ ïîëåçíîé äëÿ íàõîæäåíèÿ îæèäàåìîãî òåðìîëþìèíåñöåíò-
íîãî îòêëèêà SiO2 îïòè÷åñêîãî âîëîêíà ñ äîáàâëåíèåì Íåîäèìà òðåáóåìûõ äëÿ ýêñïåðèìåíòàëüíûõ
èçìåðåíèé äîç â èíòåðâàëå îò 0.5Gy äî 4.0Gy ïðè îáëó÷åíèè 6Ìý - ýëåêòðîíàìè.
67
ÒÅÐÌÎËÞÌIÍÅÑÖÅÍÒÍÈÉ ÂIÄÃÓÊ ÎÏÒÈ×ÍÎÃÎ ÂÎËÎÊÍÀ Ç ÄÎÁÀÂÊÀÌÈ
Ge-, Al- I Nd ÍÀ ÎÏÐÎÌIÍÅÍÍß 6Ìå - ÅËÅÊÒÐÎÍÀÌÈ I 6Ì - ÔÎÒÎÍÀÌÈ
I.Hossain, M.A.Saeed, H.Wagiran, N.Hida, N.H.Yaakob, A.A.Moburak
Ìè äîïîâiäàåìî ïåðåäáà÷åííÿ òåðìîëþìiíåñöåíòíîãî âiäãóêó SiO2 îïòè÷íîãî âîëîêíà ç äîáàâêàìè
íåîäèìó ïðè ðiçíèõ äîçàõ îïðîìiíåííÿ 6Ìå - åëåêòðîíàìè â iíòåðâàëi äîç âiä 0.5Gy äî 4.0Gy áåç
íåîáõiäíîñòi åêñïåðèìåíòàëüíî¨ ïåðåâiðêè. Áóëà ðàçâèíóòà òåõíiêà ðîçðàõóíêó ïåðåäáà÷åííÿ òåðìîëþ-
ìiíåñöåíòíîãî âiäãóêó SiO2 îïòè÷íîãî âîëîêíà íà 6Ìå - åëåêòðîíè øëÿõîì ñïîñòåðåæåííÿ òåðìî-
ëþìiíiñöåíòíãî âiäãóêó íà 6ÌÂ - ôîòîíè i âiäîìîãîãî âèìiðÿíîãî âiäíîøåííÿ photon/electron âèõîäiâ
îïòè÷íîãî âîëîêíà ç äîáàâêàìè Ge è Al i ñòàíäàðòíîãî TLD − 100 äîçèìåòðà. Çðàçêè áóëè ðîçìiùåíi
â æåëàòèíîâèõ êàïñóëàõ i îïðîìiíåíi 6ÌÂ - ôîòîíàìè â äiàïàçîíi äîç âiä 0.5Gy äî 4.0Gy. Ëiíiéíèé
ïðèñêîðþâà÷ ìîäåëi Siemens Primus 3368, ðîçìiùåíèé â Hospital Sultan Ismail, Johor Bahru, áóâ âè-
êîðèñòàíèé äëÿ îïðîìiíåííÿ çðàçêiâ ôîòîíàìè. Ìè çíàéøëè ñåðåäí¹ âiäíîøåííÿ âiäãóêiâ äëÿ 6ÌÂ
- ôîòîíiâ è 6Ìå - åëåêòðîíiâ â îïòè÷íîìó âîëîêíi ç äîáàâêàìè Ge è Al i ñòàíäàðòíèì äîçèìåòðîì
TLD − 100, ÿêå äîðiâíþ¹ 0.83(3). Âèìiðÿíà âåëè÷èíà öüîãî óñåðåäíåíîãî âiäíîøåíèÿ ïðè îïðîìiíåííi
6ÌÂ - ôîòîíàìè ¹ êîðèñíîþ äëÿ çíàõîäæåííÿ î÷iêóâàíîãî òåðìîëþìiíåñöåíòíîãî âiäãóêó SiO2 îï-
òè÷íîãî âîëîêíà ç äîáàâêàìè íåîäèìó, ÿêi ïîòðiáíi äëÿ åêñïåðèìåíòàëüíèõ âèìiðþâàíü äîç â iíòåðâàëi
âiä 0.5Gy äî 4.0Gy ïðè îïðîìiíåííi 6Ìå - åëåêòðîíàìè.
68
|