Searches for superparticles of CMSSM model at the LHC

Using the discovery of a SM-like Higgs boson by ATLAS and CMS Collaborations and the observation by CMS and LHCb of BR(Bs → μ⁺μ⁻) decay as well as 8 TeV ATLAS 20 fb⁻¹ jets + ET data set we received an indirect constraint on SUSY model parameters. Considering the constrained versions of the minimal s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
1. Verfasser: Obikhod, T.V.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112126
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Searches for superparticles of CMSSM model at the LHC / T. V. Obikhod // Вопросы атомной науки и техники. — 2015. — № 3. — С. 3-6. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112126
record_format dspace
spelling irk-123456789-1121262017-01-18T03:03:20Z Searches for superparticles of CMSSM model at the LHC Obikhod, T.V. Ядерная физика и элементарные частицы Using the discovery of a SM-like Higgs boson by ATLAS and CMS Collaborations and the observation by CMS and LHCb of BR(Bs → μ⁺μ⁻) decay as well as 8 TeV ATLAS 20 fb⁻¹ jets + ET data set we received an indirect constraint on SUSY model parameters. Considering the constrained versions of the minimal supersymmetric extension of the Standard Model (CMSSM) we used SOFTSUSY and PROSPINO computer programs for calculations of masses and production cross sections of the superparticles, that could be discovered at the LHC. За допомогою даних відкритого ATLAS і CMS колабораціями CM-подібного бозону Хігса, вимірів CMS і LHCb колабораціями BR(Bs → μ⁺μ⁻), а також набору даних 8 TeV ATLAS 20 fb⁻¹ jets + ET, отримано непряме обмеження на параметри SUSY моделі. Розглядаючи обмежену версію Мінімальної суперсиметричної стандартної моделі (CMSSM), ми використовували комп'ютерні програми SOFTSUSY і PROSPINO для розрахунку мас і поперечних перерізів утворення суперчасток, які можуть бути відкриті на LHC. Используя данные открытого ATLAS и CMS коллаборациями CM-подобного бозона Хиггса, измерения CMS и LHCb коллаборациями BR(Bs → μ⁺μ⁻), а также набор данных 8 TeV ATLAS 20 fb⁻¹ jets + ET, получено непрямое ограничение на параметры SUSY модели. Рассматривая ограниченную версию Минимальной суперсимметричной стандартной модели (CMSSM), мы использовали компьютерные программы SOFTSUSY и PROSPINO для расчета масс и поперечных сечений образования суперчастиц, которые могут быть открытыми на LHC. 2015 Article Searches for superparticles of CMSSM model at the LHC / T. V. Obikhod // Вопросы атомной науки и техники. — 2015. — № 3. — С. 3-6. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 11.25.-w, 12.60.Jv, 02.10.Ws http://dspace.nbuv.gov.ua/handle/123456789/112126 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
spellingShingle Ядерная физика и элементарные частицы
Ядерная физика и элементарные частицы
Obikhod, T.V.
Searches for superparticles of CMSSM model at the LHC
Вопросы атомной науки и техники
description Using the discovery of a SM-like Higgs boson by ATLAS and CMS Collaborations and the observation by CMS and LHCb of BR(Bs → μ⁺μ⁻) decay as well as 8 TeV ATLAS 20 fb⁻¹ jets + ET data set we received an indirect constraint on SUSY model parameters. Considering the constrained versions of the minimal supersymmetric extension of the Standard Model (CMSSM) we used SOFTSUSY and PROSPINO computer programs for calculations of masses and production cross sections of the superparticles, that could be discovered at the LHC.
format Article
author Obikhod, T.V.
author_facet Obikhod, T.V.
author_sort Obikhod, T.V.
title Searches for superparticles of CMSSM model at the LHC
title_short Searches for superparticles of CMSSM model at the LHC
title_full Searches for superparticles of CMSSM model at the LHC
title_fullStr Searches for superparticles of CMSSM model at the LHC
title_full_unstemmed Searches for superparticles of CMSSM model at the LHC
title_sort searches for superparticles of cmssm model at the lhc
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Ядерная физика и элементарные частицы
url http://dspace.nbuv.gov.ua/handle/123456789/112126
citation_txt Searches for superparticles of CMSSM model at the LHC / T. V. Obikhod // Вопросы атомной науки и техники. — 2015. — № 3. — С. 3-6. — Бібліогр.: 11 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT obikhodtv searchesforsuperparticlesofcmssmmodelatthelhc
first_indexed 2025-07-08T03:26:03Z
last_indexed 2025-07-08T03:26:03Z
_version_ 1837047652269686784
fulltext NUCLEAR PHYSICS AND ELEMENTARY PARTICLES SEARCHES FOR SUPERPARTICLES OF CMSSM MODEL AT THE LHC T.V.Obikhod ∗ Institute for Nuclear Research, NAS of Ukraine, 03680, Kiev, Ukraine (Received February 9, 2015) Using the discovery of a SM-like Higgs boson by ATLAS and CMS Collaborations and the observation by CMS and LHCb of BR(Bs → µ+µ−) decay as well as 8 TeV ATLAS 20 fb−1 jets + ET data set we received an indirect constraint on SUSY model parameters. Considering the constrained versions of the minimal supersymmetric extension of the Standard Model (CMSSM) we used SOFTSUSY and PROSPINO computer programs for calculations of masses and production cross sections of the superparticles, that could be discovered at the LHC. PACS: 11.25.-w, 12.60.Jv, 02.10.Ws 1. INTRODUCTION One of the main goals of LHC is the discovery of physics beyond the Standard Model. Its aim is to test the predictions of high-energy physics: supersymme- try, extra dimensions, dark matter, CP violation, properties of quark-gluon plasma. Despite the lack of positive information on any new physics, opened at the LHC, scientists have discovered the SM-like Higgs boson, very accurately check the widths of par- ticle decays and specified properties of the particles of Standard Model. This information can be used for further predictions and more accurate searches for new phenomena in collider experiments. The direct supersymmetrization of the Standard Model leads to the Minimal Supersymmetric Stan- dard Model (MSSM). The MSSM receives indirect support from experiment in: 1) the weak scale gauge couplings unify at MGUT under MSSM renorm group conversion; 2) radiative corrections are consistent with mt ∼ 173 GeV; 3) a light SM-like Higgs boson has mass within the narrow window predicted by the MSSM. The lack of SUSY signal at the LHC is reconciled by models of natural supersymmetry, which are charac- terized by light higgsinos of mass ∼ 100...300 GeV, light third generation squarks and gluinos with mass about 1.5 TeV. We have used the constrained versions of the mini- mal supersymmetric extension of the Standard Model (CMSSM) with universal soft supersymmetry break- ing parameters m0 for scalars and m1/2 for fermions as well as a trilinear coupling A0 at an input grand unification scale and tanβ – the ratio of the two vac- uum expectation values of the Hu and Hd (Higgs sec- tor of MSSMmodel consisting of two SU(2) doublets) [1]. We will try to use LHC data in the context of this model parameters. 2. OBSERVABLE DATA AS SELECTION CRITERIA FOR THE PARAMETERS OF CMSSM MODEL As is known, the Z-boson mass can exist at just 91.2 GeV. The little hierarchy problem is connected with question, how TeV values of SUSY model pa- rameters yield Z-boson mass? The value of MZ in the MSSM is given by M2 Z 2 = m2 Hd +Σd d − (m2 Hu +Σu u)tan 2β tan2β − 1 − µ2 , where Σu u, Σd d represent the sum of various radiative corrections. To obtain a natural value of MZ one would like each term Ci (with i = Hd,Hu, µ) to have an absolute value of order M2 Z/2, so we can define the electroweak fine-tuning parameter ∆EW ≡ maxi(Ci)/(M 2 Z/2) , where CHu = | −m2 Hu (tan2β − 1)| , CHd = |m2 Hd /(tan2β−1)| and Cµ = |−µ2| with anal- ogous definitions for CΣu u(k) and CΣd d(k) . To get low ∆EW we require | −m2 Hu | ∼ M2 Z/2 and µ2 ∼ M2 Z/2 . We need the model to find a set of model parameters such that ∆EW ∼ 1− 30 . For mSUGRA/CMSSM model a minimum ∆EW ∼ 100 has been found [2]. The radiative natural SUSY model [3] or RNS is based on the MSSM which may ∗Corresponding author E-mail address: obikhod@kinr.kiev.ua ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2015, N3(97). Series: Nuclear Physics Investigations (64), p.3-6. 3 be valid up to GUT scale. The sparticle spectra for RNS models with ∆EW ≤ 30 is characterized by: 1) a low value of higgsino mass |µ| ∼ 100...300 GeV; 2) gluinos with mass mg ∼ 1...4 TeV; 3) top squarks with mt1 ∼ 1...2 TeV and mt2 ∼ 2...5 TeV; 4) first/second generation squarks and sleptons with masses m ∼ 1...8 TeV . The RNS model with the above spec- tra yields branching fractions BF(b → sγ) and BF(Bs → µ+µ−) in accord with measured experi- mental values. The mass value of recently discovered Higgs-like resonance at the CERN LHC [4], mh ∼ 125 GeV, falls within the window predicted by the MSSM model. In the MSSM for Higgs mass we have the following expression m2 h ≃ M2 Zcos 22β+ 3g2 8π2 m4 t m2 W [ ln m2 t m2 t + X2 t m2 t ( 1− X2 t 12m2 t )] , where Xt = At − µ cosβ and m2 t ≃ mQ3mU3 . With top-squark masses about 500 GeV, the radiative cor- rections are not large to yield mh. Our goal is to de- termine CMSSM model parameters due to the com- prehensive picture presented by the following data: 1) the value of MZ ; 2) the value of mh; 3) low ∆EW ≤ 30; 4) respecting LHC constraints on sparticle masses; 5) the implementation of ATLAS 20 fb−1 events with ET and from 2 to 6 jets, whereas at large m0 ≻3000 GeV there were considered several AT- LAS limits using different events with jets, leptons, b-quarks and ET [5]. With the help of MasterCode [6] framework, MultiNest tool [7], a new version of FeynHiggs 2.10.0 [8] we present the results of new CMSSM fit using the above five inputs, considering the case of signµ ≻0. In each parameter space in Fig.1 the best-fit point is indicated by a star. This compilation of parameter planes in the CMSSM model for signµ ≻0 is pre- sented after implementing the ATLAS 20 fb−1 jets + ET , BR(B → µ+µ−), mh. The results of the CMSSM fit are indicated by solid lines of red color for 68 % CL and contour that corresponds approximately to the 95 % CL is shown as blue line. In Table 1 are summarized the best-fit points found in the analysis [9] of the low-mass and high- mass regions of the CMSSM parameter space for sign µ ≻0. Table 1. The best-fit points found in global CMSSM fits Data set m0 m1/2 A0 tanβ ATLAS 7 TeV 340 910 2670 12 ATLAS20/fb low mass 670 1040 3440 21 ATLAS20/fb high mass 5650 2100 -780 51 Fig.1. Parameter planes in the CMSSM for µ ≻ 0 including the (m0,m1/2) plane (upper), the (m0, tanβ) plane (middle) and the (tanβ,m1/2) plane (lower) 3. CALCULATION OF THE MASS SPECTRUM AND PRODUCTION CROSS SECTION OF SUPERPARTNERS Using the parameter sets of Table 1, restricted by the observational data, it is possible to calculate the mass spectrum of superpartners by application of the computer program SOFTSUSY [10]. This spectrum for three regions of the CMSSM parameter space is shown in Table 2. 4 Table 2. Mass spectrum of superpartners (GeV) mũL mũR m d̃L m d̃R mg̃ m χ̃0 1 I 1844 1771 1845 1763 1997 381 II 2152 2073 2154 2064 2269 440 III 6780 6690 6780 6680 4619 943 By application of the computer program PROSPINO [11] it is possible to calculate production cross sections of superpartners. The results, pre- sented in Fig.2, were obtained for NLO (next-to- leading-order) for squark-squark (blue) and gluino- gluino (green) production as the function of mass of superparticles. The calculations were car- ried out for the center-of-mass energy 14 TeV. Fig.2. Squark-squark (blue) and gluino-gluino (green) production cross sections as the function of mass of superparticles for the center-of-mass energy 14 TeV 4. CONCLUSIONS In this paper we have presented analyses of the CMSSM with positive sign µ and all the relevant constraints from the LHC run. From the results pre- sented in Table 2, we see, that the masses of super- particles exceed the lower limits on the masses mea- sured by the LHC experiment. This fact confirms the correctness of the selected parameter set presented in Table 1. In Table 2 we presented the masses of possi- ble dark matter candidate - neutralino. Thus, recent precision measurements of B-meson decay widths BR(Bs → µ+µ−) and BR(Bd → µ+µ−), ATLAS and CMS measurements of the mass of the Higgs bo- son, Z boson mass, as well as ATLAS searches for events with ET accompanied by jets with the full 7 and 8 TeV data, lead us to the conclusion about the rigid connection between the measured experimental data and the properties of the new superparticles, predicted with a relatively high probability by the computer programs. The production cross sections with NLO corrections for squark-squark and gluino- gluino production as the function of mass of super- particles have the same character, but it is different for two final states. The calculations were carried out for the center-of-mass energy 14 TeV, which are of importance for future experiments at the LHC. References 1. M. Drees and M. M. Nojiri. The Neutralino Relic Density in Minimal N=1 Supergravity // Phys. Rev. 1993, D47, p. 376-408 [arXiv: hep- ph/9207234]; G. L. Kane, C. F. Kolda, L. Roszkowski and J. D. Wells. Study of Constrained Minimal Su- persymmetry // Phys. Rev. 1994, D49, p.6173- 6210 [arXiv: hep-ph/9312272]; S. S. AbdusSalam et al. Benchmark Models, Planes, Lines and Points for Future SUSY Searches at the LHC // Eur. Phys. J. 2011, C71, 1835 [arXiv: 1109.3859 [hep-ph]]. 2. Howard Baer, Vernon Barger, Dan Mickelson. Direct and indirect detection of higgsino-like WIMPs: concluding the story of electroweak nat- uralness // e-print arXiv: 1303.3816 [hep-ph] (2013). 3. Howard Baer et al. Radiative natural supersym- metry: Reconciling electroweak fine-tuning and the Higgs boson mass // e-print arXiv: 1212.2655 [hep-ph] (2012). 4. G. Aad et al. [ATLAS Collaboration]. Observa- tion of a new particle in the search for the Stan- dard Model Higgs boson with the ATLAS de- tector at the LHC // Phys. Lett. 2012, B716 , p.1-29; S. Chatrchyan et al. [CMS Collaboration]. Obser- vation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC // Phys. Lett. 2012, B716, p.30-61. 5. ATLAS Collaboration, http://cds.cern.ch/ record/1547563/files/ATLAS-CONF-2013- 047.pdf. 6. For more information and updates, please see http://cern.ch/mastercode/. 7. F. Feroz, M.P.Hobson and M.Bridges. Multi- Nest: an efficient and robust Bayesian inference tool for cosmology and particle physics // Mon. Not. Roy. Astron. Soc. 2009, 398, p.1601-1614 [arXiv: 0809.3437 [astro-ph]]; F. Feroz, K.Cranmer, M.Hobson, R.Ruiz de Aus- tri and R.Trotta. Challenges of Profile Like- lihood Evaluation in Multi-Dimensional SUSY Scans // JHEP 2011, 1106, p.042 [arXiv: 1101.3296 [hep-ph]]. 8. T. Hahn et al. High-precision predictions for the light CP-even Higgs Boson Mass of the MSSM // e-print arXiv: arXiv: 1312.4937 [hep-ph] (2013). 9. O. Buchmueller et al. The CMSSM and NUHM1 after LHC Run 1 // e-print arXiv: 1312.5250 [hep-ph] (2013). 10. B.C. Allanach. SOFTSUSY2.0: a program for calculating supersymmetric spectra // Comput. Phys. Commun. 2002, 143, p.305-331. 5 11. W. Beenakker, R. Hopker, and M. Spira. PROSPINO: A Program for the Production of Supersymmetric Particles in Next-to-leading Or- der QCD // e-print arXiv: hep-ph/9611232 (1996). ÏÎÈÑÊÈ ÑÓÏÅÐ×ÀÑÒÈÖ CMSSM - ÌÎÄÅËÈ ÍÀ LHC Ò.Â.Îáèõîä Èñïîëüçóÿ äàííûå îòêðûòîãî ATLAS è CMS êîëëàáîðàöèÿìè CM -ïîäîáíîãî áîçîíà Õèããñà, èçìåðå- íèÿ CMS è LHCb êîëëàáîðàöèÿìè BR(Bs → µ+µ−), à òàêæå íàáîð äàííûõ 8Òý ATLAS 20 fb−1 jets + ET , ïîëó÷åíî íåïðÿìîå îãðàíè÷åíèå íà ïàðàìåòðû SUSY ìîäåëè. Ðàññìàòðèâàÿ îãðàíè÷åííóþ âåðñèþ Ìèíèìàëüíîé ñóïåðñèììåòðè÷íîé ñòàíäàðòíîé ìîäåëè (CMSSM), ìû èñïîëüçîâàëè êîìïüþ- òåðíûå ïðîãðàììû SOFTSUSY è PROSPINO äëÿ ðàñ÷åòà ìàññ è ïîïåðå÷íûõ ñå÷åíèé îáðàçîâàíèÿ ñóïåð÷àñòèö, êîòîðûå ìîãóò áûòü îòêðûòûìè íà LHC. ÏÎØÓÊÈ ÑÓÏÅÐ×ÀÑÒÈÍÎÊ CMSSM - ÌÎÄÅËI ÍÀ LHC Ò.Â.Îáiõîä Çà äîïîìîãîþ äàíèõ âiäêðèòîãî ATLAS i CMS êîëàáîðàöiÿìè CM -ïîäiáíîãî áîçîíó Õiãñà, âèìiðiâ CMS i LHCb êîëàáîðàöiÿìè BR(Bs → µ+µ−), à òàêîæ íàáîðó äàíèõ 8Òå ATLAS 20 fb−1 jets + ET , îòðèìàíî íåïðÿìå îáìåæåííÿ íà ïàðàìåòðè SUSY ìîäåëi. Ðîçãëÿäàþ÷è îáìåæåíó âåðñiþ Ìiíi- ìàëüíî¨ ñóïåðñèìåòðè÷íî¨ ñòàíäàðòíî¨ ìîäåëi (CMSSM), ìè âèêîðèñòîâóâàëè êîìï'þòåðíi ïðîãðàìè SOFTSUSY i PROSPINO äëÿ ðîçðàõóíêó ìàñ i ïîïåðå÷íèõ ïåðåðiçiâ óòâîðåííÿ ñóïåð÷àñòîê, ÿêi ìîæóòü áóòè âiäêðèòi íà LHC. 6