Numerical investigation of the formation of chemically active components in the spark discharge in water vapors
The numerical investigation of the formation of chemically active components and a change in the thermodynamic parameters of the spark discharge at the values of the initial pressure of water vapors 10⁵ and 0.4·10⁵ Pa was carried out. The formation domains of ОН, О, Н, Н2О₂, НО₂, Н₂О components have...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/112128 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Numerical investigation of the formation of chemically active components in the spark discharge in water vapors / D.V. Vinnikov, K.V. Korytchenko, A.V. Sakun // Вопросы атомной науки и техники. — 2015. — № 4. — С. 220-223. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112128 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121282017-01-18T03:03:23Z Numerical investigation of the formation of chemically active components in the spark discharge in water vapors Vinnikov, D.V. Korytchenko, K.V. Sakun, A.V. Плазменно-пучковый разряд, газовый разряд и плазмохимия The numerical investigation of the formation of chemically active components and a change in the thermodynamic parameters of the spark discharge at the values of the initial pressure of water vapors 10⁵ and 0.4·10⁵ Pa was carried out. The formation domains of ОН, О, Н, Н2О₂, НО₂, Н₂О components have been determined. It is established that the initial pressure of water vapors produces certain influence on the formation of chemically active components in the spark discharge. Проведено чисельне дослідження напрацювання хімічно активних компонентів і зміни термодинамічних параметрів іскрового розряду при значеннях початкового тиску водяної пари 10⁵ та 0,4·10⁵ Па. Визначено області утворення компонентів ОН, О, Н, Н2О₂, НО₂, Н₂О. Виявлено вплив початкового тиску водяної пари на напрацювання хімічно активних компонентів в іскровому розряді. Проведено численное исследование наработки химически активных компонентов и изменения термодинамических параметров искрового разряда при значениях начального давления паров воды 10⁵ и 0,4·10⁵ Па. Определены области образования компонентов ОН, О, Н, Н2О₂, НО₂, Н₂О. Выявлено влияние начального давления паров воды на наработку химически активных компонентов в искровом разряде. 2015 Article Numerical investigation of the formation of chemically active components in the spark discharge in water vapors / D.V. Vinnikov, K.V. Korytchenko, A.V. Sakun // Вопросы атомной науки и техники. — 2015. — № 4. — С. 220-223. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.80.Wg, 52.80.Tn, 51.50.+v http://dspace.nbuv.gov.ua/handle/123456789/112128 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Vinnikov, D.V. Korytchenko, K.V. Sakun, A.V. Numerical investigation of the formation of chemically active components in the spark discharge in water vapors Вопросы атомной науки и техники |
description |
The numerical investigation of the formation of chemically active components and a change in the thermodynamic parameters of the spark discharge at the values of the initial pressure of water vapors 10⁵ and 0.4·10⁵ Pa was carried out. The formation domains of ОН, О, Н, Н2О₂, НО₂, Н₂О components have been determined. It is established that the initial pressure of water vapors produces certain influence on the formation of chemically active components in the spark discharge. |
format |
Article |
author |
Vinnikov, D.V. Korytchenko, K.V. Sakun, A.V. |
author_facet |
Vinnikov, D.V. Korytchenko, K.V. Sakun, A.V. |
author_sort |
Vinnikov, D.V. |
title |
Numerical investigation of the formation of chemically active components in the spark discharge in water vapors |
title_short |
Numerical investigation of the formation of chemically active components in the spark discharge in water vapors |
title_full |
Numerical investigation of the formation of chemically active components in the spark discharge in water vapors |
title_fullStr |
Numerical investigation of the formation of chemically active components in the spark discharge in water vapors |
title_full_unstemmed |
Numerical investigation of the formation of chemically active components in the spark discharge in water vapors |
title_sort |
numerical investigation of the formation of chemically active components in the spark discharge in water vapors |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112128 |
citation_txt |
Numerical investigation of the formation of chemically active components in the spark discharge in water vapors / D.V. Vinnikov, K.V. Korytchenko, A.V. Sakun // Вопросы атомной науки и техники. — 2015. — № 4. — С. 220-223. — Бібліогр.: 7 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT vinnikovdv numericalinvestigationoftheformationofchemicallyactivecomponentsinthesparkdischargeinwatervapors AT korytchenkokv numericalinvestigationoftheformationofchemicallyactivecomponentsinthesparkdischargeinwatervapors AT sakunav numericalinvestigationoftheformationofchemicallyactivecomponentsinthesparkdischargeinwatervapors |
first_indexed |
2025-07-08T03:26:13Z |
last_indexed |
2025-07-08T03:26:13Z |
_version_ |
1837047663178022912 |
fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 220
NUMERICAL INVESTIGATION OF THE FORMATION
OF CHEMICALLY ACTIVE COMPONENTS IN THE SPARK
DISCHARGE IN WATER VAPORS
D.V. Vinnikov1, K.V. Korytchenko2, A.V. Sakun2
1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2National Technical University “Kharkiv Polytechnical Institute”, Kharkov, Ukraine
E-mail: vinniden@mail.ru, entropia@rambler.ru
The numerical investigation of the formation of chemically active components and a change in the thermody-
namic parameters of the spark discharge at the values of the initial pressure of water vapors 105 and 0.4·105 Pa was
carried out. The formation domains of ОН, О, Н, Н2О2, НО2, Н2О components have been determined. It is estab-
lished that the initial pressure of water vapors produces certain influence on the formation of chemically active
components in the spark discharge.
PACS: 52.80.Wg, 52.80.Tn, 51.50.+v
INTRODUCTION
The electrohydraulic discharge found a wide appli-
cation for different technological processes [1, 2]. Pres-
ently, the electrohydraulic technology is intensively
developed in the field of pulse electrochemistry. Such a
development is related to the search of new energy-
efficient methods used for the media treatment that are
alternative to the chemical methods. Special attention is
paid to the production of chemically active components
that can be used for the disinfection and treatment of the
drinking water and waste water and for the textile bleach-
ing and can change the acidity of the treated media.
Therefore, the search of energy-efficient methods of
the impact on liquids for the purpose of the formation of
chemically active components in the spark discharge is
of great interest. It is known [1, 3, 4] that a change in
the initial pressure of the liquid results in a change of
the development dynamics of the gas-vapor cavity that
results from the electrohydraulic discharge. However,
the issue of influence of the initial pressure on the for-
mation of chemically active components in the electro-
hydraulic discharge requires additional studies. The
underwater spark discharge is actually developed in the
water vapor; therefore it is enough to carry out the in-
vestigation of the formation process of chemically ac-
tive components in the spark discharge in the first ap-
proximation in the vapor-filled area.
The purpose of this paper is to carry out the numeri-
cal investigation of the influence produced by the initial
pressure of water vapors on the formation of chemically
active components in the spark discharge.
1. NUMERICAL MODEL OF THE
DEVELOPMENT OF THE SPARK
CHANNEL IN WATER VAPORS
The model described in [5, 6] was used for computa-
tions. We assumed that a local thermodynamic equilib-
rium was established in the area of the current-
conducting channel. Outside the current-conducting
channel the computations were done using the equations
of nonequilibrium chemical kinetics [7].
The spark channel expansion process is described by
the following equation system:
0)(
=
∂
∂
+
∂
∂
rr
ur
t
ρρ
; (1)
r
p
rr
upr
t
u
=
∂
+∂
+
∂
∂ ))(( 2ρρ
; (2)
+
∂
+∂
t
u )
2
(
2ρρε
em
T
QE
rr
dr
dTkpuur
−=
∂
+++∂
+ 2
2
)))
2
(((
σ
ρρε
; (3)
i
ii
rr
ruy
t
y ω=
∂
∂
+
∂
∂ )(
, (4)
where ρ is the gas density, u is the velocity, р is the
pressure, ε is the internal gas energy per the mass unit of
gas, kТ is the heat conduction coefficient, Е is the elec-
tric field intensity in the current channel gap, σ is the
channel plasma conductivity, Qem is the radian loss of
the discharge energy, r is the radius coordinate, Т is the
gas temperature, yi is the molar concentration of the i-th
component (H2O, H, O, OH, H2O2, HO2); iω is the rate
of change in the concentration of the i-th component of
the mixture due to chemical reactions.
Electrical processes in the discharge circuit and in
the current channel were described by the following
equations:
[ ] ∫ =+⋅++
t
sc Uidt
C
itRR
dt
diL
0
0
1)( ;
1
0
2
−
= ∫
sr
ss drrlR σπ ;
s
s
l
iR
E = , (5)
where L is the equivalent induction of the discharge
circuit, i is the discharge current, Rc is the equivalent
active resistance of the discharge circuit, Rs is the cur-
rent channel resistance, С is the electric capacitance of
the capacitor, U0 is the initial voltage of the capacitor
charge, ls is the current channel length; rs is the current
channel radius.
mailto:vinniden@mail.ru
ISSN 1562-6016. ВАНТ. 2015. №4(98) 221
For initial conditions the following distribution of
thermogas dynamic parameters in the computation area
was prescribed:
00
)( prp
t
=
=
; 00)( TrT t =
=
; 0)( 0 ==tru .
Numerical investigations were carried out for two
values of the initial pressure in water vapors, in particu-
lar р01 = 105 Pa and р02 = 0.4·105 Pa. To provide vapor-
ous state of water under considered pressure values in
the computation area the temperature at the zero time
was taken equal to T0 = 473 K for both cases. The pa-
rameters of the discharge circuit were equal to C = 2 µF,
U0 = 25 kV, L = 3 µH, Rс = 0.1 Ohm. The discharge
channel length was equal to 5 mm (l = 5 mm).
2. SIMULATION RESULTS
AND THEIR DISCUSSION
Fig. 1,a,b give the distributions of the molar concen-
tration of the components Н, О and ОН and the thermo-
dynamic radius parameters of the spark channel that are
obtained after 2 µs from the beginning of the spark ex-
pansion at different initial pressures of water vapors:
р01 = 105 Pa and р02 = 0.4·105 Pa. It should be noted that
the three regions are available, in particular the region
of the current-conducting channel, the region between
the channel and the shock wave front and the region
before the shock wave front. Independently of the initial
pressure of water vapors the region of the current-
conducting channel shows the prevalence of atomic
hydrogen and oxygen. As the initial pressure of water
vapors is increased an increased concentration of atoms
is observed in this region at the same time from the be-
ginning of the discharge development. It results from a
decrease in the spark expansion velocity as the initial
pressure of water vapors is increased and the gas density
drop velocity is decelerated. When the gas temperature
reaches Т ~ 16000…13000 К, dissociation reactions
prevail in this region. Therefore, atomic oxygen and
hydrogen cannot be used at such temperatures for the
purpose of changing the acidity of the gas discharge
medium.
In the region between the current conducting chan-
nel and the shock wave front the gas temperature is re-
duced to the ambient temperature. In this region chemi-
cally active components H, O, OH, H2O2, HO2, are
formed that can affect a change in the chemical compo-
sition when reacting admixtures are present in water
vapors. As the initial pressure rises the maximum con-
centrations of chemically active components are also
increased.
As for the computations the reduction in pressure by
2.5 times results in a decrease of the maximum concen-
trations of the OH component by a factor of 1.4 to 2
(Fig. 2). As the initial pressure is decreased the radial
width of the region between the current-conducting
channel and the shock wave front remains actually in-
variable by the same time from the beginning of the
channel expansion. However, due to an increase in the
radial coordinate the region volume in which a change
in the chemical composition of the medium can occur is
increased.
Fig. 1. Distribution of the molar concentrations of Н, О,
ОН components taking into consideration the changes
in thermodynamic parameters in the computation region
at a time point of 2 µs: а − at initial pressure of vapors
р1 = 105 Pа; b − at initial pressure of vapors
р2 = 0.4·105 Pа
Fig. 2. The distribution of the molar concentrations of
the OH radical in the computation region: 1, 2 at a time
t = 0.1 µs; 1′, 2′ at a time t = 2 µs. The solid line gives
the relationship at initial vapor pressure р1 = 105 Pа;
and the dashed line corresponds to the initial vapor
pressure р2 = 0.4·105 Pа
ISSN 1562-6016. ВАНТ. 2015. №4(98) 222
Fig. 3,a,b gives the formation of chemical compo-
nents H, O, OH, H2O2, HO2 at a time t = 2 µs from the
beginning of the spark channel expansion.
Fig. 3. Distribution of the molar concentrations of H2O,
H, O, OH, H2O2, HO2 components in the computation
region at a time t = 2 µs: a – at initial vapor pressure
of р1 = 105 Pa; b – at initial vapor pressure
of р2 = 0.4·105 Pа
The obtained distribution shows that in the case of
the availability of admixtures a change in the chemical
composition of the medium can mainly be provided by
chemically active components H, O, OH, because their
concentration exceeds that of H2O2, HO2 components by
a factor of 1 or 2.
An efficiency of the use of the spark channel energy
to change the chemical composition of the medium is an
important issue. As the spark channel progresses a por-
tion of the discharge energy is lost in the discharge
channel, in particular connecting wires, and the internal
resistance of the capacitor. To have a prevailing portion
of the discharge energy released in the spark channel we
must use the discharge circuit with the active resistance,
which is much less than the spark resistance. The com-
putation data of the spark channel obtained at a different
initial pressure of water vapors are given in Fig. 4,a. It
follows from the obtained data that the calculated active
resistance of the discharge circuit must not exceed
5…10 mOhm.
The revealed interrelation between the electric field
intensity in the spark channel gap and the formation of
chemically active components in the spark channel is of
great interest. A decay of initial pressure results in a
decrease of the electric field intensity that occurs at the
same time after the beginning of the discharge devel-
opment (see Fig. 4,b). For the computation option the
difference in the electric field intensity is within one
order (Fig. 5). We assume that the regularity of a de-
crease in the maximum concentrations of chemically
active components with a drop of the initial pressure in
water vapors is mainly caused by thermal gas dynamic
processes that exert influence on nonequilibrium chemi-
cal processes and the field intensity affects this process
through a change in the quantity of energy released into
the spark channel.
Fig. 4. Spark channel resistance (a) and electric field
intensity in the spark channel gap (b) at different initial
water vapor pressures: solid line –105 Pа, and dashed
line – 0.4·105 Pа
Treatment of the medium by the irradiation is one of
the most useful applications of the underwater spark
discharge. This paper delves into the investigation of the
influence produced by the initial water vapor pressure
on the quantity of energy radiated by the spark dis-
charge.
Fig. 5. The quantity of energy radiated by the spark
discharge at a different time from the beginning of the
discharge development: at initial pressures of water
vapors 105 Pа (solid line),and 0.4·105 Pа (dashed line)
ISSN 1562-6016. ВАНТ. 2015. №4(98) 223
CONCLUSIONS
The numerical investigation of the formation of
chemically active components in water vapors for two
pressure values of water vapor р1 = 105 Pа and
р2 = 0.4·105 Pa has been carried out. It has been estab-
lished that the formation of chemically active compo-
nents occurs in the region of the current conducting
channel and in the region between the channel and the
shock wave front. The availability of admixtures shows
that a change in the chemical composition of the medi-
um can mainly be provided by chemically active com-
ponents H, O, OH. It is shown that the drop in pressure
by 2.5 times for the computation option results in the
decrease of the maximum concentration of the OH
component by 1.42 times. A volume of the region in
which a change in the chemical composition of the me-
dium can occur is increased at lower pressures. It has
been established that the quantity of energy radiated by
the spark discharge is decreased with the pressure drop.
REFERENCES
1. G.G. Gorovenko, A.I. Ivliev, P.P. Malyushevkiy,
V.N. Pastuhov. Electric-detonation pulsed systems
of force. Kiev: “Nauk. Dumka”, 1987, 220 p. (in
Russian).
2. L.A. Yutkin. Leningrad. “manufacturing” Leningrad
department. Electrohydraulic effect and it’s imple-
mentation in industry. 1986, 251 p.
3. D.V. Vinnikov, A.N. Ozerov, V.B. Yuferov,
A.N. Ponomarev, I.V. Buravilov. Comparative
Analysis of Electrohydraulic and Pneumoacoustic
Sources for Some Technological Processes // PAST.
2014, № 1, p. 74-80.
4. D.V. Vinnikov, A.N. Ozerov, V.B. Yuferov,
A.V. Sakun, K.V. Korytchenko, A.P. Mesenko. Ex-
perimental Investigation of Electric Liquid Dis-
charge Created Between the Electrodes with the
Cone Cavity // Elektrotechnika i Elektromechanika.
2013, № 1, p. 55-60 (in Russian).
5. K.V. Korytchenko, E.V. Poklonskiy, D.V. Vinnikov,
D.V. Kudin. Numerical simulation of gasdynamic
stage of spark discharge in oxygen // Problems of
Atomic Science and Technology. 2013, № 4 , p. 155-161.
6. K.V. Korytchenko. High Voltage Electrodischarge
Equipment Intended for the Generation of Shock
Waves through the Heating of Reacting Gas Media
// Thesis Materials for the Doctor’s Degree.
05.09.13. Kharkov, 2014, 339 p.
7. E.L. Petersen., R.K. Hanson // J. Prop. and Power.
1999, v. 15 (4), p. 591.
Article received 23.04.2015
ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ НАРАБОТКИ ХИМИЧЕСКИ АКТИВНЫХ КОМПОНЕНТОВ
В ИСКРОВОМ РАЗРЯДЕ В ПАРАХ ВОДЫ
Д.В. Винников, К.В. Корытченко, А.В. Сакун
Проведено численное исследование наработки химически активных компонентов и изменения термоди-
намических параметров искрового разряда при значениях начального давления паров воды 105 и 0,4·105 Па.
Определены области образования компонентов ОН, О, Н, Н2О2, НО2, Н2О. Выявлено влияние начального
давления паров воды на наработку химически активных компонентов в искровом разряде.
ЧИСЕЛЬНЕ ДОСЛІДЖЕННЯ НАПРАЦЮВАННЯ ХІМІЧНО АКТИВНИХ КОМПОНЕНТІВ
В ІСКРОВОМУ РОЗРЯДІ У ВОДЯНІЙ ПАРІ
Д.В. Вінніков, К.В. Коритченко, А.В. Сакун
Проведено чисельне дослідження напрацювання хімічно активних компонентів і зміни термодинамічних
параметрів іскрового розряду при значеннях початкового тиску водяної пари 105 та 0,4·105 Па. Визначено
області утворення компонентів ОН, О, Н, Н2О2, НО2, Н2О. Виявлено вплив початкового тиску водяної пари
на напрацювання хімічно активних компонентів в іскровому розряді.
|