Spectroscopy pequliarities of thermal plasma with copper and nickel vapours

Plasma of electric arc between Cu–Ni electrodes in the assumption of local thermodynamic equilibrium was investigated by optical emission spectroscopy. Temperature radial profiles in plasma column were obtained by Boltzmann plot techniques. Copper spectral lines were used to measure temperature dist...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Veklich, A.N., Kleshich, M.M., Vashchenko, V.V., Kuzminska, I.O.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112129
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Spectroscopy pequliarities of thermal plasma with copper and nickel vapours / A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska // Вопросы атомной науки и техники. — 2015. — № 4. — С. 215-219. — Бібліогр.: 17 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112129
record_format dspace
spelling irk-123456789-1121292017-01-18T03:03:37Z Spectroscopy pequliarities of thermal plasma with copper and nickel vapours Veklich, A.N. Kleshich, M.M. Vashchenko, V.V. Kuzminska, I.O. Плазменно-пучковый разряд, газовый разряд и плазмохимия Plasma of electric arc between Cu–Ni electrodes in the assumption of local thermodynamic equilibrium was investigated by optical emission spectroscopy. Temperature radial profiles in plasma column were obtained by Boltzmann plot techniques. Copper spectral lines were used to measure temperature distribution. Selection of Ni I spectral lines was carried out. Spectroscopic data of some optical transitions of nickel atom is testified. Методами оптичної емісійної спектроскопії досліджена плазма електродугового розряду між електродами Cu-Ni у припущенні локальної термодинамічної рівноваги. Методом діаграм Больцмана отриманo радіальні розподіли температури в плазмовому стовпі. Для визначення радіального розподілу температури використанo спектральні лінії атома міді. Виконана селекція спектральних ліній Ni I. Для деяких оптичних переходів атома нікелю виконана експериментальна перевірка спектроскопічних даних. Методами оптической эмиссионной спектроскопии исследована плазма электродугового разряда между электродами Cu-Ni в предположении локального термодинамического равновесия. Методом диаграмм Больцмана получены радиальные профили температуры в плазменном столбе. Для определения распределения температуры использованы спектральные линии атома меди. Выполнена селекция спектральных линий Ni I. Для некоторых оптических переходов атома никеля выполнена экспериментальная проверка спектроскопических данных. 2015 Article Spectroscopy pequliarities of thermal plasma with copper and nickel vapours / A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska // Вопросы атомной науки и техники. — 2015. — № 4. — С. 215-219. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 52.25.Os, 52.70.-m, 52.80.Mg http://dspace.nbuv.gov.ua/handle/123456789/112129 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Veklich, A.N.
Kleshich, M.M.
Vashchenko, V.V.
Kuzminska, I.O.
Spectroscopy pequliarities of thermal plasma with copper and nickel vapours
Вопросы атомной науки и техники
description Plasma of electric arc between Cu–Ni electrodes in the assumption of local thermodynamic equilibrium was investigated by optical emission spectroscopy. Temperature radial profiles in plasma column were obtained by Boltzmann plot techniques. Copper spectral lines were used to measure temperature distribution. Selection of Ni I spectral lines was carried out. Spectroscopic data of some optical transitions of nickel atom is testified.
format Article
author Veklich, A.N.
Kleshich, M.M.
Vashchenko, V.V.
Kuzminska, I.O.
author_facet Veklich, A.N.
Kleshich, M.M.
Vashchenko, V.V.
Kuzminska, I.O.
author_sort Veklich, A.N.
title Spectroscopy pequliarities of thermal plasma with copper and nickel vapours
title_short Spectroscopy pequliarities of thermal plasma with copper and nickel vapours
title_full Spectroscopy pequliarities of thermal plasma with copper and nickel vapours
title_fullStr Spectroscopy pequliarities of thermal plasma with copper and nickel vapours
title_full_unstemmed Spectroscopy pequliarities of thermal plasma with copper and nickel vapours
title_sort spectroscopy pequliarities of thermal plasma with copper and nickel vapours
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/112129
citation_txt Spectroscopy pequliarities of thermal plasma with copper and nickel vapours / A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska // Вопросы атомной науки и техники. — 2015. — № 4. — С. 215-219. — Бібліогр.: 17 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT veklichan spectroscopypequliaritiesofthermalplasmawithcopperandnickelvapours
AT kleshichmm spectroscopypequliaritiesofthermalplasmawithcopperandnickelvapours
AT vashchenkovv spectroscopypequliaritiesofthermalplasmawithcopperandnickelvapours
AT kuzminskaio spectroscopypequliaritiesofthermalplasmawithcopperandnickelvapours
first_indexed 2025-07-08T03:26:19Z
last_indexed 2025-07-08T03:26:19Z
_version_ 1837047668468088832
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 215 SPECTROSCOPY PEQULIARITIES OF THERMAL PLASMA WITH COPPER AND NICKEL VAPOURS A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska Taras Shevchenko Kyiv National University, Kiev, Ukraine E-mail: van@univ.kiev.ua Plasma of electric arc between Cu–Ni electrodes in the assumption of local thermodynamic equilibrium was in- vestigated by optical emission spectroscopy. Temperature radial profiles in plasma column were obtained by Boltz- mann plot techniques. Copper spectral lines were used to measure temperature distribution. Selection of Ni I spectral lines was carried out. Spectroscopic data of some optical transitions of nickel atom is testified. PACS: 52.25.Os, 52.70.-m, 52.80.Mg INTRODUCTION The electric arc discharges take place often in the current interrupt devices of electric industry. This phe- nomenon causes the electric erosion of contact materi- als, which are widely used in production of such kind equipment. Nowadays, so-called “composite materials” are proposed to be used in fabrication of electrodes or contacts of switching devices. In addition, this type of materials is applicable in the sliding contacts of electric transport. The advantage of such materials is a combina- tion of high erosion resistance, high thermal conductivi- ty and electrical conductivity. Namely, the appropriate erosion properties of composition are due to high melt- ing component in its content (e.g. tungsten, molyb- denum or metal oxides) [1]. The good electrical and thermal conductivities are provided usually by low melting component (e.g. copper or silver). Such compo- site materials are fabricated typically by techniques of powder metallurgy [2, 3]. Obviously, development of contact composite mate- rials can not be improved without careful examination of electric arc influence on working layers at electrode surface. It is naturally to study effects of arc plasma on erosion properties of such composites. Therefore one can be able to measure and control plasma parameters during such kind investigations. Nowadays, electrical probes, microwave and laser diagnostics are widely used in laboratory plasma stud- ies. Nevertheless optical spectroscopy (emission and/or absorption) is more preferred due to its non-perturbation contactless effect [4]. Plasma optical emission spectroscopy and laser ab- sorption spectroscopy techniques were previously de- veloped in diagnostics of free burning electric arc in air between composite Ag–CuO, Ag–SnO2–ZnO and Cu–C electrodes [5 - 7]. The arc discharges of 3.5 or 30 A between the flat end surfaces of non-cooled rod elec- trodes in assumption of local thermodynamic equilibri- um (LTE) in plasma were investigated. Such arcs can be used as model sources of real arc discharges in the cur- rent interrupt devices of electric industry. The main aim of this paper is the development of optical emission spectroscopy techniques of electric arc plasma with copper and nickel vapours. Namely, within this study the selection of spectral lines of nickel atom and its spectroscopic data is carried out. So, it can be possible to investigate at the next steps the problem of interactions of arc plasma – composite Cu-Ni electrodes surface on the base of obtained in this research data. 1. EXPERIMENT 1.1. EXPERIMENTAL SETUP The free burning electric arc was ignited in air be- tween the end surfaces of the non-cooled electrodes. The discharge gap was 8 mm and the arc current was 3.5 A. Electrodes are positioned vertically: upper elec- trode – Ni (cathode), the bottom electrode – Cu (anode). Such type of arc is an initial model of electric discharge between composite Cu–Ni electrodes. Some reference data of copper and nickel one can find in Table 1. In this work the diagnostic technique for simultane- ous registration of spectral and spatial distribution of emission intensity of electric arc, which was previously developed [8], is used. Grating spectrometer and digital camera on charge-coupled device (CCD) base were used (Fig. 1). Arc Condenser Entrance slit Mirror Diffraction grating CCD-camera Collimator Fig. 1. Optical scheme of experimental setup [8] The simultaneous registration of spatial intensity distribution in spectral range 400…660 nm is realized by optical scheme of experimental setup with diffraction grating 600 g/mm. The additionally developed graphical user interface for treatment of obtained spectra images is able to real- ize the following functions [8]: – interpretation of spectra; mailto:boretskij@univ.kiev.ua ISSN 1562-6016. ВАНТ. 2015. №4(98) 216 – calibration of CCD-matrix spectral sensitivity by tungsten ribbon lamp; – determination of spatial intensity distribution; – transformation of observed intensity of radiation into its local values. Because side-on (lateral) observation of plasma ob- ject was realized by developed experimental setup, it is necessary to use Abel inversion for obtaining of local values of intensity. The Bockasten technique for Abel inversion [9] was used in assumption of axial symmetry of investigated plasma source in graphical user interface as well [8]. 1.2. EXPERIMENTAL PEQULIARITIES The non-uniform spectral sensitivity of the CCD ma- trix was taken into account in the process of registration of plasma emission spectra of arc between such elec- trodes. The most sensitivity of used matrix is in the range of wavelengths of 500…600 nm. To correct a non-uniform spectral sensitivity of the CCD matrix in the investigat- ed wavelength range of 400…600 nm during experi- ments the etalon tungsten ribbon lamp was used (see section 1.1). Table 1 Data of elements Cu I and Ni I. Part I Element Melting point, К (at normal pres- sure) [11] Boiling point, К (at normal pres- sure) [11] Thermal conduc- tivity, ( )КmW ⋅ (at temperature 300 К) [11] Electrical con- ductivity, ( )mOhm ⋅1 (at temperature 300 К) [12] Electronic configuration [13] Ionization potential, eV [14, 15] Copper 1356 2816 401 58.8 3d104s1 (Cu I) 7.72 Nickel 1728 3073 91 14.7 3d84s2 (Ni I) 7.63 Table 2 Data of elements Cu I and Ni I. Part II Element λ, nm Transition i → j gj gi Ej, eV Ei, eV gj fji [16] gj fji [17] gj fji [5] Cu I 510.5 3d94s2 →3d104p 6 4 1.38 3.81 0.0312 0.02 0.0197 515.3 3d104p→3d104d 2 4 3.78 6.19 0.96 1.9 1.6466 521.8 3d104p→3d104d 4 6 3.81 6.19 1.84 2.4 1.9717 570.0 3d94s2 →3d104p 4 4 1.64 3.81 0.0048 0.0069 0.0057 578.2 3d94s2→3d104p 4 2 1.64 3.78 0.01656 0.027 0.0130 Ni I 440.1 3d8(3F)4s4p(3P°)→ 3d84s(4F)5s 9 11 3.19 6.00 1.17 6.8 – 445.9 (3F)sp z5D→s4F)5s e5F 7 8 3.30 6.08 – 3.7 – 503.5 3d9(2D)4p→3d9(2D 5/2 )4d 7 9 3.63 6.09 1.96 7.9 – 508.4 3d9(2D)4p→3d9(2D 5/2 )4d 7 9 3.67 6.11 1.05 2.1 – 547.6 3d10 →3d9(2D)4p 1 3 1.82 4.08 0.13 0.21 – The non sufficient dynamical range of this kind of matrix is the additionally problem in spectra registra- tion. The appropriate exposure time was chosen in every experiment to realize the optimal measurement of spec- tral line intensity. With this aim the neutral optical fil- ters can be used as well. 1.3. MEASUREMENT TECHNIQUES Optical emission spectroscopy is used in plasma di- agnostics [10]. Plasma emission spectrum of the arc dis- charge between copper-nickel electrodes is shown in Fig. 2. Spectral lines of copper and nickel atom are well recognized in this spectrum. As soon as the selected for diagnostics spectral lines are not overlapped with the spectral lines of another plasma components it is possible to use them in the temperature determination by the Boltzmann’s plot technique. It must be noted that the recorded intensity of each spectral line is a result of the integration along the line of sight. To determine its local values the integral equation must be solved, which depends on the type of the distri- bution function of the local intensity values. As it was mentioned above, this problem has a solution in the case of axial symmetry of the distribution function of the local radiation intensity, and then the solution has the form of Abel's integral transformation [9]. To use this solution correctly each measurement was carefully examined from the point of view of axial symmetry of observed emission distribution. So, the radial plasma temperature distribu- tion was determined by Boltzmann plot method under the assumption of LTE. ISSN 1562-6016. ВАНТ. 2015. №4(98) 217 Fig. 2. Spectrum of electric arc between Cu-Ni electrodes 2. RESULTS AND DISCUSSIONS It must be noted that plasma emission spectrum of electric arc between Cu-Ni electrodes, which is shown in Fig. 2, was obtained with taking into account of real CCD matrix sensitivity. So, intensities of Cu I and Ni I spectral lines can be used in measurements of plasma parameters. Among the optical emission spectroscopy tech- niques, methods of relative intensities of spectral lines and Boltzmann plot are the most common for the plas- ma temperature determination. For the application of these methods, first of all it is necessary to select “convenient” spectral lines for the diagnostics, which must satisfy certain requirements. Namely, these lines should be well isolated in the radiation spectrum and have suffcient intensity to their reliable regis- tration. In addition, the difference between the excitation energy of the upper levels should be as large as possible to determine the temperature with a minimal error. Spectral lines of copper atom Cu I 510.5, 515.3, 521.8, 570.0, 578.2 nm were chosen to measure radial profile of plasma temperature by Boltzmann’s plot technique. Previously this method of diagnostics on the base of these lines was performed and corresponding spectroscopic data were recommended [18] in such thermal plasma spectroscopy (Table 2). With the aim of validation of obtained results it is interesting to measure temperature of arc discharge plasma by both kind of spectral lines – copper and nick- el atoms as well. Initially spectral lines Ni I 547.6, 508.4, 503.5, 445.9 and 440.1 nm were selected (see Table 2). Spectroscopic data, namely, oscillator strengths for these optical transitions one can find in [16] or [17]. It seems reasonable to find the most com- plete and comprehensive information about spectral lines of Ni I in NIST database [16]. Nevertheless, both of abovementioned sources of spectroscopic data must be carefully examined. Fig. 3. Boltzmann plot involving of spectroscopic data for copper and nickel lines for the axial point of the average cross-section of plasma of free burning electric arc dis- charge between Cu-Ni electrodes at current 3.5 А In Fig. 3 Boltzmann plot, involving of spectroscopic data for copper [5] and nickel [16 and 17] lines, for the axial point of the average cross-section of plasma of free burning electric arc discharge between Cu-Ni elec- trodes at current 3.5 А is shown. Two straight lines are drawn in this Figure, the slope of which corresponds to the temperature obtained by the Cu I spectral lines. This assumption can be able to use if plasma is in local ther- modynamic equilibrium. So, both straight lines (solid line for copper and dashed line for nickel) must be de- fined by the same excitation temperature of thermal plasma in this point of discharge volume. Due to the uncertainty of the real ratio between the concentrations ISSN 1562-6016. ВАНТ. 2015. №4(98) 218 of atoms of nickel and copper it can not be possible to select spectroscopic data from sources [16] or [17] in the proper way. Therefore both of these spectroscopic data were used in measurements of the radial tempera- ture profile. Fig. 4. Boltzmann plot involving of spectroscopic data for copper and nickel lines for the axial point (a) and radial distance 0.85 mm (b) and 1.81 mm (c) of the average cross-section of plasma of free burning electric arc dis- charge between Cu-Ni electrodes at current 3.5 А Additional remark is concerned to the spectral lines Ni I 503.5, 445.9 and 440.1 nm. In real experiments with electric discharge at arc current 3.5 А the radiation intensities of these lines are not sufficient. Therefore, these lines should be removed from further considera- tion. In Fig. 4 Boltzmann plots involving of spectroscopic data for copper and nickel lines for the axial point (see Fig. 4,a), and radial distance 0.85 mm (see Fig. 4,b), and 1.81 mm (see Fig. 4,c) of the average cross-section of plasma of free burning electric arc discharge are shown. One can see that in plasma diagnostics only spectral lines Ni I 547.6 and 508.4 nm (for spectroscopic data [16, 17]) under these experimental conditions can be used. These lines are well isolated in the spectrum emission and have sufficient intensities. The difference between the energies of excitation of the upper levels is 2 eV. So, to determine radial temperature distribution of plasma arc discharge between Cu-Ni electrodes spectral lines Ni I 547.6 and 508.4 nm (Fig. 5, curves 1, 2) and Cu I 510.5, 515.3, 521.8, 570.0, 578.2 nm (see Fig. 5, curve 3) were used. The radial temperature profiles obtained by Boltzmann plot method on the base of Cu I spectral lines (curve 3) and Ni I spectral lines (curve 2) with spectroscopic data [17] are coincide within meas- urement error. The appropriateness of utilization in plasma diag- nostics of spectroscopic data [16] is under discussion now. Therefore additional careful investigations by different techniques must be carried out to validate these data. 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4000 4500 5000 5500 6000 6500 7000 7500  - C u I  - N i I [16]  - N i I [17] 1 3 2 r, m m T, K 1 Fig. 5. Radial distribution of plasma temperature of electric arc discharge between Cu-Ni electrodes at current 3.5 A, obtained by Boltzmann plot method using Ni I (curve 1 and 2), Cu I (curve 3) spectral lines CONCLUSIONS Thermal plasma of electric arc discharge in air be- tween Cu–Ni electrodes at arc current 3.5 A in the as- sumption of local thermodynamic equilibrium was in- vestigated by optical emission spectroscopy. Nickel electrode was used as a cathode and copper was used as anode material. Such type of arc is developed as an initial model of electric discharge between composite Cu–Ni electrodes. The radial profiles of temperature in discharge col- umn were obtained by Boltzmann plot techniques. Cop- per spectral lines Cu I 510.5, 515.3, 521.8, 570.0, 578.2 nm were used to measure the radial distribution of plasma temperature. Selection of Ni I spectral lines for purposes of plasma diagnostics was carried out as well. Spectroscopic data of some optical transitions of nickel a b c ISSN 1562-6016. ВАНТ. 2015. №4(98) 219 atom is testified at Boltzmann plot in some radial posi- tions of arc plasma column. Two spectral lines Ni I 547.6 and 508.4 nm of suffi- cient radiation intensities, which are well isolated in the spectrum emission, can be recommended in diagnostics of thermal plasma with nickel vapours. The difference between the energies of excitation of the upper levels is 2 eV. So, an appropriate accuracy of temperature meas- urement can be realized. The additional investigations by different techniques must be carried out to validate the spectroscopic data of some optical transitions of nickel atom. ACKNOWLEDGEMENTS The authors wish to thank Dr.V. Boretskij, Mr.A. Lebid, Mr.S. Fesenko for help in experiments organization and the preparation of this article. REFERENCES 1. G.V. Butkevich, G.S. Belkin, et al. Electrical ero- sion of high-current contacts and electrodes. M.: «Energia», 1978 (in Russian). 2. R.V. Minakova, A.P. Kresanova, M.M. Churakov, E.V. Khomenko. The development tendencies of manufacturing technologies of composite materials and their contacts // Electric Contacts and Elec- trodes. Kiev: “Frantsevich Institute for Problems of Materials Science”. 1998, p. 5-19 (in Russian). 3. R.V. Minakova, N.D. Lesnik, A.P. Kresanova, A.A. Flis, E.V. Khomenko. Contact interaction, W (Mo, Cr)-Cu structure and properties of compo- sites with additives // Powder Metallurgy and Metal Ceramics. Kiev: “Frantsevich Institute for Problems of Materials Science” (35). 1996, p. 7-8. 4. W. Lochte-Holtgreven. Plasma diagnostics. M.: «Mir», 1971 (in Russian). 5. I.L. Babich, V.F. Boretskij, A.N. Veklich, R.V. Semenyshyn. Spectroscopic data and Stark broadening of Cu I and Ag I spectral lines: Selection and analysis // Advances in Space Research (54). 2014, p. 1254-1263. 6. R.V. Semenyshyn, A.N. Veklich, I.L. Babich, V.F Boretskij. Spectroscopy peculiarities of thermal plasma of electric arc discharge between electrodes with Zn admixtures // Advances in Space Research (54). 2014, p. 1235-1241. 7. S. Fesenko, A. Veklich, V. Boretskij, Y. Cressault, A. Gleizes, Ph. Teulet. Properties of thermal air plasma with admixing of copper and carbon // Jour- nal of Physics: Conference Series (550). 2014, p. 012008. 8. A.N. Veklich, A.V. Lebid, P.V. Soroka, V.F. Boretskij, I.L. Babich. Investigations of thermal plasma with metal impurities. Part II: Peculiarities of spectroscopy by W I, Mo I, Cu I spectral lines // Problems of Atomic Science and Technology. Series “Plasma Physics”. 2013, № 1, p. 213-215. 9. K. Bockasten. Transformation of observed radiances into radial distribution of the emission of a plasma // Journ. of Opt. Soc. of Am. (51). 1961, № 9, p. 943- 947. 10. A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid, S.A. Fesenko. Investigations of electric arc plasma between composite Cu–C electrodes // Problems of Atomic Science and Technology. Series “Plasma Electronics and New Methods of Accelera- tion”. 2013, № 4, p. 204-208. 11. I.S. Grigoriev, E.Z. Meilikhov. Physical quantities. Reference book. Moscow: «Energoatomizdat», 1991. 12. A.S. Ehonovich. Short reference book of physics. Moscow: «Visshaya shkola», 1976 (in Russian). 13. A.A. Radtsig, B.M. Smirnov. The parameters of atoms and atomic ions. Moscow: «Energoatomiz- dat», 1986. 14. Yu.Yu. Lurie. Reference book of analytical chemis- try. Moscow: «Himiya», 1971 (in Russian). 15. L.V. Gurvich, et al. Breaking energy of chemical bonds. Ionization potentials and electron affinity. Moscow: «Nauka», 1974 (in Russian). 16. Atomic Spectra Database (version 5.2) / A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2014) // Gaithersburg, MD: National Institute of Standards and Technology. http://physics.nist.gov/asd 17. C.H. Corliss, W.R. Bozman. The transition proba- bilities and oscillator strengths of 70 elements. M.: «Mir», 1968 (in Russian). Article received 01.06.2015 ОСОБЕННОСТИ СПЕКТРОСКОПИИ ТЕРМИЧЕСКОЙ ПЛАЗМЫ С ПАРАМИ МЕДИ И НИКЕЛЯ А.Н. Веклич, М.М. Клешич, В.В. Ващенко, И.А. Кузьминская Методами оптической эмиссионной спектроскопии исследована плазма электродугового разряда между электродами Cu-Ni в предположении локального термодинамического равновесия. Методом диаграмм Больцмана получены радиальные профили температуры в плазменном столбе. Для определения распределе- ния температуры использованы спектральные линии атома меди. Выполнена селекция спектральных линий Ni I. Для некоторых оптических переходов атома никеля выполнена экспериментальная проверка спектро- скопических данных. ОСОБЛИВОСТІ СПЕКТРОСКОПІЇ ТЕРМІЧНОЇ ПЛАЗМИ З ПАРАМИ МІДІ ТА НІКЕЛЮ А.М. Веклич, М.М. Клешич, В.В. Ващенко, І.О. Кузьмінська Методами оптичної емісійної спектроскопії досліджена плазма електродугового розряду між електрода- ми Cu-Ni у припущенні локальної термодинамічної рівноваги. Методом діаграм Больцмана отриманo радіа- льні розподіли температури в плазмовому стовпі. Для визначення радіального розподілу температури вико- ристанo спектральні лінії атома міді. Виконана селекція спектральних ліній Ni I. Для деяких оптичних пере- ходів атома нікелю виконана експериментальна перевірка спектроскопічних даних. INTRODUCTION 2. Results and Discussions It must be noted that plasma emission spectrum of electric arc between Cu-Ni electrodes, which is shown in Fig. 2, was obtained with taking into account of real CCD matrix sensitivity. So, intensities of Cu I and Ni I spectral lines can be used in me... Among the optical emission spectroscopy techniques, methods of relative intensities of spectral lines and Boltzmann plot are the most common for the plasma temperature determination. Spectral lines of copper atom Cu I 510.5, 515.3, 521.8, 570.0, 578.2 nm were chosen to measure radial profile of plasma temperature by Boltzmann’s plot technique. Previously this method of diagnostics on the base of these lines was performed and corre... With the aim of validation of obtained results it is interesting to measure temperature of arc discharge plasma by both kind of spectral lines – copper and nickel atoms as well. Initially spectral lines Ni I 547.6, 508.4, 503.5, 445.9 and 440.1 nm wer... In Fig. 3 Boltzmann plot, involving of spectroscopic data for copper [5] and nickel [16 and 17] lines, for the axial point of the average cross-section of plasma of free burning electric arc discharge between Cu-Ni electrodes at current 3.5 А is shown... Additional remark is concerned to the spectral lines Ni I 503.5, 445.9 and 440.1 nm. In real experiments with electric discharge at arc current 3.5 А the radiation intensities of these lines are not sufficient. Therefore, these lines should be removed... In Fig. 4 Boltzmann plots involving of spectroscopic data for copper and nickel lines for the axial point (see Fig. 4,a), and radial distance 0.85 mm (see Fig. 4,b), and 1.81 mm (see Fig. 4,c) of the average cross-section of plasma of free burning ele... REFERENCES