Spectroscopy pequliarities of thermal plasma with copper and nickel vapours
Plasma of electric arc between Cu–Ni electrodes in the assumption of local thermodynamic equilibrium was investigated by optical emission spectroscopy. Temperature radial profiles in plasma column were obtained by Boltzmann plot techniques. Copper spectral lines were used to measure temperature dist...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112129 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Spectroscopy pequliarities of thermal plasma with copper and nickel vapours / A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska // Вопросы атомной науки и техники. — 2015. — № 4. — С. 215-219. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112129 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121292017-01-18T03:03:37Z Spectroscopy pequliarities of thermal plasma with copper and nickel vapours Veklich, A.N. Kleshich, M.M. Vashchenko, V.V. Kuzminska, I.O. Плазменно-пучковый разряд, газовый разряд и плазмохимия Plasma of electric arc between Cu–Ni electrodes in the assumption of local thermodynamic equilibrium was investigated by optical emission spectroscopy. Temperature radial profiles in plasma column were obtained by Boltzmann plot techniques. Copper spectral lines were used to measure temperature distribution. Selection of Ni I spectral lines was carried out. Spectroscopic data of some optical transitions of nickel atom is testified. Методами оптичної емісійної спектроскопії досліджена плазма електродугового розряду між електродами Cu-Ni у припущенні локальної термодинамічної рівноваги. Методом діаграм Больцмана отриманo радіальні розподіли температури в плазмовому стовпі. Для визначення радіального розподілу температури використанo спектральні лінії атома міді. Виконана селекція спектральних ліній Ni I. Для деяких оптичних переходів атома нікелю виконана експериментальна перевірка спектроскопічних даних. Методами оптической эмиссионной спектроскопии исследована плазма электродугового разряда между электродами Cu-Ni в предположении локального термодинамического равновесия. Методом диаграмм Больцмана получены радиальные профили температуры в плазменном столбе. Для определения распределения температуры использованы спектральные линии атома меди. Выполнена селекция спектральных линий Ni I. Для некоторых оптических переходов атома никеля выполнена экспериментальная проверка спектроскопических данных. 2015 Article Spectroscopy pequliarities of thermal plasma with copper and nickel vapours / A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska // Вопросы атомной науки и техники. — 2015. — № 4. — С. 215-219. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 52.25.Os, 52.70.-m, 52.80.Mg http://dspace.nbuv.gov.ua/handle/123456789/112129 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Veklich, A.N. Kleshich, M.M. Vashchenko, V.V. Kuzminska, I.O. Spectroscopy pequliarities of thermal plasma with copper and nickel vapours Вопросы атомной науки и техники |
description |
Plasma of electric arc between Cu–Ni electrodes in the assumption of local thermodynamic equilibrium was investigated by optical emission spectroscopy. Temperature radial profiles in plasma column were obtained by Boltzmann plot techniques. Copper spectral lines were used to measure temperature distribution. Selection of Ni I spectral lines was carried out. Spectroscopic data of some optical transitions of nickel atom is testified. |
format |
Article |
author |
Veklich, A.N. Kleshich, M.M. Vashchenko, V.V. Kuzminska, I.O. |
author_facet |
Veklich, A.N. Kleshich, M.M. Vashchenko, V.V. Kuzminska, I.O. |
author_sort |
Veklich, A.N. |
title |
Spectroscopy pequliarities of thermal plasma with copper and nickel vapours |
title_short |
Spectroscopy pequliarities of thermal plasma with copper and nickel vapours |
title_full |
Spectroscopy pequliarities of thermal plasma with copper and nickel vapours |
title_fullStr |
Spectroscopy pequliarities of thermal plasma with copper and nickel vapours |
title_full_unstemmed |
Spectroscopy pequliarities of thermal plasma with copper and nickel vapours |
title_sort |
spectroscopy pequliarities of thermal plasma with copper and nickel vapours |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112129 |
citation_txt |
Spectroscopy pequliarities of thermal plasma with copper and nickel vapours / A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska // Вопросы атомной науки и техники. — 2015. — № 4. — С. 215-219. — Бібліогр.: 17 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT veklichan spectroscopypequliaritiesofthermalplasmawithcopperandnickelvapours AT kleshichmm spectroscopypequliaritiesofthermalplasmawithcopperandnickelvapours AT vashchenkovv spectroscopypequliaritiesofthermalplasmawithcopperandnickelvapours AT kuzminskaio spectroscopypequliaritiesofthermalplasmawithcopperandnickelvapours |
first_indexed |
2025-07-08T03:26:19Z |
last_indexed |
2025-07-08T03:26:19Z |
_version_ |
1837047668468088832 |
fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 215
SPECTROSCOPY PEQULIARITIES OF THERMAL PLASMA
WITH COPPER AND NICKEL VAPOURS
A.N. Veklich, M.M. Kleshich, V.V. Vashchenko, I.O. Kuzminska
Taras Shevchenko Kyiv National University, Kiev, Ukraine
E-mail: van@univ.kiev.ua
Plasma of electric arc between Cu–Ni electrodes in the assumption of local thermodynamic equilibrium was in-
vestigated by optical emission spectroscopy. Temperature radial profiles in plasma column were obtained by Boltz-
mann plot techniques. Copper spectral lines were used to measure temperature distribution. Selection of Ni I spectral
lines was carried out. Spectroscopic data of some optical transitions of nickel atom is testified.
PACS: 52.25.Os, 52.70.-m, 52.80.Mg
INTRODUCTION
The electric arc discharges take place often in the
current interrupt devices of electric industry. This phe-
nomenon causes the electric erosion of contact materi-
als, which are widely used in production of such kind
equipment. Nowadays, so-called “composite materials”
are proposed to be used in fabrication of electrodes or
contacts of switching devices. In addition, this type of
materials is applicable in the sliding contacts of electric
transport. The advantage of such materials is a combina-
tion of high erosion resistance, high thermal conductivi-
ty and electrical conductivity. Namely, the appropriate
erosion properties of composition are due to high melt-
ing component in its content (e.g. tungsten, molyb-
denum or metal oxides) [1]. The good electrical and
thermal conductivities are provided usually by low
melting component (e.g. copper or silver). Such compo-
site materials are fabricated typically by techniques of
powder metallurgy [2, 3].
Obviously, development of contact composite mate-
rials can not be improved without careful examination
of electric arc influence on working layers at electrode
surface. It is naturally to study effects of arc plasma on
erosion properties of such composites. Therefore one
can be able to measure and control plasma parameters
during such kind investigations.
Nowadays, electrical probes, microwave and laser
diagnostics are widely used in laboratory plasma stud-
ies. Nevertheless optical spectroscopy (emission and/or
absorption) is more preferred due to its non-perturbation
contactless effect [4].
Plasma optical emission spectroscopy and laser ab-
sorption spectroscopy techniques were previously de-
veloped in diagnostics of free burning electric arc in air
between composite Ag–CuO, Ag–SnO2–ZnO and Cu–C
electrodes [5 - 7]. The arc discharges of 3.5 or 30 A
between the flat end surfaces of non-cooled rod elec-
trodes in assumption of local thermodynamic equilibri-
um (LTE) in plasma were investigated. Such arcs can be
used as model sources of real arc discharges in the cur-
rent interrupt devices of electric industry.
The main aim of this paper is the development of
optical emission spectroscopy techniques of electric arc
plasma with copper and nickel vapours. Namely, within
this study the selection of spectral lines of nickel atom
and its spectroscopic data is carried out. So, it can be
possible to investigate at the next steps the problem of
interactions of arc plasma – composite Cu-Ni electrodes
surface on the base of obtained in this research data.
1. EXPERIMENT
1.1. EXPERIMENTAL SETUP
The free burning electric arc was ignited in air be-
tween the end surfaces of the non-cooled electrodes.
The discharge gap was 8 mm and the arc current was
3.5 A. Electrodes are positioned vertically: upper elec-
trode – Ni (cathode), the bottom electrode – Cu (anode).
Such type of arc is an initial model of electric discharge
between composite Cu–Ni electrodes. Some reference
data of copper and nickel one can find in Table 1.
In this work the diagnostic technique for simultane-
ous registration of spectral and spatial distribution of
emission intensity of electric arc, which was previously
developed [8], is used. Grating spectrometer and digital
camera on charge-coupled device (CCD) base were
used (Fig. 1).
Arc Condenser Entrance slit
Mirror
Diffraction grating
CCD-camera
Collimator
Fig. 1. Optical scheme of experimental setup [8]
The simultaneous registration of spatial intensity
distribution in spectral range 400…660 nm is realized
by optical scheme of experimental setup with diffraction
grating 600 g/mm.
The additionally developed graphical user interface
for treatment of obtained spectra images is able to real-
ize the following functions [8]:
– interpretation of spectra;
mailto:boretskij@univ.kiev.ua
ISSN 1562-6016. ВАНТ. 2015. №4(98) 216
– calibration of CCD-matrix spectral sensitivity by
tungsten ribbon lamp;
– determination of spatial intensity distribution;
– transformation of observed intensity of radiation
into its local values.
Because side-on (lateral) observation of plasma ob-
ject was realized by developed experimental setup, it is
necessary to use Abel inversion for obtaining of local
values of intensity. The Bockasten technique for Abel
inversion [9] was used in assumption of axial symmetry
of investigated plasma source in graphical user interface
as well [8].
1.2. EXPERIMENTAL PEQULIARITIES
The non-uniform spectral sensitivity of the CCD ma-
trix was taken into account in the process of registration
of plasma emission spectra of arc between such elec-
trodes.
The most sensitivity of used matrix is in the range of
wavelengths of 500…600 nm. To correct a non-uniform
spectral sensitivity of the CCD matrix in the investigat-
ed wavelength range of 400…600 nm during experi-
ments the etalon tungsten ribbon lamp was used (see
section 1.1).
Table 1
Data of elements Cu I and Ni I. Part I
Element
Melting point, К
(at normal pres-
sure) [11]
Boiling point, К
(at normal pres-
sure) [11]
Thermal conduc-
tivity, ( )КmW ⋅
(at temperature
300 К) [11]
Electrical con-
ductivity,
( )mOhm ⋅1
(at temperature
300 К) [12]
Electronic
configuration
[13]
Ionization
potential,
eV
[14, 15]
Copper 1356 2816 401 58.8 3d104s1 (Cu I) 7.72
Nickel 1728 3073 91 14.7 3d84s2 (Ni I) 7.63
Table 2
Data of elements Cu I and Ni I. Part II
Element λ, nm Transition i → j gj gi Ej, eV Ei, eV gj fji [16] gj fji [17] gj fji [5]
Cu I
510.5 3d94s2 →3d104p 6 4 1.38 3.81 0.0312 0.02 0.0197
515.3 3d104p→3d104d 2 4 3.78 6.19 0.96 1.9 1.6466
521.8 3d104p→3d104d 4 6 3.81 6.19 1.84 2.4 1.9717
570.0 3d94s2 →3d104p 4 4 1.64 3.81 0.0048 0.0069 0.0057
578.2 3d94s2→3d104p 4 2 1.64 3.78 0.01656 0.027 0.0130
Ni I
440.1
3d8(3F)4s4p(3P°)→
3d84s(4F)5s
9 11 3.19 6.00 1.17 6.8 –
445.9 (3F)sp z5D→s4F)5s e5F 7 8 3.30 6.08 – 3.7 –
503.5 3d9(2D)4p→3d9(2D
5/2
)4d 7 9 3.63 6.09 1.96 7.9 –
508.4 3d9(2D)4p→3d9(2D
5/2
)4d 7 9 3.67 6.11 1.05 2.1 –
547.6 3d10 →3d9(2D)4p 1 3 1.82 4.08 0.13 0.21 –
The non sufficient dynamical range of this kind of
matrix is the additionally problem in spectra registra-
tion. The appropriate exposure time was chosen in every
experiment to realize the optimal measurement of spec-
tral line intensity. With this aim the neutral optical fil-
ters can be used as well.
1.3. MEASUREMENT TECHNIQUES
Optical emission spectroscopy is used in plasma di-
agnostics [10]. Plasma emission spectrum of the arc dis-
charge between copper-nickel electrodes is shown in
Fig. 2. Spectral lines of copper and nickel atom are well
recognized in this spectrum. As soon as the selected for
diagnostics spectral lines are not overlapped with the
spectral lines of another plasma components it is possible
to use them in the temperature determination by the
Boltzmann’s plot technique.
It must be noted that the recorded intensity of each
spectral line is a result of the integration along the line of
sight. To determine its local values the integral equation
must be solved, which depends on the type of the distri-
bution function of the local intensity values. As it was
mentioned above, this problem has a solution in the case
of axial symmetry of the distribution function of the local
radiation intensity, and then the solution has the form of
Abel's integral transformation [9]. To use this solution
correctly each measurement was carefully examined from
the point of view of axial symmetry of observed emission
distribution. So, the radial plasma temperature distribu-
tion was determined by Boltzmann plot method under the
assumption of LTE.
ISSN 1562-6016. ВАНТ. 2015. №4(98) 217
Fig. 2. Spectrum of electric arc between Cu-Ni electrodes
2. RESULTS AND DISCUSSIONS
It must be noted that plasma emission spectrum of
electric arc between Cu-Ni electrodes, which is shown
in Fig. 2, was obtained with taking into account of real
CCD matrix sensitivity. So, intensities of Cu I and Ni I
spectral lines can be used in measurements of plasma
parameters.
Among the optical emission spectroscopy tech-
niques, methods of relative intensities of spectral lines
and Boltzmann plot are the most common for the plas-
ma temperature determination.
For the application of these methods, first of all it is
necessary to select “convenient” spectral lines for the
diagnostics, which must satisfy certain requirements.
Namely, these lines should be well isolated in the radiation
spectrum and have suffcient intensity to their reliable regis-
tration. In addition, the difference between the excitation
energy of the upper levels should be as large as possible to
determine the temperature with a minimal error.
Spectral lines of copper atom Cu I 510.5, 515.3,
521.8, 570.0, 578.2 nm were chosen to measure radial
profile of plasma temperature by Boltzmann’s plot
technique. Previously this method of diagnostics on the
base of these lines was performed and corresponding
spectroscopic data were recommended [18] in such
thermal plasma spectroscopy (Table 2).
With the aim of validation of obtained results it is
interesting to measure temperature of arc discharge
plasma by both kind of spectral lines – copper and nick-
el atoms as well. Initially spectral lines Ni I 547.6,
508.4, 503.5, 445.9 and 440.1 nm were selected (see
Table 2). Spectroscopic data, namely, oscillator
strengths for these optical transitions one can find in
[16] or [17]. It seems reasonable to find the most com-
plete and comprehensive information about spectral
lines of Ni I in NIST database [16]. Nevertheless, both
of abovementioned sources of spectroscopic data must
be carefully examined.
Fig. 3. Boltzmann plot involving of spectroscopic data for
copper and nickel lines for the axial point of the average
cross-section of plasma of free burning electric arc dis-
charge between Cu-Ni electrodes at current 3.5 А
In Fig. 3 Boltzmann plot, involving of spectroscopic
data for copper [5] and nickel [16 and 17] lines, for the
axial point of the average cross-section of plasma of
free burning electric arc discharge between Cu-Ni elec-
trodes at current 3.5 А is shown. Two straight lines are
drawn in this Figure, the slope of which corresponds to
the temperature obtained by the Cu I spectral lines. This
assumption can be able to use if plasma is in local ther-
modynamic equilibrium. So, both straight lines (solid
line for copper and dashed line for nickel) must be de-
fined by the same excitation temperature of thermal
plasma in this point of discharge volume. Due to the
uncertainty of the real ratio between the concentrations
ISSN 1562-6016. ВАНТ. 2015. №4(98) 218
of atoms of nickel and copper it can not be possible to
select spectroscopic data from sources [16] or [17] in
the proper way. Therefore both of these spectroscopic
data were used in measurements of the radial tempera-
ture profile.
Fig. 4. Boltzmann plot involving of spectroscopic data for
copper and nickel lines for the axial point (a) and radial
distance 0.85 mm (b) and 1.81 mm (c) of the average
cross-section of plasma of free burning electric arc dis-
charge between Cu-Ni electrodes at current 3.5 А
Additional remark is concerned to the spectral lines
Ni I 503.5, 445.9 and 440.1 nm. In real experiments
with electric discharge at arc current 3.5 А the radiation
intensities of these lines are not sufficient. Therefore,
these lines should be removed from further considera-
tion.
In Fig. 4 Boltzmann plots involving of spectroscopic
data for copper and nickel lines for the axial point (see
Fig. 4,a), and radial distance 0.85 mm (see Fig. 4,b), and
1.81 mm (see Fig. 4,c) of the average cross-section of
plasma of free burning electric arc discharge are shown.
One can see that in plasma diagnostics only spectral
lines Ni I 547.6 and 508.4 nm (for spectroscopic data [16,
17]) under these experimental conditions can be used.
These lines are well isolated in the spectrum emission and
have sufficient intensities. The difference between the
energies of excitation of the upper levels is 2 eV.
So, to determine radial temperature distribution of
plasma arc discharge between Cu-Ni electrodes spectral
lines Ni I 547.6 and 508.4 nm (Fig. 5, curves 1, 2) and
Cu I 510.5, 515.3, 521.8, 570.0, 578.2 nm (see Fig. 5,
curve 3) were used. The radial temperature profiles
obtained by Boltzmann plot method on the base of Cu I
spectral lines (curve 3) and Ni I spectral lines (curve 2)
with spectroscopic data [17] are coincide within meas-
urement error.
The appropriateness of utilization in plasma diag-
nostics of spectroscopic data [16] is under discussion
now. Therefore additional careful investigations by
different techniques must be carried out to validate these
data.
0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5
4000
4500
5000
5500
6000
6500
7000
7500
- C u I
- N i I [16]
- N i I [17]
1
3
2
r, m m
T, K
1
Fig. 5. Radial distribution of plasma temperature of
electric arc discharge between Cu-Ni electrodes at
current 3.5 A, obtained by Boltzmann plot method using
Ni I (curve 1 and 2), Cu I (curve 3) spectral lines
CONCLUSIONS
Thermal plasma of electric arc discharge in air be-
tween Cu–Ni electrodes at arc current 3.5 A in the as-
sumption of local thermodynamic equilibrium was in-
vestigated by optical emission spectroscopy. Nickel
electrode was used as a cathode and copper was used as
anode material. Such type of arc is developed as an
initial model of electric discharge between composite
Cu–Ni electrodes.
The radial profiles of temperature in discharge col-
umn were obtained by Boltzmann plot techniques. Cop-
per spectral lines Cu I 510.5, 515.3, 521.8, 570.0,
578.2 nm were used to measure the radial distribution of
plasma temperature. Selection of Ni I spectral lines for
purposes of plasma diagnostics was carried out as well.
Spectroscopic data of some optical transitions of nickel
a
b
c
ISSN 1562-6016. ВАНТ. 2015. №4(98) 219
atom is testified at Boltzmann plot in some radial posi-
tions of arc plasma column.
Two spectral lines Ni I 547.6 and 508.4 nm of suffi-
cient radiation intensities, which are well isolated in the
spectrum emission, can be recommended in diagnostics
of thermal plasma with nickel vapours. The difference
between the energies of excitation of the upper levels is
2 eV. So, an appropriate accuracy of temperature meas-
urement can be realized.
The additional investigations by different techniques
must be carried out to validate the spectroscopic data of
some optical transitions of nickel atom.
ACKNOWLEDGEMENTS
The authors wish to thank Dr.V. Boretskij,
Mr.A. Lebid, Mr.S. Fesenko for help in experiments
organization and the preparation of this article.
REFERENCES
1. G.V. Butkevich, G.S. Belkin, et al. Electrical ero-
sion of high-current contacts and electrodes. M.:
«Energia», 1978 (in Russian).
2. R.V. Minakova, A.P. Kresanova, M.M. Churakov,
E.V. Khomenko. The development tendencies of
manufacturing technologies of composite materials
and their contacts // Electric Contacts and Elec-
trodes. Kiev: “Frantsevich Institute for Problems of
Materials Science”. 1998, p. 5-19 (in Russian).
3. R.V. Minakova, N.D. Lesnik, A.P. Kresanova,
A.A. Flis, E.V. Khomenko. Contact interaction,
W (Mo, Cr)-Cu structure and properties of compo-
sites with additives // Powder Metallurgy and Metal
Ceramics. Kiev: “Frantsevich Institute for Problems of
Materials Science” (35). 1996, p. 7-8.
4. W. Lochte-Holtgreven. Plasma diagnostics. M.:
«Mir», 1971 (in Russian).
5. I.L. Babich, V.F. Boretskij, A.N. Veklich,
R.V. Semenyshyn. Spectroscopic data and Stark
broadening of Cu I and Ag I spectral lines: Selection
and analysis // Advances in Space Research (54).
2014, p. 1254-1263.
6. R.V. Semenyshyn, A.N. Veklich, I.L. Babich,
V.F Boretskij. Spectroscopy peculiarities of thermal
plasma of electric arc discharge between electrodes
with Zn admixtures // Advances in Space Research
(54). 2014, p. 1235-1241.
7. S. Fesenko, A. Veklich, V. Boretskij, Y. Cressault,
A. Gleizes, Ph. Teulet. Properties of thermal air
plasma with admixing of copper and carbon // Jour-
nal of Physics: Conference Series (550). 2014,
p. 012008.
8. A.N. Veklich, A.V. Lebid, P.V. Soroka,
V.F. Boretskij, I.L. Babich. Investigations of thermal
plasma with metal impurities. Part II: Peculiarities of
spectroscopy by W I, Mo I, Cu I spectral lines //
Problems of Atomic Science and Technology. Series
“Plasma Physics”. 2013, № 1, p. 213-215.
9. K. Bockasten. Transformation of observed radiances
into radial distribution of the emission of a plasma //
Journ. of Opt. Soc. of Am. (51). 1961, № 9, p. 943-
947.
10. A.N. Veklich, V.F. Boretskij, A.I. Ivanisik,
A.V. Lebid, S.A. Fesenko. Investigations of electric
arc plasma between composite Cu–C electrodes //
Problems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of Accelera-
tion”. 2013, № 4, p. 204-208.
11. I.S. Grigoriev, E.Z. Meilikhov. Physical quantities.
Reference book. Moscow: «Energoatomizdat», 1991.
12. A.S. Ehonovich. Short reference book of physics.
Moscow: «Visshaya shkola», 1976 (in Russian).
13. A.A. Radtsig, B.M. Smirnov. The parameters of
atoms and atomic ions. Moscow: «Energoatomiz-
dat», 1986.
14. Yu.Yu. Lurie. Reference book of analytical chemis-
try. Moscow: «Himiya», 1971 (in Russian).
15. L.V. Gurvich, et al. Breaking energy of chemical
bonds. Ionization potentials and electron affinity.
Moscow: «Nauka», 1974 (in Russian).
16. Atomic Spectra Database (version 5.2) /
A. Kramida, Yu. Ralchenko, J. Reader, and NIST
ASD Team (2014) // Gaithersburg, MD: National
Institute of Standards and Technology.
http://physics.nist.gov/asd
17. C.H. Corliss, W.R. Bozman. The transition proba-
bilities and oscillator strengths of 70 elements. M.:
«Mir», 1968 (in Russian).
Article received 01.06.2015
ОСОБЕННОСТИ СПЕКТРОСКОПИИ ТЕРМИЧЕСКОЙ ПЛАЗМЫ С ПАРАМИ МЕДИ И НИКЕЛЯ
А.Н. Веклич, М.М. Клешич, В.В. Ващенко, И.А. Кузьминская
Методами оптической эмиссионной спектроскопии исследована плазма электродугового разряда между
электродами Cu-Ni в предположении локального термодинамического равновесия. Методом диаграмм
Больцмана получены радиальные профили температуры в плазменном столбе. Для определения распределе-
ния температуры использованы спектральные линии атома меди. Выполнена селекция спектральных линий
Ni I. Для некоторых оптических переходов атома никеля выполнена экспериментальная проверка спектро-
скопических данных.
ОСОБЛИВОСТІ СПЕКТРОСКОПІЇ ТЕРМІЧНОЇ ПЛАЗМИ З ПАРАМИ МІДІ ТА НІКЕЛЮ
А.М. Веклич, М.М. Клешич, В.В. Ващенко, І.О. Кузьмінська
Методами оптичної емісійної спектроскопії досліджена плазма електродугового розряду між електрода-
ми Cu-Ni у припущенні локальної термодинамічної рівноваги. Методом діаграм Больцмана отриманo радіа-
льні розподіли температури в плазмовому стовпі. Для визначення радіального розподілу температури вико-
ристанo спектральні лінії атома міді. Виконана селекція спектральних ліній Ni I. Для деяких оптичних пере-
ходів атома нікелю виконана експериментальна перевірка спектроскопічних даних.
INTRODUCTION
2. Results and Discussions
It must be noted that plasma emission spectrum of electric arc between Cu-Ni electrodes, which is shown in Fig. 2, was obtained with taking into account of real CCD matrix sensitivity. So, intensities of Cu I and Ni I spectral lines can be used in me...
Among the optical emission spectroscopy techniques, methods of relative intensities of spectral lines and Boltzmann plot are the most common for the plasma temperature determination.
Spectral lines of copper atom Cu I 510.5, 515.3, 521.8, 570.0, 578.2 nm were chosen to measure radial profile of plasma temperature by Boltzmann’s plot technique. Previously this method of diagnostics on the base of these lines was performed and corre...
With the aim of validation of obtained results it is interesting to measure temperature of arc discharge plasma by both kind of spectral lines – copper and nickel atoms as well. Initially spectral lines Ni I 547.6, 508.4, 503.5, 445.9 and 440.1 nm wer...
In Fig. 3 Boltzmann plot, involving of spectroscopic data for copper [5] and nickel [16 and 17] lines, for the axial point of the average cross-section of plasma of free burning electric arc discharge between Cu-Ni electrodes at current 3.5 А is shown...
Additional remark is concerned to the spectral lines Ni I 503.5, 445.9 and 440.1 nm. In real experiments with electric discharge at arc current 3.5 А the radiation intensities of these lines are not sufficient. Therefore, these lines should be removed...
In Fig. 4 Boltzmann plots involving of spectroscopic data for copper and nickel lines for the axial point (see Fig. 4,a), and radial distance 0.85 mm (see Fig. 4,b), and 1.81 mm (see Fig. 4,c) of the average cross-section of plasma of free burning ele...
REFERENCES
|