Does electric field nonuniformity affect gas breakdown?

This paper presents the results of studying the gas breakdown in the nonuniform constant electric field. We registered the discharge breakdown curves in nitrogen between flat electrodes of 12 mm in diameter and spaced 5 and 25 mm apart whereas the chamber diameter was 56 mm. We demonstrate that in c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Lisovskiy, V.A., Osmayev, R.O., Yegorenkov, V.D.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112130
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Does electric field nonuniformity affect gas breakdown? / V.A. Lisovskiy, R.O. Osmayev, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 211-214. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112130
record_format dspace
spelling irk-123456789-1121302017-01-18T03:03:44Z Does electric field nonuniformity affect gas breakdown? Lisovskiy, V.A. Osmayev, R.O. Yegorenkov, V.D. Плазменно-пучковый разряд, газовый разряд и плазмохимия This paper presents the results of studying the gas breakdown in the nonuniform constant electric field. We registered the discharge breakdown curves in nitrogen between flat electrodes of 12 mm in diameter and spaced 5 and 25 mm apart whereas the chamber diameter was 56 mm. We demonstrate that in contrast to previous studies with the narrow gap between the electrodes and the chamber wall the breakdown curves for different space values actually coincide when plotted to the U(pL) scale. The Paschen law holds under conditions of our experiments though the inter-electrode spacing exceeds almost fourfold the electrode radius and the electric field axial profile for a larger spacing possesses a minimum at the inter-electrode gap center. Consequently, under condition studied the electric field nonuniformity did not affect practically the breakdown process. Представлені результати досліджень пробою газу в неоднорідному постійному електричному полі. Виміряні криві запалювання у нітрогені для відстаней між плоскими електродами 5 і 25 мм відповідно, при діаметрах електродів 12 мм і камери 56 мм. Показано, що на відміну від результатів попередніх досліджень із вузьким зазором між електродами і стінкою камери криві запалювання для різних відстаней практично збігаються, якщо їх побудувати в масштабі U(pL). За умовами цих експериментів (відстань між електродами приблизно в 4 рази перевищує їх радіус) виконується закон Пашена, незважаючи на те, що осьовий профіль електричного поля для більшого зазору має мінімум у центрі проміжку між електродами. Отже, неоднорідність розподілу електричного поля за даних умов практично не мала впливу на процес пробою. Представлены результаты исследований пробоя газа в неоднородном постоянном электрическом поле. Измерены кривые зажигания в азоте для расстояний между плоскими электродами 5 и 25 мм соответственно, при диаметрах электродов 12 мм и камеры 56 мм. Показано, что в отличие от результатов предыдущих исследований с узким зазором меж-ду электродами и стенкой камеры кривые зажигания для различных расстояний практически совпадают, если их построить в масштабе U(pL). При условиях данных экспериментов (расстояние между электродами примерно в 4 раза превышает их радиус) выполняется закон Пашена, несмотря на то, что осевой профиль электрического поля для большего зазора имеет минимум в центре промежутка между электродами. Следовательно, неоднородность распределения электрического поля в данных условиях практически не оказала влияния на процесс пробоя. 2015 Article Does electric field nonuniformity affect gas breakdown? / V.A. Lisovskiy, R.O. Osmayev, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 211-214. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/112130 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Lisovskiy, V.A.
Osmayev, R.O.
Yegorenkov, V.D.
Does electric field nonuniformity affect gas breakdown?
Вопросы атомной науки и техники
description This paper presents the results of studying the gas breakdown in the nonuniform constant electric field. We registered the discharge breakdown curves in nitrogen between flat electrodes of 12 mm in diameter and spaced 5 and 25 mm apart whereas the chamber diameter was 56 mm. We demonstrate that in contrast to previous studies with the narrow gap between the electrodes and the chamber wall the breakdown curves for different space values actually coincide when plotted to the U(pL) scale. The Paschen law holds under conditions of our experiments though the inter-electrode spacing exceeds almost fourfold the electrode radius and the electric field axial profile for a larger spacing possesses a minimum at the inter-electrode gap center. Consequently, under condition studied the electric field nonuniformity did not affect practically the breakdown process.
format Article
author Lisovskiy, V.A.
Osmayev, R.O.
Yegorenkov, V.D.
author_facet Lisovskiy, V.A.
Osmayev, R.O.
Yegorenkov, V.D.
author_sort Lisovskiy, V.A.
title Does electric field nonuniformity affect gas breakdown?
title_short Does electric field nonuniformity affect gas breakdown?
title_full Does electric field nonuniformity affect gas breakdown?
title_fullStr Does electric field nonuniformity affect gas breakdown?
title_full_unstemmed Does electric field nonuniformity affect gas breakdown?
title_sort does electric field nonuniformity affect gas breakdown?
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/112130
citation_txt Does electric field nonuniformity affect gas breakdown? / V.A. Lisovskiy, R.O. Osmayev, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 211-214. — Бібліогр.: 16 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lisovskiyva doeselectricfieldnonuniformityaffectgasbreakdown
AT osmayevro doeselectricfieldnonuniformityaffectgasbreakdown
AT yegorenkovvd doeselectricfieldnonuniformityaffectgasbreakdown
first_indexed 2025-07-08T03:26:23Z
last_indexed 2025-07-08T03:26:23Z
_version_ 1837047673319849984
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 211 DOES ELECTRIC FIELD NONUNIFORMITY AFFECT GAS BREAKDOWN? V.A. Lisovskiy1,2, R.O. Osmayev1,2, V.D. Yegorenkov1 1V.N. Karazin Kharkіv National University, Kharkov, Ukraine; 2Scientific Center of Physical Technologies, Kharkov, Ukraine This paper presents the results of studying the gas breakdown in the nonuniform constant electric field. We reg- istered the discharge breakdown curves in nitrogen between flat electrodes of 12 mm in diameter and spaced 5 and 25 mm apart whereas the chamber diameter was 56 mm. We demonstrate that in contrast to previous studies with the narrow gap between the electrodes and the chamber wall the breakdown curves for different space values actual- ly coincide when plotted to the U(pL) scale. The Paschen law holds under conditions of our experiments though the inter-electrode spacing exceeds almost fourfold the electrode radius and the electric field axial profile for a larger spacing possesses a minimum at the inter-electrode gap center. Consequently, under condition studied the electric field nonuniformity did not affect practically the breakdown process. PACS: 52.80.Hc INTRODUCTION Direct current glow discharge is widely applied in high pressure xenon and mercury lamps [1], in the pro- cesses of plasma nitridizing iron-based alloys [2], as well as for pumping gas discharge lasers (helium-neon ones, carbon oxide ones with nitrogen admixture etc) [3]. In order to optimize plasma technological processes and devices one has to know the conditions under which an electrical discharge ignites in them. An breakdown curve describes the ranges of voltage and gas pressure values whithin which a gas discharge plasma may be produced. Breakdown curves (the dependence of the break- down voltage U on the product of the gas pressure and the inter-electrode distance pL) in short tubes obey Paschen’s law U = f (pL) [4, 5]. For Paschen’s law to hold the voltage at the breakdown curves minima as well as the pL product for different values of the inter- electrode distance have to remain unchanged i.e. con- stant. The breakdown voltage U is the function of the pL product but not of p and L separately. Therefore if the pL product remains constant in two geometrically simi- lar discharge tubes with flat electrodes and the identical gas species then the breakdown voltage also remains the same. Consequently, for Paschen’s law to hold it is nec- essary that the breakdown curves U(p) registered for different inter-electrode distance L values match each other when plotted as a function U(pL). However the authors of a number of papers [6 - 12] found that with the pL values fixed the discharge break- down voltage values in narrow gaps were remarkably lower than those for longer inter-electrode distance val- ues. They demonstrated that on increasing the inter- electrode distance keeping the pL product fixed the breakdown voltage grew. Papers [7 - 11] studied in de- tail the discharge ignition in cylindrical tubes in the broad range of the distance values L between flat elec- trodes of radius R with the ratio values of L/R ≤ 3 [7 - 10] and L/R ≤ 60 [11]. They found that Paschen’s law holds only for the gas breakdown in short discharge tubes when L/R ≤ 1. In the range of L/R > 1 increasing the inter-electrode distance L leads to the shift of break- down curves U(p) to the region of higher breakdown voltage values U and higher gas pressure ones. When the condition L/R > 20 holds, the breakdown curves with the distance L growing experience a shift to the range of higher voltage U values with the gas pressure at their minima remaining almost unchanged [11]. In paper [12] the influence of the electrode diameter (55, 25, 12, 5, 2.4 and 0.8 mm) on discharge ignition in nitrogen was studied in the discharge tube of 56 mm in diameter with the inter-electrode distance of 25 mm. The authors of paper [12] found that decreasing the electrode diameter led at higher gas pressure to the dis- charge ignition at lower voltage values than for large electrodes and at low gas pressure they observed the shift of breakdown curves to higher voltage breakdown values. They discovered that all registered breakdown curves intersected at the nitrogen pressure value of p ≈ 0.9 Torr which was close to the inflection point of the breakdown curves for large electrodes. However the authors of paper [12] did not study the gas breakdown at different inter-electrode gap values, therefore one can- not draw a conclusion from their results on the applica- bility of Paschen’s law for nonuniform electric fields. The authors of paper [13] registered the breakdown curves of the discharge between the flat anode and cath- odes of different design: a flat one and conical ones of dif- ferent height keeping constant the minimum inter-electrode distance. They observed that the minima and the right-hand sections of breakdown curves matched, and only the left- hand sections differed. At lower pressure values they observed the divergence of left-hand branches of break- down curves for the cathodes of different design. The present paper aimed to register the breakdown curves between flat electrodes with their diameter being less than the inner diameter of the discharge tube for the cases of uniform and nonuniform distributions of the electric field within the inter-electrode gap and to clarify the applicability of Paschen’s law for the breakdown description in nonuniform fields. For gas breakdown studies the discharge tube was employed of 56 mm inner diameter with flat electrodes of 12 mm in diameter spaced 5 and 25 mm apart. Stud- ies were performed in nitrogen in the pressure range p = 0.05…100 Torr and dc voltage range Udc ≤ 3000 В. The gas pressure was controlled with baratrons of 1000 and 10 Torr. EXPERIMENTAL RESULTS Conventionally the researchers register the break- down curves between flat electrodes with about uniform ISSN 1562-6016. ВАНТ. 2015. №4(98) 212 distribution of the electric field strength between them. However in many gas-discharge devices one often ap- plies small electrodes of complicated design. They pro- duce a nonunform electric field and are located inside the chambers of large dimensions. Therefore it is of interest to register the breakdown curves between flat electrodes which diameter is less than that of the tube, and here the breakdown may develop along a longer way in the nonuniform field. Consider the breakdown curves in nitrogen we regis- tered for different gap values between the flat cathode and anode. Fig. 1 depicts the breakdown curves (break- down voltage against gas pressure) for two values of the distance between flat electrodes of 5 and 25 mm which diameter was 12 mm with the inner diameter of the dis- charge tube of 56 mm. The same breakdown curves are shown in Fig. 2 as a function of the product of gas pres- sure and inter-electrode gap size pL. It is clear from these figures that both breakdown curves possess a con- ventional U-type pattern. Increasing the inter-electrode gap value from 5 to 25 mm led to the shift of the break- down curve to the low pressure range whereas the min- imum breakdown voltage was equal to about 286 V for both curves. 0,1 1 10 100 100 1000 U, V p, Torr L = 25 mm L = 5 mm Fig. 1. Breakdown curves in nitrogen for the inter-electrode gap values of 5 and 25 mm 0,01 0,1 1 10 100 100 1000 U, V pL, Torr L = 25 mm L = 5 mm Fig. 2. Breakdown voltage аgainst pL product for the gap values betwee flat electrodes of 5 and 25 mm Again, it follows from Fig. 2 that at the pressure near to and to the left of the minima the breakdown curves for different gap values match practically when plotted to the U(pL) scale. One may draw the conclusion from these results that Paschen’s law holds in the gas pressure range indicated. However at higher pressure values (which thrice or more exceed the pressure value at the minimum) the right-hand branch of the break- down curve for the gap value of 25 mm runs below the curve for 5 mm. Fig. 3. Electric potential distribution in gaps between flat electrodes of 5 and 25 mm 0,0 0,2 0,4 0,6 0,8 1,0 -500 -400 -300 -200 -100 0 U, V x/L L = 5 mm L = 25 mm 0,0 0,2 0,4 0,6 0,8 1,0 0 20 100 120 x/L E, 1 03 V /m Fig. 4. Axial distributions of electric field strength and potential for the gaps between flat electrodes of 5 and 25 mm Fig. 3 shows the potential profiles calculated with the FemLab code (COMSOL, Inc., www.comsol.com) [14] for the electrodes of 12 mm in diameter spaced 5 and 25 mm apart and located in the chamber of 56 mm in diameter. In both cases it was assumed that the inter- electrode voltage drop was 500 V. Correspondingly, Fig. 4 presents the axial distributions of the potential and the electric field strength between the same elec- trodes. The figures demonstrate the linear pattern of the http://www.comsol.com/ ISSN 1562-6016. ВАНТ. 2015. №4(98) 213 potential variation within the gap of 5 mm whereas the field remains constant. However for larger gap of 25 mm between the electrodes the potential ceases to be linear whereas the electric field strength is maximum near the electrodes but it decreases fast when one de- parts from their surface and possesses a minimum at the central region. The condition for gas breakdown within the flat gap for the nonuniform field has the form [15] ( ) ( ) 0 ln 1 1 . L E z dzα γ= +  ∫ (1) In the electron avalanche propagating from the cath- ode to the anode a certain number of ion-electron pairs have to be produced. This number is determined only by the secondary ion-electron emission coefficient and it does not depend on the circumstance whether the break- down occurs in the uniform or strongly nonuniform field. The integral in formula (1) is exactly equal to the value of the α·L product corresponding to the break- down voltage for this gap in the uniform field between large flat electrodes. In weak electric fields the first Townsend coefficient α exp .Bp A E p α   = ⋅ ⋅ −    (2) rises with the growth rate increasing with Е increasing (A and B constants depend on ion species) and in very strong fields its growth rate decreases. Fig. 5 shows how the first Townsend coefficient divided by gas pressure α/p and ionization ability of electrons η depend on the reduced electric field E/p. The maximum ionization ability of electrons is observed at the reduced electric field value E/p = B. In Fig. 5 this value is shown with a vertical line. The inflection point of the α(Е) function is located at the value of the reduced electric field strength Е/р=В/2 and it is also shown in the figure. 0 200 400 600 800 1000 0 2 4 6 8 10 12 E/p = B/2 E/p = B α/p α/ p, cm -1 T or r-1 E/p , V/(cm Torr) 0,000 0,005 0,010 0,015 0,020 η/p η, V -1 Fig. 5. First Townsend coefficient and ionization ability of electrons against reduced electric field To the right of the inflection point the non-distorted breaking reduced field is Е/р<В/2, and the redistribution of the potential between the electrodes, if the voltage between them 0 L U Edx= ∫ is identical for the cases of uniform and nonuniform distributions of the electric field, makes the conditions for the gas breakdown easier because the enhanced field introduces a larger contribu- tion into integral (1) than the weakened field subtracts. To the left of the inflection point (Е/р> В/2) the process of ionization multiplication is impeded because of the redistribution of the electric field in the discharge gap [16] and the breakdown voltage increases, what we ob- serve in Fig. 1. From the considerations outlined above one may draw the following conclusion: the ionization process is made easier in the nonuniform field at sufficiently high pressure (to the right of the inflection point). Therefore the right-hand branch of the breakdown curve for the inter-electrode distance of 25 mm runs below that for the distance of 5 mm. Note also that the minima of the breakdown curves for the gaps of 5 and 25 mm in Fig. 2 coincide despite the fact that the axial profile of the electric field for the larger gap is not uniform but it possesses a minimum at the center of the inter-electrode gap. Consequently, the electric field nonuniformity did not affect practically the breakdown process under conditions of our experi- ments. In discharge tubes with the electrodes spanning over almost all its cross section the diffusion escape of electrons to the tube walls plays a large role. Fig. 6 pre- sents the breakdown curves for the inter-electrode gaps of 5 and 25 mm for three different sets of electrode and tube diameter values. In the first set the electrode and tube diameter values were equal to 12 and 56 mm, re- spectively (these curves are depicted above in Figs. 1 and 2). In the second set we employed the electrodes of 55 mm in diameter placed inside the tube of 56 mm in diameter. The third set employed the electrodes of 12 mm in diameter placed inside the tube of 13 mm in diameter. Note that in the second and third sets the elec- trodes almost closed the cross section of the tube. 0,1 1 10 100 1000 5000 U, V pL, Torr De = 12 mm, Dt = 56 mm L = 5 mm L = 25 mm De = 55 mm, Dt = 56 mm L = 5 mm L = 25 mm De = 12 mm, Dt = 13 mm L = 5 mm L = 25 mm 500 Fig. 6. Breakdown voltage against pL product for the gaps of 5 and 25 mm between flat electrodes for different diameters of electrodes and tubes From the data of paper [11] it follows that Paschen’s law is valid when the inter-electrode distance L does not exceed the diameter (double radius R) of the tube (elec- trodes), i.e. for L/R ≤ 2. This case is observed with the second set when the maximum inter-electrode distance did not exceed the radii of the tube and electrodes. In longer tubes when inter-electrode distance exceeds the tube and electrode radii noticeably, breakdown curves minima are shifted to the range of larger breakdown voltage values (what we observe in Fig. 6), and Paschen’s law ceases to be valid. In our case when the inter-electrode distance around 4 times exceeds its radi- us and the tube radius is 4.7 times larger than the elec- ISSN 1562-6016. ВАНТ. 2015. №4(98) 214 trode one, electron loss due to diffusion escape to the walls practically does not play any role. CONCLUSIONS This paper reports the breakdown curves in nitrogen its authors registered for two inter-electrode distance values of 5 and 25 mm, the electrode diameter was 12 mm, and the inner diameter of the discharge chamber was 56 mm. We found that for flat electrodes the break- down curves for different inter-electrode gap values actually coincide when plotted to the U(pL) scale. A conclusion may be drawn from them that under condi- tions of these experiments (the inter-electrode distance about four times exceeds its radius) Paschen’s law holds despite the fact that the axial profile of the electric field for a larger gap possesses a minimum at the center of the inter-electrode gap. Consequently, the nonunform pattern of the electric field distribution does not affect practically the breakdown process. The discharge tube radius exceeds 4.7 times the electrode one; therefore the electron loss to the walls due to diffusion escape of them plays no role for short gaps of 5 and 25 mm. REFERENCES 1. G. Zissis, S. Kitsinelis. State of art on the science and technology of electrical light sources: from the past to the future // J. Phys. D: Appl. Phys. 2009. v. 42, № 17, p. 173001. 2. M. Berg, C.V. Budtz-Jørgensen, H. Reitz, K.O. Schweitz, J. Chevallier, P. Kringhøj, J. Bøttiger. On plasma nitriding of steels // Surface and Coatings Technology. 2000, v. 124, № 1, p. 25-31. 3. Handbook of Laser Technology and Applications. Volume II: Laser Design and Laser Systems / Eds. C.E. Webb, J.D.C. Jones, Bristol and Philadelphia: IOP Publishing Ltd., 2004, 1555 p. 4. F. Paschen. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz // Annalen der Physik und Chemie. 1889, v. 273, № 5, p. 69-96. 5. V. Lisovskiy, V. Yegorenkov. In-depth treatment of discharge ignition data during undergraduate labora- tory work // Eur. J. Phys. 2014, v. 35, №4, p. 045021. 6. J.S. Townsend, S.P. MacCallum. Electrical proper- ties of neon // Philosophical Magazine. 1928, v. 6, № 38, p. 857-878. 7. V.A. Lisovskiy, S.D. Yakovin. Experimental Study of a Low-Pressure Glow Discharge in Air in Large- Diameter Discharge Tubes // Plasma Physics Re- ports. 2000, v. 26, № 12, p. 1066-1075. 8. V.A. Lisovskiy, S.D. Yakovin, V.D. Yegorenkov. Low-pressure gas breakdown in uniform DC electric field // J. Phys. D: Appl. Phys. 2000, v. 33, № 21, p. 2722-2730. 9. V.A. Lisovskiy, S.D. Yakovin. Scaling Law for a Low-Pressure Gas Breakdown in a Homogeneous DC Electric Field // JETP Letters. 2000, v. 72, № 2, p. 34-37. 10. V.A. Lisovskiy, S.D. Yakovin. A Modified Paschen Law for the Initiation of a DC Glow Discharge in Inert Gases // Technical Physics. 2000, v. 45, № 6, p. 727-731. 11. V.A. Lisovskiy, V.A. Koval, V.D. Yegorenkov. DC breakdown of low pressure gas in long tubes // Phys- ics Letters A. 2011, v. 375, № 19, p. 1986-1989. 12. V.A. Lisovskiy, R.O. Osmayev, V.D. Yegorenkov. Gas breakdown in dc electric field in a discharge tube with flat and conical cathodes // Problems of Atomic Science and Technology. 2014, № 6, p. 183. 13. V.A. Lisovskiy, V.V. Malinovskiy, V.A. Derevyanko. Effect of the flat electrode diameter on the ignition and burning of dc discharge // Journal of Kharkiv National University, physical series «Nuclei, Parti- cles, Fields». 2013, № 1059, iss. 3, p. 65-74. 14. V. Lisovskiy, S. Martins, K. Landry, D. Douai, J.-P. Booth, V. Cassagne, V. Yegorenkov. The effect of discharge chamber geometry on the ignition of low-pressure rf capacitive discharges // Physics of Plasmas. 2005, v. 12, № 9, p. 093505. 15. Yu.P. Raizer. Gas discharge physics. Berlin: Springer, 1991. 16. V.A. Lisovskiy, S.D. Yakovin. Cathode Layer Char- acteristics of a Low-Pressure Glow Discharge in Ar- gon and Nitrogen // Technical Physics Letters. 2000, v. 26, № 10, p. 891-893. Article received 27.04.2015 ВЛИЯЕТ ЛИ НЕОДНОРОДНОСТЬ ПОСТОЯННОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА ПРОБОЙ ГАЗА? В.А. Лисовский, Р.О. Осмаев, В.Д. Егоренков Представлены результаты исследований пробоя газа в неоднородном постоянном электрическом поле. Измерены кривые зажигания в азоте для расстояний между плоскими электродами 5 и 25 мм соответственно, при диаметрах элек- тродов 12 мм и камеры 56 мм. Показано, что в отличие от результатов предыдущих исследований с узким зазором меж- ду электродами и стенкой камеры кривые зажигания для различных расстояний практически совпадают, если их по- строить в масштабе U(pL). При условиях данных экспериментов (расстояние между электродами примерно в 4 раза пре- вышает их радиус) выполняется закон Пашена, несмотря на то, что осевой профиль электрического поля для большего зазора имеет минимум в центре промежутка между электродами. Следовательно, неоднородность распределения элек- трического поля в данных условиях практически не оказала влияния на процесс пробоя. ЧИ ВПЛИВАЄ НЕОДНОРІДНІСТЬ ПОСТІЙНОГО ЕЛЕКТРИЧНОГО ПОЛЯ НА ПРОБІЙ ГАЗУ? В.О. Лісовський, Р.О. Осмаєв, В.Д. Єгоренков Представлені результати досліджень пробою газу в неоднорідному постійному електричному полі. Виміряні криві запалювання у нітрогені для відстаней між плоскими електродами 5 і 25 мм відповідно, при діаметрах електродів 12 мм і камери 56 мм. Показано, що на відміну від результатів попередніх досліджень із вузьким зазором між електродами і стінкою камери криві запалювання для різних відстаней практично збігаються, якщо їх побудувати в масштабі U(pL). За умовами цих експериментів (відстань між електродами приблизно в 4 рази перевищує їх радіус) виконується закон Па- шена, незважаючи на те, що осьовий профіль електричного поля для більшого зазору має мінімум у центрі проміжку між електродами. Отже, неоднорідність розподілу електричного поля за даних умов практично не мала впливу на процес пробою.