Does electric field nonuniformity affect gas breakdown?
This paper presents the results of studying the gas breakdown in the nonuniform constant electric field. We registered the discharge breakdown curves in nitrogen between flat electrodes of 12 mm in diameter and spaced 5 and 25 mm apart whereas the chamber diameter was 56 mm. We demonstrate that in c...
Gespeichert in:
Datum: | 2015 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Schriftenreihe: | Вопросы атомной науки и техники |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/112130 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Does electric field nonuniformity affect gas breakdown? / V.A. Lisovskiy, R.O. Osmayev, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 211-214. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112130 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121302017-01-18T03:03:44Z Does electric field nonuniformity affect gas breakdown? Lisovskiy, V.A. Osmayev, R.O. Yegorenkov, V.D. Плазменно-пучковый разряд, газовый разряд и плазмохимия This paper presents the results of studying the gas breakdown in the nonuniform constant electric field. We registered the discharge breakdown curves in nitrogen between flat electrodes of 12 mm in diameter and spaced 5 and 25 mm apart whereas the chamber diameter was 56 mm. We demonstrate that in contrast to previous studies with the narrow gap between the electrodes and the chamber wall the breakdown curves for different space values actually coincide when plotted to the U(pL) scale. The Paschen law holds under conditions of our experiments though the inter-electrode spacing exceeds almost fourfold the electrode radius and the electric field axial profile for a larger spacing possesses a minimum at the inter-electrode gap center. Consequently, under condition studied the electric field nonuniformity did not affect practically the breakdown process. Представлені результати досліджень пробою газу в неоднорідному постійному електричному полі. Виміряні криві запалювання у нітрогені для відстаней між плоскими електродами 5 і 25 мм відповідно, при діаметрах електродів 12 мм і камери 56 мм. Показано, що на відміну від результатів попередніх досліджень із вузьким зазором між електродами і стінкою камери криві запалювання для різних відстаней практично збігаються, якщо їх побудувати в масштабі U(pL). За умовами цих експериментів (відстань між електродами приблизно в 4 рази перевищує їх радіус) виконується закон Пашена, незважаючи на те, що осьовий профіль електричного поля для більшого зазору має мінімум у центрі проміжку між електродами. Отже, неоднорідність розподілу електричного поля за даних умов практично не мала впливу на процес пробою. Представлены результаты исследований пробоя газа в неоднородном постоянном электрическом поле. Измерены кривые зажигания в азоте для расстояний между плоскими электродами 5 и 25 мм соответственно, при диаметрах электродов 12 мм и камеры 56 мм. Показано, что в отличие от результатов предыдущих исследований с узким зазором меж-ду электродами и стенкой камеры кривые зажигания для различных расстояний практически совпадают, если их построить в масштабе U(pL). При условиях данных экспериментов (расстояние между электродами примерно в 4 раза превышает их радиус) выполняется закон Пашена, несмотря на то, что осевой профиль электрического поля для большего зазора имеет минимум в центре промежутка между электродами. Следовательно, неоднородность распределения электрического поля в данных условиях практически не оказала влияния на процесс пробоя. 2015 Article Does electric field nonuniformity affect gas breakdown? / V.A. Lisovskiy, R.O. Osmayev, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 211-214. — Бібліогр.: 16 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/112130 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Lisovskiy, V.A. Osmayev, R.O. Yegorenkov, V.D. Does electric field nonuniformity affect gas breakdown? Вопросы атомной науки и техники |
description |
This paper presents the results of studying the gas breakdown in the nonuniform constant electric field. We registered the discharge breakdown curves in nitrogen between flat electrodes of 12 mm in diameter and spaced 5 and 25 mm apart whereas the chamber diameter was 56 mm. We demonstrate that in contrast to previous studies with the narrow gap between the electrodes and the chamber wall the breakdown curves for different space values actually coincide when plotted to the U(pL) scale. The Paschen law holds under conditions of our experiments though the inter-electrode spacing exceeds almost fourfold the electrode radius and the electric field axial profile for a larger spacing possesses a minimum at the inter-electrode gap center. Consequently, under condition studied the electric field nonuniformity did not affect practically the breakdown process. |
format |
Article |
author |
Lisovskiy, V.A. Osmayev, R.O. Yegorenkov, V.D. |
author_facet |
Lisovskiy, V.A. Osmayev, R.O. Yegorenkov, V.D. |
author_sort |
Lisovskiy, V.A. |
title |
Does electric field nonuniformity affect gas breakdown? |
title_short |
Does electric field nonuniformity affect gas breakdown? |
title_full |
Does electric field nonuniformity affect gas breakdown? |
title_fullStr |
Does electric field nonuniformity affect gas breakdown? |
title_full_unstemmed |
Does electric field nonuniformity affect gas breakdown? |
title_sort |
does electric field nonuniformity affect gas breakdown? |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112130 |
citation_txt |
Does electric field nonuniformity affect gas breakdown? / V.A. Lisovskiy, R.O. Osmayev, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 211-214. — Бібліогр.: 16 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT lisovskiyva doeselectricfieldnonuniformityaffectgasbreakdown AT osmayevro doeselectricfieldnonuniformityaffectgasbreakdown AT yegorenkovvd doeselectricfieldnonuniformityaffectgasbreakdown |
first_indexed |
2025-07-08T03:26:23Z |
last_indexed |
2025-07-08T03:26:23Z |
_version_ |
1837047673319849984 |
fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 211
DOES ELECTRIC FIELD NONUNIFORMITY
AFFECT GAS BREAKDOWN?
V.A. Lisovskiy1,2, R.O. Osmayev1,2, V.D. Yegorenkov1
1V.N. Karazin Kharkіv National University, Kharkov, Ukraine;
2Scientific Center of Physical Technologies, Kharkov, Ukraine
This paper presents the results of studying the gas breakdown in the nonuniform constant electric field. We reg-
istered the discharge breakdown curves in nitrogen between flat electrodes of 12 mm in diameter and spaced 5 and
25 mm apart whereas the chamber diameter was 56 mm. We demonstrate that in contrast to previous studies with
the narrow gap between the electrodes and the chamber wall the breakdown curves for different space values actual-
ly coincide when plotted to the U(pL) scale. The Paschen law holds under conditions of our experiments though the
inter-electrode spacing exceeds almost fourfold the electrode radius and the electric field axial profile for a larger
spacing possesses a minimum at the inter-electrode gap center. Consequently, under condition studied the electric
field nonuniformity did not affect practically the breakdown process.
PACS: 52.80.Hc
INTRODUCTION
Direct current glow discharge is widely applied in
high pressure xenon and mercury lamps [1], in the pro-
cesses of plasma nitridizing iron-based alloys [2], as well
as for pumping gas discharge lasers (helium-neon ones,
carbon oxide ones with nitrogen admixture etc) [3]. In
order to optimize plasma technological processes and
devices one has to know the conditions under which an
electrical discharge ignites in them. An breakdown curve
describes the ranges of voltage and gas pressure values
whithin which a gas discharge plasma may be produced.
Breakdown curves (the dependence of the break-
down voltage U on the product of the gas pressure and
the inter-electrode distance pL) in short tubes obey
Paschen’s law U = f (pL) [4, 5]. For Paschen’s law to
hold the voltage at the breakdown curves minima as
well as the pL product for different values of the inter-
electrode distance have to remain unchanged i.e. con-
stant. The breakdown voltage U is the function of the pL
product but not of p and L separately. Therefore if the
pL product remains constant in two geometrically simi-
lar discharge tubes with flat electrodes and the identical
gas species then the breakdown voltage also remains the
same. Consequently, for Paschen’s law to hold it is nec-
essary that the breakdown curves U(p) registered for
different inter-electrode distance L values match each
other when plotted as a function U(pL).
However the authors of a number of papers [6 - 12]
found that with the pL values fixed the discharge break-
down voltage values in narrow gaps were remarkably
lower than those for longer inter-electrode distance val-
ues. They demonstrated that on increasing the inter-
electrode distance keeping the pL product fixed the
breakdown voltage grew. Papers [7 - 11] studied in de-
tail the discharge ignition in cylindrical tubes in the
broad range of the distance values L between flat elec-
trodes of radius R with the ratio values of L/R ≤ 3 [7 -
10] and L/R ≤ 60 [11]. They found that Paschen’s law
holds only for the gas breakdown in short discharge
tubes when L/R ≤ 1. In the range of L/R > 1 increasing
the inter-electrode distance L leads to the shift of break-
down curves U(p) to the region of higher breakdown
voltage values U and higher gas pressure ones. When
the condition L/R > 20 holds, the breakdown curves
with the distance L growing experience a shift to the
range of higher voltage U values with the gas pressure
at their minima remaining almost unchanged [11].
In paper [12] the influence of the electrode diameter
(55, 25, 12, 5, 2.4 and 0.8 mm) on discharge ignition in
nitrogen was studied in the discharge tube of 56 mm in
diameter with the inter-electrode distance of 25 mm.
The authors of paper [12] found that decreasing the
electrode diameter led at higher gas pressure to the dis-
charge ignition at lower voltage values than for large
electrodes and at low gas pressure they observed the
shift of breakdown curves to higher voltage breakdown
values. They discovered that all registered breakdown
curves intersected at the nitrogen pressure value of
p ≈ 0.9 Torr which was close to the inflection point of
the breakdown curves for large electrodes. However the
authors of paper [12] did not study the gas breakdown at
different inter-electrode gap values, therefore one can-
not draw a conclusion from their results on the applica-
bility of Paschen’s law for nonuniform electric fields.
The authors of paper [13] registered the breakdown
curves of the discharge between the flat anode and cath-
odes of different design: a flat one and conical ones of dif-
ferent height keeping constant the minimum inter-electrode
distance. They observed that the minima and the right-hand
sections of breakdown curves matched, and only the left-
hand sections differed. At lower pressure values they
observed the divergence of left-hand branches of break-
down curves for the cathodes of different design.
The present paper aimed to register the breakdown
curves between flat electrodes with their diameter being
less than the inner diameter of the discharge tube for the
cases of uniform and nonuniform distributions of the
electric field within the inter-electrode gap and to clarify
the applicability of Paschen’s law for the breakdown
description in nonuniform fields.
For gas breakdown studies the discharge tube was
employed of 56 mm inner diameter with flat electrodes
of 12 mm in diameter spaced 5 and 25 mm apart. Stud-
ies were performed in nitrogen in the pressure range
p = 0.05…100 Torr and dc voltage range Udc ≤ 3000 В.
The gas pressure was controlled with baratrons of 1000
and 10 Torr.
EXPERIMENTAL RESULTS
Conventionally the researchers register the break-
down curves between flat electrodes with about uniform
ISSN 1562-6016. ВАНТ. 2015. №4(98) 212
distribution of the electric field strength between them.
However in many gas-discharge devices one often ap-
plies small electrodes of complicated design. They pro-
duce a nonunform electric field and are located inside
the chambers of large dimensions. Therefore it is of
interest to register the breakdown curves between flat
electrodes which diameter is less than that of the tube,
and here the breakdown may develop along a longer
way in the nonuniform field.
Consider the breakdown curves in nitrogen we regis-
tered for different gap values between the flat cathode
and anode. Fig. 1 depicts the breakdown curves (break-
down voltage against gas pressure) for two values of the
distance between flat electrodes of 5 and 25 mm which
diameter was 12 mm with the inner diameter of the dis-
charge tube of 56 mm. The same breakdown curves are
shown in Fig. 2 as a function of the product of gas pres-
sure and inter-electrode gap size pL. It is clear from
these figures that both breakdown curves possess a con-
ventional U-type pattern. Increasing the inter-electrode
gap value from 5 to 25 mm led to the shift of the break-
down curve to the low pressure range whereas the min-
imum breakdown voltage was equal to about 286 V for
both curves.
0,1 1 10 100
100
1000
U,
V
p, Torr
L = 25 mm
L = 5 mm
Fig. 1. Breakdown curves in nitrogen for the
inter-electrode gap values of 5 and 25 mm
0,01 0,1 1 10 100
100
1000
U,
V
pL, Torr
L = 25 mm
L = 5 mm
Fig. 2. Breakdown voltage аgainst pL product for the
gap values betwee flat electrodes of 5 and 25 mm
Again, it follows from Fig. 2 that at the pressure
near to and to the left of the minima the breakdown
curves for different gap values match practically when
plotted to the U(pL) scale. One may draw the conclusion
from these results that Paschen’s law holds in the gas
pressure range indicated. However at higher pressure
values (which thrice or more exceed the pressure value
at the minimum) the right-hand branch of the break-
down curve for the gap value of 25 mm runs below the
curve for 5 mm.
Fig. 3. Electric potential distribution in gaps between
flat electrodes of 5 and 25 mm
0,0 0,2 0,4 0,6 0,8 1,0
-500
-400
-300
-200
-100
0
U,
V
x/L
L = 5 mm
L = 25 mm
0,0 0,2 0,4 0,6 0,8 1,0
0
20
100
120
x/L
E,
1
03 V
/m
Fig. 4. Axial distributions of electric field strength
and potential for the gaps between flat electrodes
of 5 and 25 mm
Fig. 3 shows the potential profiles calculated with
the FemLab code (COMSOL, Inc., www.comsol.com)
[14] for the electrodes of 12 mm in diameter spaced
5 and 25 mm apart and located in the chamber of 56 mm
in diameter. In both cases it was assumed that the inter-
electrode voltage drop was 500 V. Correspondingly,
Fig. 4 presents the axial distributions of the potential
and the electric field strength between the same elec-
trodes. The figures demonstrate the linear pattern of the
http://www.comsol.com/
ISSN 1562-6016. ВАНТ. 2015. №4(98) 213
potential variation within the gap of 5 mm whereas the
field remains constant. However for larger gap of
25 mm between the electrodes the potential ceases to be
linear whereas the electric field strength is maximum
near the electrodes but it decreases fast when one de-
parts from their surface and possesses a minimum at the
central region.
The condition for gas breakdown within the flat gap
for the nonuniform field has the form [15]
( ) ( )
0
ln 1 1 .
L
E z dzα γ= + ∫ (1)
In the electron avalanche propagating from the cath-
ode to the anode a certain number of ion-electron pairs
have to be produced. This number is determined only by
the secondary ion-electron emission coefficient and it
does not depend on the circumstance whether the break-
down occurs in the uniform or strongly nonuniform
field. The integral in formula (1) is exactly equal to the
value of the α·L product corresponding to the break-
down voltage for this gap in the uniform field between
large flat electrodes. In weak electric fields the first
Townsend coefficient α
exp .Bp A
E p
α
= ⋅ ⋅ −
(2)
rises with the growth rate increasing with Е increasing
(A and B constants depend on ion species) and in very
strong fields its growth rate decreases. Fig. 5 shows how
the first Townsend coefficient divided by gas pressure
α/p and ionization ability of electrons η depend on the
reduced electric field E/p. The maximum ionization
ability of electrons is observed at the reduced electric
field value E/p = B. In Fig. 5 this value is shown with a
vertical line. The inflection point of the α(Е) function is
located at the value of the reduced electric field strength
Е/р=В/2 and it is also shown in the figure.
0 200 400 600 800 1000
0
2
4
6
8
10
12
E/p = B/2
E/p = B
α/p
α/
p,
cm
-1
T
or
r-1
E/p , V/(cm Torr)
0,000
0,005
0,010
0,015
0,020
η/p
η,
V
-1
Fig. 5. First Townsend coefficient and ionization ability
of electrons against reduced electric field
To the right of the inflection point the non-distorted
breaking reduced field is Е/р<В/2, and the redistribution
of the potential between the electrodes, if the voltage
between them
0
L
U Edx= ∫
is identical for the cases of
uniform and nonuniform distributions of the electric
field, makes the conditions for the gas breakdown easier
because the enhanced field introduces a larger contribu-
tion into integral (1) than the weakened field subtracts.
To the left of the inflection point (Е/р> В/2) the process
of ionization multiplication is impeded because of the
redistribution of the electric field in the discharge gap
[16] and the breakdown voltage increases, what we ob-
serve in Fig. 1.
From the considerations outlined above one may
draw the following conclusion: the ionization process is
made easier in the nonuniform field at sufficiently high
pressure (to the right of the inflection point). Therefore
the right-hand branch of the breakdown curve for the
inter-electrode distance of 25 mm runs below that for
the distance of 5 mm.
Note also that the minima of the breakdown curves
for the gaps of 5 and 25 mm in Fig. 2 coincide despite
the fact that the axial profile of the electric field for the
larger gap is not uniform but it possesses a minimum at
the center of the inter-electrode gap. Consequently, the
electric field nonuniformity did not affect practically the
breakdown process under conditions of our experi-
ments. In discharge tubes with the electrodes spanning
over almost all its cross section the diffusion escape of
electrons to the tube walls plays a large role. Fig. 6 pre-
sents the breakdown curves for the inter-electrode gaps
of 5 and 25 mm for three different sets of electrode and
tube diameter values. In the first set the electrode and
tube diameter values were equal to 12 and 56 mm, re-
spectively (these curves are depicted above in Figs. 1
and 2). In the second set we employed the electrodes of
55 mm in diameter placed inside the tube of 56 mm in
diameter. The third set employed the electrodes of
12 mm in diameter placed inside the tube of 13 mm in
diameter. Note that in the second and third sets the elec-
trodes almost closed the cross section of the tube.
0,1 1 10 100
1000
5000
U,
V
pL, Torr
De = 12 mm, Dt = 56 mm
L = 5 mm
L = 25 mm
De = 55 mm, Dt = 56 mm
L = 5 mm
L = 25 mm
De = 12 mm, Dt = 13 mm
L = 5 mm
L = 25 mm
500
Fig. 6. Breakdown voltage against pL product for the
gaps of 5 and 25 mm between flat electrodes for
different diameters of electrodes and tubes
From the data of paper [11] it follows that Paschen’s
law is valid when the inter-electrode distance L does not
exceed the diameter (double radius R) of the tube (elec-
trodes), i.e. for L/R ≤ 2. This case is observed with the
second set when the maximum inter-electrode distance
did not exceed the radii of the tube and electrodes. In
longer tubes when inter-electrode distance exceeds the
tube and electrode radii noticeably, breakdown curves
minima are shifted to the range of larger breakdown
voltage values (what we observe in Fig. 6), and
Paschen’s law ceases to be valid. In our case when the
inter-electrode distance around 4 times exceeds its radi-
us and the tube radius is 4.7 times larger than the elec-
ISSN 1562-6016. ВАНТ. 2015. №4(98) 214
trode one, electron loss due to diffusion escape to the
walls practically does not play any role.
CONCLUSIONS
This paper reports the breakdown curves in nitrogen
its authors registered for two inter-electrode distance
values of 5 and 25 mm, the electrode diameter was
12 mm, and the inner diameter of the discharge chamber
was 56 mm. We found that for flat electrodes the break-
down curves for different inter-electrode gap values
actually coincide when plotted to the U(pL) scale. A
conclusion may be drawn from them that under condi-
tions of these experiments (the inter-electrode distance
about four times exceeds its radius) Paschen’s law holds
despite the fact that the axial profile of the electric field
for a larger gap possesses a minimum at the center of
the inter-electrode gap. Consequently, the nonunform
pattern of the electric field distribution does not affect
practically the breakdown process. The discharge tube
radius exceeds 4.7 times the electrode one; therefore the
electron loss to the walls due to diffusion escape of
them plays no role for short gaps of 5 and 25 mm.
REFERENCES
1. G. Zissis, S. Kitsinelis. State of art on the science
and technology of electrical light sources: from the
past to the future // J. Phys. D: Appl. Phys. 2009.
v. 42, № 17, p. 173001.
2. M. Berg, C.V. Budtz-Jørgensen, H. Reitz,
K.O. Schweitz, J. Chevallier, P. Kringhøj, J.
Bøttiger. On plasma nitriding of steels // Surface and
Coatings Technology. 2000, v. 124, № 1, p. 25-31.
3. Handbook of Laser Technology and Applications.
Volume II: Laser Design and Laser Systems / Eds.
C.E. Webb, J.D.C. Jones, Bristol and Philadelphia:
IOP Publishing Ltd., 2004, 1555 p.
4. F. Paschen. Ueber die zum Funkenübergang in Luft,
Wasserstoff und Kohlensäure bei verschiedenen
Drucken erforderliche Potentialdifferenz // Annalen
der Physik und Chemie. 1889, v. 273, № 5, p. 69-96.
5. V. Lisovskiy, V. Yegorenkov. In-depth treatment of
discharge ignition data during undergraduate labora-
tory work // Eur. J. Phys. 2014, v. 35, №4, p. 045021.
6. J.S. Townsend, S.P. MacCallum. Electrical proper-
ties of neon // Philosophical Magazine. 1928, v. 6,
№ 38, p. 857-878.
7. V.A. Lisovskiy, S.D. Yakovin. Experimental Study
of a Low-Pressure Glow Discharge in Air in Large-
Diameter Discharge Tubes // Plasma Physics Re-
ports. 2000, v. 26, № 12, p. 1066-1075.
8. V.A. Lisovskiy, S.D. Yakovin, V.D. Yegorenkov.
Low-pressure gas breakdown in uniform DC electric
field // J. Phys. D: Appl. Phys. 2000, v. 33, № 21,
p. 2722-2730.
9. V.A. Lisovskiy, S.D. Yakovin. Scaling Law for a
Low-Pressure Gas Breakdown in a Homogeneous
DC Electric Field // JETP Letters. 2000, v. 72, № 2,
p. 34-37.
10. V.A. Lisovskiy, S.D. Yakovin. A Modified Paschen
Law for the Initiation of a DC Glow Discharge in
Inert Gases // Technical Physics. 2000, v. 45, № 6,
p. 727-731.
11. V.A. Lisovskiy, V.A. Koval, V.D. Yegorenkov. DC
breakdown of low pressure gas in long tubes // Phys-
ics Letters A. 2011, v. 375, № 19, p. 1986-1989.
12. V.A. Lisovskiy, R.O. Osmayev, V.D. Yegorenkov.
Gas breakdown in dc electric field in a discharge
tube with flat and conical cathodes // Problems of
Atomic Science and Technology. 2014, № 6, p. 183.
13. V.A. Lisovskiy, V.V. Malinovskiy, V.A. Derevyanko.
Effect of the flat electrode diameter on the ignition
and burning of dc discharge // Journal of Kharkiv
National University, physical series «Nuclei, Parti-
cles, Fields». 2013, № 1059, iss. 3, p. 65-74.
14. V. Lisovskiy, S. Martins, K. Landry, D. Douai,
J.-P. Booth, V. Cassagne, V. Yegorenkov. The effect
of discharge chamber geometry on the ignition of
low-pressure rf capacitive discharges // Physics of
Plasmas. 2005, v. 12, № 9, p. 093505.
15. Yu.P. Raizer. Gas discharge physics. Berlin:
Springer, 1991.
16. V.A. Lisovskiy, S.D. Yakovin. Cathode Layer Char-
acteristics of a Low-Pressure Glow Discharge in Ar-
gon and Nitrogen // Technical Physics Letters. 2000,
v. 26, № 10, p. 891-893.
Article received 27.04.2015
ВЛИЯЕТ ЛИ НЕОДНОРОДНОСТЬ ПОСТОЯННОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА ПРОБОЙ ГАЗА?
В.А. Лисовский, Р.О. Осмаев, В.Д. Егоренков
Представлены результаты исследований пробоя газа в неоднородном постоянном электрическом поле. Измерены
кривые зажигания в азоте для расстояний между плоскими электродами 5 и 25 мм соответственно, при диаметрах элек-
тродов 12 мм и камеры 56 мм. Показано, что в отличие от результатов предыдущих исследований с узким зазором меж-
ду электродами и стенкой камеры кривые зажигания для различных расстояний практически совпадают, если их по-
строить в масштабе U(pL). При условиях данных экспериментов (расстояние между электродами примерно в 4 раза пре-
вышает их радиус) выполняется закон Пашена, несмотря на то, что осевой профиль электрического поля для большего
зазора имеет минимум в центре промежутка между электродами. Следовательно, неоднородность распределения элек-
трического поля в данных условиях практически не оказала влияния на процесс пробоя.
ЧИ ВПЛИВАЄ НЕОДНОРІДНІСТЬ ПОСТІЙНОГО ЕЛЕКТРИЧНОГО ПОЛЯ НА ПРОБІЙ ГАЗУ?
В.О. Лісовський, Р.О. Осмаєв, В.Д. Єгоренков
Представлені результати досліджень пробою газу в неоднорідному постійному електричному полі. Виміряні криві
запалювання у нітрогені для відстаней між плоскими електродами 5 і 25 мм відповідно, при діаметрах електродів 12 мм і
камери 56 мм. Показано, що на відміну від результатів попередніх досліджень із вузьким зазором між електродами і
стінкою камери криві запалювання для різних відстаней практично збігаються, якщо їх побудувати в масштабі U(pL). За
умовами цих експериментів (відстань між електродами приблизно в 4 рази перевищує їх радіус) виконується закон Па-
шена, незважаючи на те, що осьовий профіль електричного поля для більшого зазору має мінімум у центрі проміжку
між електродами. Отже, неоднорідність розподілу електричного поля за даних умов практично не мала впливу на процес
пробою.
|