Burning modes of dc low pressure discharge with a transverse constriction

This paper reports the current-voltage characteristics (CVCs) of dc discharge in different modes of burning we registered for several values of the transverse constriction diameter in a broad nitrogen pressure range. Existence conditions for normal and abnormal modes are determined. The CVCs are sho...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Lisovskiy, V.A., Ogloblina, P.A., Yegorenkov, V.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112131
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Burning modes of dc low pressure discharge with a transverse constriction / V.A. Lisovskiy, P.A. Ogloblina, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 206-210. — Бібліогр.: 15 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112131
record_format dspace
spelling irk-123456789-1121312017-01-18T03:03:38Z Burning modes of dc low pressure discharge with a transverse constriction Lisovskiy, V.A. Ogloblina, P.A. Yegorenkov, V.D. Плазменно-пучковый разряд, газовый разряд и плазмохимия This paper reports the current-voltage characteristics (CVCs) of dc discharge in different modes of burning we registered for several values of the transverse constriction diameter in a broad nitrogen pressure range. Existence conditions for normal and abnormal modes are determined. The CVCs are shown to possess a hysteresis for discharge tubes with constrictions at nitrogen pressure of 0.05 and 0.1 Torr. At higher pressure of 0.3 Torr the constriction does not actually affect the discharge CVC. For the pressure of 5 Torr a positive column is observed in the anode part of the tube what enables one to support discharge burning at lower voltage values across the electrodes. Виміряно вольт-амперні характеристики (ВАХ) розряду постійного струму в різних режимах горіння для декількох діаметрів поперечної діафрагми в широкому діапазоні тиску азоту. Визначено умови існування нормального і аномального режимів. Отримано, що для розрядних трубок із звуженнями при низьких тисках азоту 0,05 і 0,1 Торр ВАХ мають гістерезис. При більш високому тиску (0,3 Торр) наявність діафрагми практично не робить помітного впливу на ВАХ розряду. Для тиску 5 Торр в анодній частині трубки з діафрагмою спостерігається позитивний стовп, що дозволяє підтримувати горіння розряду при більш низьких напругах на електродах. Измерены вольт-амперные характеристики (ВАХ) разряда постоянного тока в различных режимах горения для нескольких диаметров поперечной диафрагмы в широком диапазоне давлений азота. Определены условия существования нормального и аномального режимов. Получено, что для разрядных трубок с сужениями при низких давлениях азота 0,05 и 0,1 Торр ВАХ имеют гистерезис. При более высоком давлении (0,3 Торр) наличие диафрагмы практически не оказывает заметного влияния на ВАХ разряда. Для давления 5 Торр в анодной части трубки с диафрагмой наблюдается положительный столб, что позволяет поддерживать горение разряда при более низких напряжениях на электродах. 2015 Article Burning modes of dc low pressure discharge with a transverse constriction / V.A. Lisovskiy, P.A. Ogloblina, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 206-210. — Бібліогр.: 15 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/112131 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Lisovskiy, V.A.
Ogloblina, P.A.
Yegorenkov, V.D.
Burning modes of dc low pressure discharge with a transverse constriction
Вопросы атомной науки и техники
description This paper reports the current-voltage characteristics (CVCs) of dc discharge in different modes of burning we registered for several values of the transverse constriction diameter in a broad nitrogen pressure range. Existence conditions for normal and abnormal modes are determined. The CVCs are shown to possess a hysteresis for discharge tubes with constrictions at nitrogen pressure of 0.05 and 0.1 Torr. At higher pressure of 0.3 Torr the constriction does not actually affect the discharge CVC. For the pressure of 5 Torr a positive column is observed in the anode part of the tube what enables one to support discharge burning at lower voltage values across the electrodes.
format Article
author Lisovskiy, V.A.
Ogloblina, P.A.
Yegorenkov, V.D.
author_facet Lisovskiy, V.A.
Ogloblina, P.A.
Yegorenkov, V.D.
author_sort Lisovskiy, V.A.
title Burning modes of dc low pressure discharge with a transverse constriction
title_short Burning modes of dc low pressure discharge with a transverse constriction
title_full Burning modes of dc low pressure discharge with a transverse constriction
title_fullStr Burning modes of dc low pressure discharge with a transverse constriction
title_full_unstemmed Burning modes of dc low pressure discharge with a transverse constriction
title_sort burning modes of dc low pressure discharge with a transverse constriction
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/112131
citation_txt Burning modes of dc low pressure discharge with a transverse constriction / V.A. Lisovskiy, P.A. Ogloblina, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 206-210. — Бібліогр.: 15 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lisovskiyva burningmodesofdclowpressuredischargewithatransverseconstriction
AT ogloblinapa burningmodesofdclowpressuredischargewithatransverseconstriction
AT yegorenkovvd burningmodesofdclowpressuredischargewithatransverseconstriction
first_indexed 2025-07-08T03:26:28Z
last_indexed 2025-07-08T03:26:28Z
_version_ 1837047678239768576
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 206 BURNING MODES OF DC LOW PRESSURE DISCHARGE WITH A TRANSVERSE CONSTRICTION V.A. Lisovskiy1,2, P.A. Ogloblina1, V.D. Yegorenkov1 1V.N. Karazin Kharkіv National University, Kharkov, Ukraine; 2Scientific Center of Physical Technologies, Kharkov, Ukraine This paper reports the current-voltage characteristics (CVCs) of dc discharge in different modes of burning we registered for several values of the transverse constriction diameter in a broad nitrogen pressure range. Existence conditions for normal and abnormal modes are determined. The CVCs are shown to possess a hysteresis for dis- charge tubes with constrictions at nitrogen pressure of 0.05 and 0.1 Torr. At higher pressure of 0.3 Torr the con- striction does not actually affect the discharge CVC. For the pressure of 5 Torr a positive column is observed in the anode part of the tube what enables one to support discharge burning at lower voltage values across the electrodes. PACS: 52.80.Hc INTRODUCTION Glow discharge in a tube supplied with a transverse diaphragm or possessing a constriction in the transverse cross-section is widely applied in low pressure mercury lamps [1 - 5], for geometric compression in a plasma- tron [6], as well as for double electric layer studies [7 - 9]. For correct application of discharges in tubes with a constriction or a transverse diaphragm one has to know its modes of burning and current-voltage characteristics for different orifice diameter values. To study the glow dc discharge CVCs we employed a chamber with the design depicted in Fig. 1. Fused sili- ca tube had the inner diameter of 56 mm. The flat elec- trodes were spaced 173 mm apart. A glass diaphragm 2 mm thick was installed at the central part of the tube with the orifice diameter values of 1, 3, 5 and 8 mm. We also registered the discharge parameters in the tube without a diaphragm. Gas supply Pumping V AnodeCathode Udc R A Fig. 1. Discharge tube design employed in this paper Studies were performed in nitrogen within the pres- sure range p = 0.05…5 Torr with the dc voltage values Udc ≤ 3000 V and the current range up to 200 mA. Gas pressure was controlled by 1000 and 10 Torr baratrons. A resistor of 75 kOhm was included in series into the discharge circuit between the cathode and the dc supply. EXPERIMENTAL RESULTS Consider the data of studying discharge CVCs in different modes of burning for several diaphragm diam- eter values in a broad nitrogen pressure range. In Fig. 2 the CVCs are shown in the absence of a diaphragm. At low nitrogen pressure (0.05 Torr) and moderate current (below 1 mA) the discharge consists of a cathode sheath, a negative glow and a Faraday dark space ap- proaching the anode surface. Increasing the discharge current leads to an increase in the negative glow length and for current values above 1 mA it approaches the anode whereas the dark Faraday space disappears. The CVCs presented in Fig. 2 demonstrate that in this pres- sure range the discharge was burning only in the ab- normal mode with a cathode surface completely covered by the discharge. The current grew simultaneously with the voltage increase across the electrodes. At higher nitrogen pressure of 0.1 Torr an anode glow appears near the anode surface disappearing at currents above 1 mA. 500 1000 1500 2000 2500 3000 3500 4000 0 50 100 150 200 I, m A U, V d = 55 mm 0.03 Torr 0.05 0.1 0.2 0.3 0.4 0.5 1.5 5.0 Fig. 2. Discharge current-voltage characteristics with- out a diaphragm at different nitrogen pressure values The presence of the anode glow indicates that a po- tential drop in the anode sheath becomes positive accel- erating electrons to the anode surface. Depending on the gas pressure, discharge current and inter-electrode gap values one may observe either a positive potential jump (several volts – tens of volts) or a negative one (several volts) [10]. The sign of the anode drop and its value are determined by a relation between the stochastic electron current density in plasma before the anode, its surface size and the discharge current supporting the concentra- tion of charged particles before the anode to supply a discharge current to it. Increasing gas pressure leads to a faster growth of the discharge current and to lowering a minimum volt- age at which a discharge sustainment is possible. How- ever, already at nitrogen pressure of 1.5 Torr the dis- charge may exist not only in the abnormal but also in the normal mode when the discharge spot (discharge ISSN 1562-6016. ВАНТ. 2015. №4(98) 207 column) occupies only a portion of the cathode surface. In the normal mode the discharge CVC is vertically growing or even falling, i.e. the discharge current in- crease is accompanied by the voltage fall across the electrodes [11, 12]. Current increase in the normal mode is caused by the increase of the discharge spot area with the current density in it remaining almost constant thus called a “normal one”. This effect of normal current density is mostly pronounced in the CVC for the nitro- gen pressure of 5 Torr (within the total range of dis- charge current density values we studied up to 200 mA). As was already said above, in the abnormal mode the increase of the discharge current I is accompanied by the growth of voltage across the cathode sheath Uc (and the voltage across the electrodes U) and the de- crease of the cathode sheath thickness dc, all the cathode being covered with the discharge. The normal mode is characterized by a partial coverage of the cathode sur- face with a cathode glow. On decreasing the discharge current the cathode voltage drop and the cathode sheath thickness remain constant (Uc = Un, pdc = (pdc)n, where p is the gas pressure), the area occupied by the dis- charge on the cathode S decreases whereas the current density j = Idc/S also keeps constant (j = jn). Let a dc discharge burn in the normal mode and oc- cupy only a portion of the cathode surface. If one in- creases the voltage drop across the electrodes a little (increasing the generator emf), then the voltage drop across the cathode sheath also grows thus increasing the ionization rate and plasma concentration at its boundary. Due to ambipolar diffusion the discharge column will begin to expand in the radial direction occupying a larg- er area on the cathode, the discharge current also in- creasing. Then according to Ohm’s law for a closed circuit (with the external ballast resistor), the voltage across the electrodes will be decreased to the normal fall [13]. This will stop the discharge expansion over the cathode surface. If the discharge expansion described above did not lead to the complete coverage of the cath- ode surface, the discharge would continue its normal mode glow. As the normal voltage drop across the elec- trodes is below the breakdown voltage [14], then decay- ing plasma of afterglow with low concentration is ob- served outside the discharge column. If the discharge happened to cover the cathode completely, then for fur- ther current increase one requires to increase the ioniza- tion rate in the cathode sheath what is possible through the increase of voltage across the electrodes. The dis- charge experiences a transition to the abnormal mode with a growing CVC. Note that even at high pressure in our discharge tube the positive column may be observed not in the total range of current values studied. For example, at the ni- trogen pressure values below 1 Torr the positive column is not observed at all for a given inter-electrode gap. For the pressure value of 1 Torr the positive column is visu- ally not observed up to discharge current values of 50 mA. However at higher current values a positive column starts to form near the anode which length then increases with the current increasing. Similar situation is also observed at the nitrogen pressure of 5 Torr, at which the positive column appears only at the current values above 15 mA. Now consider the effect of the transverse diaphragm of different diameter on the burning modes of the dis- charge at various gas pressure values. Fig. 3 presents CVCs for the diaphragm of 8 mm in diameter. One and the same current has to flow in the wide portion of the discharge tube as well as in the narrow orifice of the diaphragm. Therefore a region of increased plasma con- centration is formed near the orifice that affects the plasma properties at the cathode as well as the anode portions of the discharge. First consider the CVC for the pressure values of 0.05 and 0.1 Torr. After the ignition the discharge in the cathode portion of the tube consisted of the cathode sheath and the negative glow approaching the transverse diaphragm. In the anode portion of the tube (between the diaphragm and the anode) a noticeable glow was absent excluding a small area near the diaphragm. In- creasing the discharge current was accompanied by the growth of the voltage across the electrodes. However at the current values of about 30 and 40 mA for the nitro- gen pressure values of 0.05 and 0.1 Torr, respectively, a brightly shining spot was formed near the anode surface and a further current increase was accompanied by the voltage decrease across the electrodes. After the maxi- mum generator emf was achieved, a portion of the CVC was also registered on decreasing the discharge current. The anode spot intensity glow first diminished, then the spot left the anode surface and transformed into a stra- tum spreading with a further current lowering. One ob- serves in Fig. 3 that the CVC branch registered with the current decreasing ran above that related to the growing current, i.e. a hysteresis is observed. 500 1000 1500 2000 2500 0 20 40 60 80 100 120 140 160 180 200 I, m A U, V d = 8 mm 0.05 Torr 0.1 0.2 0.3 1.0 5.0 Fig. 3. Discharge current-voltage characteristics at different nitrogen pressure values and diaphragm diameter of 8 mm At the pressure value of 0.2 Torr and higher the hys- teresis disappears practically because the anode glow already exists at these pressure values. Perhaps the rea- sons for small divergence observed in the CVCs are the gas temperature growth, the accumulation of metastable molecules as well as the dissociation of a portion of nitrogen molecules into atoms. At the pressure of 5 Torr the discharge experiences a transition into the normal mode. Almost the total anode portion of the discharge tube is occupied by the positive column (excluding a small area near the diaphragm), and in the cathode por- tion a narrow cathode sheath, a negative glow and a dark Faraday space are observed. The positive column possesses a falling CVC, i.e. the voltage drop across it decreases with the discharge current increasing [15]. ISSN 1562-6016. ВАНТ. 2015. №4(98) 208 The voltage drop across the cathode sheath in the nor- mal mode also decreases with the current increasing. As the electric field in the negative glow and the Faraday dark space are small, then also the voltage drop across these two discharge regions is not large. Therefore we observe the falling CVC of the complete discharge in Figs. 2-4 for large nitrogen pressure values. 500 1000 1500 2000 2500 3000 0 20 40 60 80 100 120 140 160 180 200 I, m A U, V d = 3 mm 0.05 Torr 0.15 0.3 0.5 1.0 5.0 Fig. 4. Discharge current-voltage characteristics at different nitrogen pressure values and diaphragm diameter of 3 mm Fig. 4 demonstrates the discharge CVCs for the dia- phragm diameter of 3 mm. They are similar qualitative- ly to the discharge CVCs described above; therefore we will not describe them in more detail. 400 600 800 1000 1200 1400 0 50 100 I, m A U, V d, mm 55 8.0 3.0 1.0 Fig. 5. Discharge current-voltage characteristics for the nitrogen pressure of 0.3 Torr and diaphragm diameter values of 55, 8, 3 and 1 mm 700 800 900 1000 1100 0 50 100 150 200 I, m A U, V d, mm 55 3.0 1.0 Fig. 6. Discharge current-voltage characteristics for nitrogen pressure value of 5 Torr and diaphragm diameter values of 55, 3 and 1 mm Compare now the CVCs for two values of the nitro- gen pressure of 0.3 and 5 Torr and different diaphragm diameter values shown in Figs. 5 and 6, respectively. We observe in Fig. 5 that at low pressure of 0.3 Torr the presence of the diaphragm does not have a noticeable effect on the discharge CVC. At this pressure value the discharge, with a diaphragm or without it, consisted of the cathode sheath, the negative glow (its length chang- ing slightly with the current) the dark Faraday space (located in the anode as well as the cathode portions of the tube at both sides of the diaphragm), as well as the anode glow. The presence of the diaphragm caused a local disturbance of the plasma parameters in the dark Faraday space, in which the electric field strength and the ionization rate are usually small. Therefore we ob- serve that the discharge CVCs almost coincide for dif- ferent diaphragm diameter values. However it follows from Fig. 6 for the nitrogen pressure of 5 Torr that to support the same discharge current in the presence of the diaphragm one requires noticeably lower voltage values. The discharge CVCs for the diaphragms of 1 and 3 mm with the discharge current values above 25 mm practically coincide. In the discharge tube without a transverse diaphragm the posi- tive column appears only at sufficiently high current values (above 15 mA). At the same time in the anode portion of the tube with the diaphragm the positive col- umn is also observed at lower discharge current values. Fig. 7. Discharge photos at the pressure of 5 Torr and the current of 100 mA for the tube without a diaphragm and with diaphragms of 3 and 1 mm in diameter, respectively ISSN 1562-6016. ВАНТ. 2015. №4(98) 209 Fig. 7 presents photos of the burning discharge at the nitrogen pressure of 5 Torr and the current of 100 mA for the tube without a diaphragm, and with the dia- phragms of 3 and 1 mm in diameter, respectively. In the presence of the diaphragm almost all anode portion of the discharge tube is occupied by the positive column, whereas in the cathode portion one observes the narrow cathode sheath, the negative glow and the dark Faraday space. The transient region between the positive column and the diaphragm, as well as the region of transition to the dark Faraday space are characterized by a bright glow indicating the increase in the particle concentra- tion in the orifice region. Let us estimate the current density in the diaphragm orifice. For the discharge cur- rent of 100 mA the current density in the tube without the diaphragm was 4.1 mA/cm2. However in the tube with a diaphragm of 3 mm in diameter the current densi- ty was 1.4 А/cm2, whereas with the diaphragm diameter of 1 mm it approaches 13 А/cm2. The concentration and temperature of plasma in the orifice grow such that the diaphragm material sputtering occurs. Sodium is con- tained in the glass of the constriction, and a yellow glow indicates its presence. Fig. 8. Discharge photos for the diaphragm of 3 mm in diameter at the pressure of 5 Torr and the current of 10, 50 and 150 mA, respectively Fig. 8 shows the photos for the pressure of 5 Torr and the diaphragms of 3 mm in diameter at different current values. One observes that at small current values there is no yellow glow because the temperature and current density are insufficient for sputtering the glass constriction. The sodium presence was supported through registering the radiation spectrum of plasma in the diaphragm vicinity, in which the lines 588.9950 and 589.5924 nm forming a sodium doublet are clearly ob- served. CONCLUSIONS This paper studies the normal and abnormal burning modes and current-voltage characteristics of the direct current discharge at different diameter values of the transverse diaphragm in the wide range of nitrogen pressure. In the tube without a diaphragm at low pressure the discharge is burning only in the abnormal mode in which a voltage applied grows with the increase of cur- rent. At higher pressure values starting with 1.5 Torr, the discharge may exist not only in the abnormal but also in the normal mode. In discharge tubes with a diaphragm at the pressure values of 0.05 and 0.1 Torr a brightly glowing anode spot is formed near the anode surface starting with a certain threshold current value after which the CVC acquires a negative tilt. A hysteresis is observed in the discharge CVC. At the same time after increasing pres- sure to 0.3 Torr the presence of a diaphragm does not actually affect the discharge CVC. At the pressure of 5 Torr a positive column appeared in the discharge tube without the transverse diaphragm only at sufficiently high current values (above 15 mA). At the same time the presence of the diaphragm enables one to obtain a positive column in the anode portion of the tube even at low discharge current values. Therefore with a diaphragm one can support the discharge at lower voltage values across the electrodes and at lower current values. REFERENCES 1. V. Godyak, R. Lagushenko, J. Maja. Spatial evolu- tion of the electron-energy distribution in the vicini- ty of a discharge-tube constriction // Phys. Rev. A. 1988, v. 38, № 4, p. 2044-2055. 2. J.M. Andersen. Fluorescent lamp without ballast // US Patent 4508993. 1983. 3. R. Lagushenko, J. Maja. Discharge lamp having multiple constrictions // US Patent 4736134. 1984. 4. R.V. Marcucci, R.Y. Pai. Method for manufacturing a discharge lamp having multiple constrictions // US Patent 458252. 1984. 5. E. Smolka, F. Schilling, A. Schnabl, B. Herter. Low- pressure discharge lamp containing partitions therein // US Patent 5801495. 1996. 6. M.D. Gabovich. Physics and technique of plasma ion sources. Moscow: “Atomizdat”. 1972. 7. L.P. Block. A double layer review // Astrophysics and Space Science. 1978, v. 55, № 1, p. 59-83. 8. С. Charle. A review of recent laboratory double lay- er experiments // Plasma sources science and tech- nology. 2007, v. 16, № 4, R1-R25. 9. M.A. Raadu, J.J. Rasmussen. Dynamical aspects of electrostatic double layers // Astrophysics and Space Science. 1988, v. 144, № 1, p. 43-71. 10. V.A. Lisovskiy, S.D. Yakovin. Experimental Study of a Low-Pressure Glow Discharge in Air in Large- Diameter Discharge Tubes // Plasma Physics Re- ports. 2000, v. 26, № 12, p. 1066-1075. 11. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov. Applicability of Child–Langmuir collision laws for describing a dc cathode sheath in N2O // J. Plasma Physics. 2014, v. 80, part 3, p. 319-327. 12. V.A. Lisovskiy, E.P. Artushenko, V.A. Derevyanko, V.D. Yegorenkov. Normal and abnormal regimes of ISSN 1562-6016. ВАНТ. 2015. №4(98) 210 dc discharge burning in N2O // Problems of Atomic Science and Technology. 2013, № 1, p. 210-212. 13. V. Lisovskiy, V. Yegorenkov, E. Artushenko, J.-P. Booth, S. Martins, K. Landry, D. Douai, V. Cassagne. Normal regime of the weak-current mode of an rf capacitive discharge // Plasma Sources Sci. Technol. 2013, v. 22, № 1, p. 015018. 14. V.A. Lisovskiy, S.D. Yakovin. Cathode Layer Char- acteristics of a Low-Pressure Glow Discharge in Ar- gon and Nitrogen // Technical Physics Letters. 2000, v. 26, № 10, p. 891-893. 15. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov. Calculating reduced electric field in diffusion regime of dc discharge positive column // Problems of Atomic Science and Technology. 2015, № 1, p. 205- 208. Article received 27.04.2015 РЕЖИМЫ ГОРЕНИЯ РАЗРЯДА ПОСТОЯННОГО ТОКА НИЗКОГО ДАВЛЕНИЯ C ПОПЕРЕЧНОЙ ДИАФРАГМОЙ В.А. Лисовский, П.А. Оглоблина, В.Д. Егоренков Измерены вольт-амперные характеристики (ВАХ) разряда постоянного тока в различных режимах горе- ния для нескольких диаметров поперечной диафрагмы в широком диапазоне давлений азота. Определены условия существования нормального и аномального режимов. Получено, что для разрядных трубок с суже- ниями при низких давлениях азота 0,05 и 0,1 Торр ВАХ имеют гистерезис. При более высоком давлении (0,3 Торр) наличие диафрагмы практически не оказывает заметного влияния на ВАХ разряда. Для давления 5 Торр в анодной части трубки с диафрагмой наблюдается положительный столб, что позволяет поддержи- вать горение разряда при более низких напряжениях на электродах. РЕЖИМИ ГОРІННЯ РОЗРЯДУ ПОСТІЙНОГО СТРУМУ НИЗЬКОГО ТИСКУ З ПОПЕРЕЧНОЮ ДІАФРАГМОЮ В.О. Лісовський, П.О. Оглобліна, В.Д. Єгоренков Виміряно вольт-амперні характеристики (ВАХ) розряду постійного струму в різних режимах горіння для декількох діаметрів поперечної діафрагми в широкому діапазоні тиску азоту. Визначено умови існування нормального і аномального режимів. Отримано, що для розрядних трубок із звуженнями при низьких тисках азоту 0,05 і 0,1 Торр ВАХ мають гістерезис. При більш високому тиску (0,3 Торр) наявність діафрагми прак- тично не робить помітного впливу на ВАХ розряду. Для тиску 5 Торр в анодній частині трубки з діафраг- мою спостерігається позитивний стовп, що дозволяє підтримувати горіння розряду при більш низьких на- пругах на електродах.