Inter-electrode distance effect on dc discharge characteristics in nitrogen
This paper studies the inter-electrode distance effect on voltage drop across it and cathode sheath thickness. The voltage across the electrodes and the sheath thickness are found to increase when the anode moves away from the cathode through the negative glow. The probe technique reveals that incre...
Збережено в:
Дата: | 2015 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2015
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112132 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Inter-electrode distance effect on dc discharge characteristics in nitrogen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 202-205. — Бібліогр.: 26 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112132 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121322017-01-18T03:03:46Z Inter-electrode distance effect on dc discharge characteristics in nitrogen Lisovskiyс, V.A. Artushenko, K.P. Yegorenkov, V.D. Плазменно-пучковый разряд, газовый разряд и плазмохимия This paper studies the inter-electrode distance effect on voltage drop across it and cathode sheath thickness. The voltage across the electrodes and the sheath thickness are found to increase when the anode moves away from the cathode through the negative glow. The probe technique reveals that increasing the inter-electrode gap with the current fixed leads to the plasma concentration growth in the negative glow. The discharge current is transported through the negative glow by fast electrons accelerated in the cathode sheath; therefore one requires applying higher voltage across the electrodes to support the current in a longer gap. This is the reason for the increase of the plasma concentration in the negative glow and in the cathode sheath thickness. Досліджено вплив відстані між електродами на падіння напруги на них і товщину катодного шару. Отримано, що напруга на електродах і товщина шару зростають, коли анод віддаляється від катода крізь негативне світіння. Зондовим методом показано, що збільшення зазору між електродами при фіксованому струмі призводить до підвищення густини плазми в негативному світінні. Розрядний струм крізь негативне світіння переноситься швидкими електронами, які прискорюються в катодному шарі, тому для підтримки фіксованого струму в більш довгому зазорі потрібно до електродів прикласти вищу напругу. Це призводить до збільшення густини плазми в негативному світінні і товщини катодного шару. Исследовано влияние расстояния между электродами на падение напряжения на них и толщину катодно-го слоя. Получено, что напряжение на электродах и толщина слоя возрастают, когда анод удаляется от като-да через отрицательное свечение. Зондовым методом показано, что увеличение зазора между электродами при фиксированном токе приводит к повышению плотности плазмы в отрицательном свечении. Разрядный ток через отрицательное свечение переносится быстрыми электронами, ускорившимися в катодном слое, поэтому для поддержания фиксированного тока в более длинном зазоре нужно к электродам приложить бо-лее высокое напряжение. Это приводит к увеличению плотности плазмы в отрицательном свечении и толщины катодного слоя. 2015 Article Inter-electrode distance effect on dc discharge characteristics in nitrogen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 202-205. — Бібліогр.: 26 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/112132 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Lisovskiyс, V.A. Artushenko, K.P. Yegorenkov, V.D. Inter-electrode distance effect on dc discharge characteristics in nitrogen Вопросы атомной науки и техники |
description |
This paper studies the inter-electrode distance effect on voltage drop across it and cathode sheath thickness. The voltage across the electrodes and the sheath thickness are found to increase when the anode moves away from the cathode through the negative glow. The probe technique reveals that increasing the inter-electrode gap with the current fixed leads to the plasma concentration growth in the negative glow. The discharge current is transported through the negative glow by fast electrons accelerated in the cathode sheath; therefore one requires applying higher voltage across the electrodes to support the current in a longer gap. This is the reason for the increase of the plasma concentration in the negative glow and in the cathode sheath thickness. |
format |
Article |
author |
Lisovskiyс, V.A. Artushenko, K.P. Yegorenkov, V.D. |
author_facet |
Lisovskiyс, V.A. Artushenko, K.P. Yegorenkov, V.D. |
author_sort |
Lisovskiyс, V.A. |
title |
Inter-electrode distance effect on dc discharge characteristics in nitrogen |
title_short |
Inter-electrode distance effect on dc discharge characteristics in nitrogen |
title_full |
Inter-electrode distance effect on dc discharge characteristics in nitrogen |
title_fullStr |
Inter-electrode distance effect on dc discharge characteristics in nitrogen |
title_full_unstemmed |
Inter-electrode distance effect on dc discharge characteristics in nitrogen |
title_sort |
inter-electrode distance effect on dc discharge characteristics in nitrogen |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2015 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112132 |
citation_txt |
Inter-electrode distance effect on dc discharge characteristics in nitrogen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 202-205. — Бібліогр.: 26 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT lisovskiysva interelectrodedistanceeffectondcdischargecharacteristicsinnitrogen AT artushenkokp interelectrodedistanceeffectondcdischargecharacteristicsinnitrogen AT yegorenkovvd interelectrodedistanceeffectondcdischargecharacteristicsinnitrogen |
first_indexed |
2025-07-08T03:26:32Z |
last_indexed |
2025-07-08T03:26:32Z |
_version_ |
1837047682856648704 |
fulltext |
ISSN 1562-6016. ВАНТ. 2015. №4(98) 202
INTER-ELECTRODE DISTANCE EFFECT ON DC DISCHARGE
CHARACTERISTICS IN NITROGEN
V.A. Lisovskiy1,2, K.P. Artushenko1,2, V.D. Yegorenkov1
1V.N. Karazin Kharkiv National University, Kharkov, Ukraine;
2Scientific Center of Physical Technologies, Kharkov, Ukraine
This paper studies the inter-electrode distance effect on voltage drop across it and cathode sheath thickness. The
voltage across the electrodes and the sheath thickness are found to increase when the anode moves away from the
cathode through the negative glow. The probe technique reveals that increasing the inter-electrode gap with the cur-
rent fixed leads to the plasma concentration growth in the negative glow. The discharge current is transported
through the negative glow by fast electrons accelerated in the cathode sheath; therefore one requires applying higher
voltage across the electrodes to support the current in a longer gap. This is the reason for the increase of the plasma
concentration in the negative glow and in the cathode sheath thickness.
PACS: 52.80.Hc
INTRODUCTION
Direct current glow discharge is widely applied in
gas discharge lasers [1, 2], luminescent lamps [3], dc
diode sputtering systems [4], in isotope separation [5].
Therefore studying the processes taking place in its
parts and their characteristics is described in a large
number of papers (see, e.g. [6 - 13]).
Already Güntherschulze [14 - 16] discovered that
varying the inter-electrode distance keeping the dis-
charge current constant (e.g. displacing the anode) af-
fected not only the length (and the very existence) of the
positive column, the dark Faraday space and the nega-
tive glow but also the voltage drop across the cathode
sheath and its thickness. When one brought the anode
nearer to the cathode sheath boundary through the nega-
tive glow the voltage drop across the electrodes might
pass through a sharp minimum which after further near-
ing the anode to the cathode was replaced with abrupt
rise of the voltage and the discharge transition to the
obstructed mode. Güntherschulze himself attempted to
explain the appearance of this minimum by fast primary
electrons coming from the cathode and producing in the
gas film located on the anode more positive ions than in
the gas gap thus diminishing the cathode drop. Howev-
er, Penning [17] demonstrated that this phenomenon
might be observed with a clean degassed anode but not
in all gases. Fischer [18] made a suggestion that this
effect may be induced by gas concentration changes due
to its cooling by the cold anode. Druyvesteyn [19]
agreed that gas cooling near the anode may play a role
but also put forward another explanation. Near the an-
ode located in the negative glow a negative anode volt-
age drop is formed. Slow electrons would be reflected
by this anode drop back into the plasma, the space
charge in the negative glow would decrease, and the
maximum potential would shift toward the anode result-
ing in the increase of the number of ions approaching
the cathode and in the voltage drop decrease. A brief
review of old papers may be found, e.g. in papers [20,
21]. Further, we know only two papers where such stud-
ies were continued. Guseva et al. [22] registered the
voltage values across the electrodes against the gap val-
ues between them in the nitrogen pressure range below
0.5 Torr. They demonstrated that on increasing the gap
the discharge experienced the transition from the ob-
structed mode to the glow one, the voltage across the
electrodes after abrupt decrease approached saturation,
and no minimum was observed. The authors of paper
[23] studied the dependence of the voltage across the
electrodes on the distance between them only for the
discharge normal mode and there is also no minimum in
their graphs.
The present paper aimed to find out under what con-
ditions a minimum may be observed in the dependence
of the voltage across the electrodes against the gap be-
tween them, to study this dependence in the broad range
of inter-electrode gap values and to register the axial
profiles of plasma parameters in narrow gaps with probe
technique. We also suggested another explanation of the
processes taking place in the glow discharge when one
varied the inter-electrode distance.
For studying dc glow discharge we employed the
chamber designed as shown in Fig. 1. The inner diame-
ter of the discharge tube was 55 mm. The distance be-
tween flat electrodes varied from 8 to 385 mm using a
movable anode. Studies were made in nitrogen in the
pressure range p = 0.05…0.2 Torr with the voltage val-
ues Udc ≤ 1400 V and the current values ranging up to
5 mA. Gas pressure was controlled with 1000 and
10 Torr baratrons. The 75 kOhm resistor was switched
in series into the discharge circuit between the cathode
and the dc supply to prevent the cathode spot formation.
Rd2
Rd1
Rsh
ADC
Gas
supply
Pumping
V
AnodeCathode
Udc
R
A
PC
Probe
Fig. 1. Design of the discharge tube employed
in the present paper
Axial profiles of plasma parameters were registered
with a single cylinder Langmuir probe of 3.2 mm in
length and 0.18 mm in diameter made of nichrome. The
saw-like voltage was applied to the probe from the gen-
ISSN 1562-6016. ВАНТ. 2015. №4(98) 203
erator with the potential difference between the “saw”
spikes height being about 300 V. This voltage was low-
ered with the resistive divider (containing Rd1 and Rd2
resistors) and fed to the 24-digit analog-to-digital con-
vertor (ADC). The registered probe current was reduced
with the shunt (the Rsh resistor) and was also fed to
ADC. The ADC signal was fed to the computer for sub-
sequent processing. Plasma concentration ni was calcu-
lated from the ion branch of the probe current Ipr and
electron temperature Те was measured according to the
technique described in papers [24, 25].
EXPERIMENTAL RESULTS
One may observe in papers [15, 16, 22] that the de-
pendence of the voltage U across the electrodes on the
distance L between them approaches the saturation after
the abrupt decrease, and that a well-expressed minimum
is absent in this dependence. Therefore we performed
similar measurements of voltage across the electrodes at
different discharge current values to find out the condi-
tions for the appearance of a minimum or other charac-
teristic features in the U(L) patterns.
0 50 100 150 200 250 300 350 400
600
700
800
900
1000
1100
1200
1300
1400
PC
U dc
,
V
L, mm
p = 0.05 Torr
0.2 mA
0.5 mA
1.0 mA
2.0 mA
AG
Fig. 2. Voltage across the electrodes against the
distance between them for the nitrogen pressure
of 0.05 Torr for different discharge current values
0 50 100 150 200 250 300 350 400
400
600
800
1000
1200
PC
PC
U dc
,
V
L, mm
p = 0.1 Torr
0.5 mA
1.0 mA
2.0 mA
5.0 mA
AG
Fig. 3. Voltage across the electrodes against the
distance between them for the nitrogen pressure
of 0.1 Torr for different discharge current values
In Fig. 2 we present the U(L) dependence for the ni-
trogen pressure value of 0.05 Torr and discharge current
values of 0.2, 0.5, 1 and 2 mA. One observes that at the
smallest current value of 0.2 mA there is indeed no
well-expressed minimum in the U(L) pattern. If the an-
ode is moved away from the cathode, one first observes
the obstructed mode with the abrupt decrease of voltage
U when the anode is located in the cathode sheath or in
the negative glow not far from its boundary. However,
with the further gap L increase the voltage across the
electrodes remains almost the same and even experienc-
es a small decrease. When the anode approaches about
the middle of the dark Faraday space, an anode glow
appears near its surface (this moment is indicated in
Figs. 2-4 with the arrows labeled AG), whereas the in-
ter-electrode voltage increases by about 15…20 V (what
corresponds to the ionization potential of nitrogen mol-
ecules of 15.6 eV). With the further increase of the in-
ter-electrode distance and the anode located in the Fara-
day dark space the voltage across the electrodes remains
unchanged and the anode glow continues to be observa-
ble. When the inter-electrode gap increases such that the
positive column appears (see the PC label in the figures)
the voltage starts to grow linearly with the anode mov-
ing away from the cathode.
0 50 100 150 200 250 300 350 400
400
500
600
700
800
900
PCU dc
,
V
L, mm
p = 0.2 Torr
1 mA
2 mA
5 mA
AG
Fig. 4. Voltage across the electrodes against the gap
between them for the nitrogen pressure of 0.2 Torr
at different discharge current values
0 50 100 150 200 250 300 350 400
5
10
15
20
25
30
d sh
,
m
m
L, mm
N2 , 5 mA
p, Torr
0.05
0.1
0.2
Fig. 5. Cathode sheath thickness against the inter-
electrode gap at different nitrogen pressure values
for the discharge current of 5 mA
At higher discharge current values (0.5 mA and
larger) an abruptly expressed minimum appears on the
dependence of the voltage across the electrodes against
the gap between them, which was discussed in papers
[14 - 21]. On decreasing the inter-electrode distance
when the anode is traversing the negative glow, the
voltage drop experiences a fast decrease, it approaches a
minimum, and after the discharge transition to the ob-
ISSN 1562-6016. ВАНТ. 2015. №4(98) 204
structed mode the voltage across the electrodes grows
abruptly. The depth of this minimum increases with the
discharge current growing, but it decreases with gas
pressure growing when the discharge current is kept
fixed.
Figs. 3 and 4 demonstrate the dependence of the
voltage across the electrodes on the distance between
them for the nitrogen pressure values of 0.1 and
0.2 Torr, respectively. This dependence is qualitatively
similar to that described above for the pressure value of
0.05 Torr. However, increasing the gas pressure in-
volves the appearance of the anode glow and the posi-
tive column at lesser inter-electrode gap values. Be-
sides, the electric field in the positive column grows
therefore the voltage between the electrodes increases
faster when the anode is moving through the positive
column.
When the anode is moving through the negative
glow to the cathode, the voltage drop across the elec-
trodes as well as the cathode sheath thickness decrease
as is shown in Fig. 5. The effect is most pronounced at
low nitrogen pressure values. Thus for the pressure val-
ue of 0.05 Torr the sheath thickness decrease amounted
to about 6 mm, whereas for 0.1 Torr it was about 3 mm.
Earlier the authors of papers [14 - 17] also observed the
simultaneous variation of the cathode sheath thickness
and the voltage drop across it.
The single Langmuir probe technique was employed
to measure the axial distributions of plasma parameters
in the negative glow for two different values of the in-
ter-electrode gap of 30 and 50 mm at the same discharge
current value (probe measurements in the cathode
sheath are impeded due to a weak electron concentration
and the directed flows of charged particles, therefore we
did not perform these studies there). Fig. 5 evidences
the small electron temperature in both cases not exceed-
ing 1 eV, whereas the plasma potential with respect to
the anode was in the range of 2…3 V. We remark that
with the gap of 30 mm the cathode sheath thickness was
22 mm, and the maximum plasma concentration ap-
proached 4⋅109 cm−3. Increasing the distance to 50 mm
led to the growth of the cathode sheath thickness to
28 mm and of the maximum plasma concentration to
6⋅109 cm−3. I.e. one requires an enhanced concentration
of charged particles to transport current through a longer
gap.
We may suggest the following mechanism of in-
creasing the voltage across the electrodes when the an-
ode is moving away from the cathode through the nega-
tive glow. As the plasma is positively charged with re-
spect to the grounded anode (negative anode voltage
drop), only fast electrons accelerated in the cathode
sheath may approach its surface [26]. When the dis-
charge gap is short (e.g. 30 mm in Fig. 5) the anode is
located almost at the boundary of the cathode sheath,
fast electrons move through a narrow negative glow
performing comparatively not large number of inelastic
collisions with gas molecules. When the anode is moved
away from the cathode without changing the generator
emf, then the discharge current will be decreased as
rather less number of fast electrons approach the anode
surface because many of them have time to lose much
energy due to collisions with gas molecules and be
thermalized on their way from the cathode sheath.
Therefore to transport a fixed current through a longer
gap one has to apply higher voltage across the elec-
trodes in order to increase the flow of fast electrons.
Then (as we observed in Fig. 5) the cathode sheath
thickness as well as the maximum plasma concentration
in the negative glow experiences an increase.
CONCLUSIONS
Thus our present paper reports the results of studies
we made into the dependence of the cathode sheath
thickness and the voltage drop across the electrodes on
the distance between them. We demonstrated that mov-
ing the anode away from the cathode through the nega-
tive glow is accompanied by the increase of the voltage
drop across the electrodes and the sheath thickness.
When moving the anode through the dark Faraday space
and the positive column we observe that the cathode
sheath thickness ceases to depend on the inter-electrode
gap. The voltage across the electrodes first experiences
a jump when the anode glow appears (this occurs when
the anode is located approximately in the middle of the
dark Faraday space). Then, when the anode is located in
the positive column, the voltage varies linearly with the
inter-electrode distance. We employed the probe tech-
nique to measure axial profiles of plasma parameters in
short discharge gaps when only the cathode sheath and
the negative glow can find their place inside the inter-
electrode gap. We demonstrate that moving the anode
away from the cathode keeping the current fixed leads
to the increase of the plasma concentration in the nega-
tive glow. Perhaps the transport of the fixed current
through the negative glow with a longer inter-electrode
gap requires an enhanced flow of fast electrons from the
cathode sheath for which higher voltage has to be ap-
plied across the electrodes. In its turn, it leads to the
increase of the cathode sheath thickness as well as the
plasma concentration in the negative glow.
REFERENCES
1. M. Endo, R.F. Walter. Gas lasers. Boca Raton, FL:
CRC Press, 2007.
2. Springer Handbook of Lasers and Optics / Ed.
F. Trager, New York: Springer Science+Business
Media, 2007.
3. S. Kitsinelis. Light Sources: Technologies and Ap-
plications. Boca Raton, FL: CRC Press, 2011.
4. J. Sarkar. Sputtering Materials for VLSI and Thin
Film Devices. Oxford: Elsevier, 2014.
5. H. Akatsuka, A.N. Ezoubtchenko, M. Suzuki. A
numerical study of neon isotope separation in a dc
discharge through a narrow capillary // J. Phys. D:
Appl. Phys. 2000, v. 33, № 8, p. 948-958.
6. F.Y. Huang, M.J. Kushner. A hybrid model for par-
ticle transport and electron energy distributions in
positive column electrical discharges using equiva-
lent species transport // J. Appl. Phys. 1995, v. 78,
№ 10, p. 5909-5918.
7. G. Mumken, H. Schluter, L.D. Tsendin. Formation
mechanisms of radial electron fluxes in a positive
column // Phys. Rev. E., 1999, v. 60, № 2, p. 2250-
2259.
ISSN 1562-6016. ВАНТ. 2015. №4(98) 205
8. V.A. Lisovskiy, S.D. Yakovin. Experimental Study
of a Low-Pressure Glow Discharge in Air in Large-
Diameter Discharge Tubes // Plasma Physics Re-
ports. 2000, v. 26, № 12, p. 1066-1075.
9. L.L. Alves. Fluid modelling of the positive column
of direct-current glow discharges // Plasma Sources
Sci. Technol. 2007, v. 16, № 3, p. 557-569.
10. V.A. Lisovskiy, V.A. Koval, E.P. Artushenko,
V.D. Yegorenkov. Validating the Goldstein–Wehner
law for the stratified positive column of dc discharge
in an undergraduate laboratory // Eur. J. Phys. 2012,
v. 33, № 6, p. 1537-1545.
11. Y. Zhang, W. Jiang, and A. Bogaerts. Kinetic simu-
lation of direct-current driven microdischarges in ar-
gon at atmospheric pressure // J. Phys. D: Appl.
Phys. 2014, v. 47, № 43, p. 435201.
12. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov.
Applicability of Child–Langmuir collision laws for
describing a dc cathode sheath in N2O // J. Plasma
Physics. 2014, v. 80, part 3, p. 319-327.
13. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov.
Calculating reduced electric field in diffusion regime
of dc discharge positive column // Problems of Atomic
Science and Technology. 2015, № 1, p. 205-208.
14. A. Güntherschulze. Die Abhangigkeit des normalen
Kathodenfalles der Glimmentladung von der
Gasdichte // Zeitschrift für Physik. 1928, v. 49,
p. 473-479.
15. A. Güntherschulze. Die behinderte Glimmentladung
// Zeitschrift für Physik. 1930, v. 61, p. 1-14.
16. A. Güntherschulze. Die behinderte Glimmentladung.
II // Zeitschrift für Physik. 1930, v. 61, p. 581-586.
17. F.M. Penning. Ueber den Einfluss des
Entgasungszustandes der Anode bei der anomalen
Glimmentladung // Zeitschrift für Physik. 1931, v. 70,
p. 782-785.
18. H. Fischer. Die charakteristischen Grossen der
Glimmentladung unter Beruecksichtigung der
Uebertemperatur // Zeitschrift für Physik. 1938,
v. 110, № 3,4, p. 197-213.
19. M.J. Druyvesteyn. The abnormal cathode fall of the
glow discharge // Physica. 1938, v. 5, № 9, p. 875-
881.
20. M.J. Druyvesteyn, F.M. Penning. The mechanism of
electrical discharges in gases of low pressure // Rev.
Modern Phys. 1940, v. 12, № 2, p. 87-174.
21. G. Francis. The glow discharge at low pressure //
Encyclopedia of Physics / Ed. S. Flugge, v. 22, Ber-
lin: Springer, 1956, p. 53-208.
22. L.G. Guseva, B.N. Klarfeld, V.V. Vlasov. Interac-
tion between the regions of cathode potential drop
and negative glow in the glow discharge // Proc. In-
tern. Conf. Phenom. Ionized Gases, 1967, Vienna,
Austria, p. 85.
23. V.A. Lisovskiy, S.D. Yakovin. Cathode Layer Char-
acteristics of a Low-Pressure Glow Discharge in Ar-
gon and Nitrogen // Technical Physics Letters. 2000,
v. 26, № 10, p. 891-893.
24. Z. Zakrzewski, T. Kopiczynski. Effect of collisions
on positive ion collection by a cylindrical Langmuir
probe // Plasma Physics. 1974, v. 16, p. 1195-1198.
25. M. Tichy, M. Sicha, P. David, T. David. A Colli-
sional Model of the Positive Ion Collection by a Cy-
lindrical Langmuir probe // Contrib. Plasma Phys.
1994, v. 34, № 1, p. 59-68.
26. A.A. Kudryavtsev, A.V. Morin, L.D. Tsendin. Role
of nonlocal ionization in formation of the short glow
discharge // Technical Physics. 2008, v. 53, № 8,
p. 1029-1040.
Article received 27.04.2015
ВЛИЯНИЕ РАССТОЯНИЯ МЕЖДУ ЭЛЕКТРОДАМИ
НА ХАРАКТЕРИСТИКИ ТЛЕЮЩЕГО РАЗРЯДА В АЗОТЕ
В.А. Лисовский, Е.П. Артюшенко, В.Д. Егоренков
Исследовано влияние расстояния между электродами на падение напряжения на них и толщину катодно-
го слоя. Получено, что напряжение на электродах и толщина слоя возрастают, когда анод удаляется от като-
да через отрицательное свечение. Зондовым методом показано, что увеличение зазора между электродами
при фиксированном токе приводит к повышению плотности плазмы в отрицательном свечении. Разрядный
ток через отрицательное свечение переносится быстрыми электронами, ускорившимися в катодном слое,
поэтому для поддержания фиксированного тока в более длинном зазоре нужно к электродам приложить бо-
лее высокое напряжение. Это приводит к увеличению плотности плазмы в отрицательном свечении и тол-
щины катодного слоя.
ВПЛИВ ВІДСТАНІ МІЖ ЕЛЕКТРОДАМИ
НА ХАРАКТЕРИСТИКИ ТЛІЮЧОГО РОЗРЯДУ В АЗОТІ
В.О. Лісовський, К.П. Артюшенко, В.Д. Єгоренков
Досліджено вплив відстані між електродами на падіння напруги на них і товщину катодного шару.
Отримано, що напруга на електродах і товщина шару зростають, коли анод віддаляється від катода крізь
негативне світіння. Зондовим методом показано, що збільшення зазору між електродами при фіксованому
струмі призводить до підвищення густини плазми в негативному світінні. Розрядний струм крізь негативне
світіння переноситься швидкими електронами, які прискорюються в катодному шарі, тому для підтримки
фіксованого струму в більш довгому зазорі потрібно до електродів прикласти вищу напругу. Це призводить
до збільшення густини плазми в негативному світінні і товщини катодного шару.
|