Inter-electrode distance effect on dc discharge characteristics in nitrogen

This paper studies the inter-electrode distance effect on voltage drop across it and cathode sheath thickness. The voltage across the electrodes and the sheath thickness are found to increase when the anode moves away from the cathode through the negative glow. The probe technique reveals that incre...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Lisovskiyс, V.A., Artushenko, K.P., Yegorenkov, V.D.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112132
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Inter-electrode distance effect on dc discharge characteristics in nitrogen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 202-205. — Бібліогр.: 26 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112132
record_format dspace
spelling irk-123456789-1121322017-01-18T03:03:46Z Inter-electrode distance effect on dc discharge characteristics in nitrogen Lisovskiyс, V.A. Artushenko, K.P. Yegorenkov, V.D. Плазменно-пучковый разряд, газовый разряд и плазмохимия This paper studies the inter-electrode distance effect on voltage drop across it and cathode sheath thickness. The voltage across the electrodes and the sheath thickness are found to increase when the anode moves away from the cathode through the negative glow. The probe technique reveals that increasing the inter-electrode gap with the current fixed leads to the plasma concentration growth in the negative glow. The discharge current is transported through the negative glow by fast electrons accelerated in the cathode sheath; therefore one requires applying higher voltage across the electrodes to support the current in a longer gap. This is the reason for the increase of the plasma concentration in the negative glow and in the cathode sheath thickness. Досліджено вплив відстані між електродами на падіння напруги на них і товщину катодного шару. Отримано, що напруга на електродах і товщина шару зростають, коли анод віддаляється від катода крізь негативне світіння. Зондовим методом показано, що збільшення зазору між електродами при фіксованому струмі призводить до підвищення густини плазми в негативному світінні. Розрядний струм крізь негативне світіння переноситься швидкими електронами, які прискорюються в катодному шарі, тому для підтримки фіксованого струму в більш довгому зазорі потрібно до електродів прикласти вищу напругу. Це призводить до збільшення густини плазми в негативному світінні і товщини катодного шару. Исследовано влияние расстояния между электродами на падение напряжения на них и толщину катодно-го слоя. Получено, что напряжение на электродах и толщина слоя возрастают, когда анод удаляется от като-да через отрицательное свечение. Зондовым методом показано, что увеличение зазора между электродами при фиксированном токе приводит к повышению плотности плазмы в отрицательном свечении. Разрядный ток через отрицательное свечение переносится быстрыми электронами, ускорившимися в катодном слое, поэтому для поддержания фиксированного тока в более длинном зазоре нужно к электродам приложить бо-лее высокое напряжение. Это приводит к увеличению плотности плазмы в отрицательном свечении и толщины катодного слоя. 2015 Article Inter-electrode distance effect on dc discharge characteristics in nitrogen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 202-205. — Бібліогр.: 26 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/112132 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Lisovskiyс, V.A.
Artushenko, K.P.
Yegorenkov, V.D.
Inter-electrode distance effect on dc discharge characteristics in nitrogen
Вопросы атомной науки и техники
description This paper studies the inter-electrode distance effect on voltage drop across it and cathode sheath thickness. The voltage across the electrodes and the sheath thickness are found to increase when the anode moves away from the cathode through the negative glow. The probe technique reveals that increasing the inter-electrode gap with the current fixed leads to the plasma concentration growth in the negative glow. The discharge current is transported through the negative glow by fast electrons accelerated in the cathode sheath; therefore one requires applying higher voltage across the electrodes to support the current in a longer gap. This is the reason for the increase of the plasma concentration in the negative glow and in the cathode sheath thickness.
format Article
author Lisovskiyс, V.A.
Artushenko, K.P.
Yegorenkov, V.D.
author_facet Lisovskiyс, V.A.
Artushenko, K.P.
Yegorenkov, V.D.
author_sort Lisovskiyс, V.A.
title Inter-electrode distance effect on dc discharge characteristics in nitrogen
title_short Inter-electrode distance effect on dc discharge characteristics in nitrogen
title_full Inter-electrode distance effect on dc discharge characteristics in nitrogen
title_fullStr Inter-electrode distance effect on dc discharge characteristics in nitrogen
title_full_unstemmed Inter-electrode distance effect on dc discharge characteristics in nitrogen
title_sort inter-electrode distance effect on dc discharge characteristics in nitrogen
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/112132
citation_txt Inter-electrode distance effect on dc discharge characteristics in nitrogen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 202-205. — Бібліогр.: 26 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT lisovskiysva interelectrodedistanceeffectondcdischargecharacteristicsinnitrogen
AT artushenkokp interelectrodedistanceeffectondcdischargecharacteristicsinnitrogen
AT yegorenkovvd interelectrodedistanceeffectondcdischargecharacteristicsinnitrogen
first_indexed 2025-07-08T03:26:32Z
last_indexed 2025-07-08T03:26:32Z
_version_ 1837047682856648704
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 202 INTER-ELECTRODE DISTANCE EFFECT ON DC DISCHARGE CHARACTERISTICS IN NITROGEN V.A. Lisovskiy1,2, K.P. Artushenko1,2, V.D. Yegorenkov1 1V.N. Karazin Kharkiv National University, Kharkov, Ukraine; 2Scientific Center of Physical Technologies, Kharkov, Ukraine This paper studies the inter-electrode distance effect on voltage drop across it and cathode sheath thickness. The voltage across the electrodes and the sheath thickness are found to increase when the anode moves away from the cathode through the negative glow. The probe technique reveals that increasing the inter-electrode gap with the cur- rent fixed leads to the plasma concentration growth in the negative glow. The discharge current is transported through the negative glow by fast electrons accelerated in the cathode sheath; therefore one requires applying higher voltage across the electrodes to support the current in a longer gap. This is the reason for the increase of the plasma concentration in the negative glow and in the cathode sheath thickness. PACS: 52.80.Hc INTRODUCTION Direct current glow discharge is widely applied in gas discharge lasers [1, 2], luminescent lamps [3], dc diode sputtering systems [4], in isotope separation [5]. Therefore studying the processes taking place in its parts and their characteristics is described in a large number of papers (see, e.g. [6 - 13]). Already Güntherschulze [14 - 16] discovered that varying the inter-electrode distance keeping the dis- charge current constant (e.g. displacing the anode) af- fected not only the length (and the very existence) of the positive column, the dark Faraday space and the nega- tive glow but also the voltage drop across the cathode sheath and its thickness. When one brought the anode nearer to the cathode sheath boundary through the nega- tive glow the voltage drop across the electrodes might pass through a sharp minimum which after further near- ing the anode to the cathode was replaced with abrupt rise of the voltage and the discharge transition to the obstructed mode. Güntherschulze himself attempted to explain the appearance of this minimum by fast primary electrons coming from the cathode and producing in the gas film located on the anode more positive ions than in the gas gap thus diminishing the cathode drop. Howev- er, Penning [17] demonstrated that this phenomenon might be observed with a clean degassed anode but not in all gases. Fischer [18] made a suggestion that this effect may be induced by gas concentration changes due to its cooling by the cold anode. Druyvesteyn [19] agreed that gas cooling near the anode may play a role but also put forward another explanation. Near the an- ode located in the negative glow a negative anode volt- age drop is formed. Slow electrons would be reflected by this anode drop back into the plasma, the space charge in the negative glow would decrease, and the maximum potential would shift toward the anode result- ing in the increase of the number of ions approaching the cathode and in the voltage drop decrease. A brief review of old papers may be found, e.g. in papers [20, 21]. Further, we know only two papers where such stud- ies were continued. Guseva et al. [22] registered the voltage values across the electrodes against the gap val- ues between them in the nitrogen pressure range below 0.5 Torr. They demonstrated that on increasing the gap the discharge experienced the transition from the ob- structed mode to the glow one, the voltage across the electrodes after abrupt decrease approached saturation, and no minimum was observed. The authors of paper [23] studied the dependence of the voltage across the electrodes on the distance between them only for the discharge normal mode and there is also no minimum in their graphs. The present paper aimed to find out under what con- ditions a minimum may be observed in the dependence of the voltage across the electrodes against the gap be- tween them, to study this dependence in the broad range of inter-electrode gap values and to register the axial profiles of plasma parameters in narrow gaps with probe technique. We also suggested another explanation of the processes taking place in the glow discharge when one varied the inter-electrode distance. For studying dc glow discharge we employed the chamber designed as shown in Fig. 1. The inner diame- ter of the discharge tube was 55 mm. The distance be- tween flat electrodes varied from 8 to 385 mm using a movable anode. Studies were made in nitrogen in the pressure range p = 0.05…0.2 Torr with the voltage val- ues Udc ≤ 1400 V and the current values ranging up to 5 mA. Gas pressure was controlled with 1000 and 10 Torr baratrons. The 75 kOhm resistor was switched in series into the discharge circuit between the cathode and the dc supply to prevent the cathode spot formation. Rd2 Rd1 Rsh ADC Gas supply Pumping V AnodeCathode Udc R A PC Probe Fig. 1. Design of the discharge tube employed in the present paper Axial profiles of plasma parameters were registered with a single cylinder Langmuir probe of 3.2 mm in length and 0.18 mm in diameter made of nichrome. The saw-like voltage was applied to the probe from the gen- ISSN 1562-6016. ВАНТ. 2015. №4(98) 203 erator with the potential difference between the “saw” spikes height being about 300 V. This voltage was low- ered with the resistive divider (containing Rd1 and Rd2 resistors) and fed to the 24-digit analog-to-digital con- vertor (ADC). The registered probe current was reduced with the shunt (the Rsh resistor) and was also fed to ADC. The ADC signal was fed to the computer for sub- sequent processing. Plasma concentration ni was calcu- lated from the ion branch of the probe current Ipr and electron temperature Те was measured according to the technique described in papers [24, 25]. EXPERIMENTAL RESULTS One may observe in papers [15, 16, 22] that the de- pendence of the voltage U across the electrodes on the distance L between them approaches the saturation after the abrupt decrease, and that a well-expressed minimum is absent in this dependence. Therefore we performed similar measurements of voltage across the electrodes at different discharge current values to find out the condi- tions for the appearance of a minimum or other charac- teristic features in the U(L) patterns. 0 50 100 150 200 250 300 350 400 600 700 800 900 1000 1100 1200 1300 1400 PC U dc , V L, mm p = 0.05 Torr 0.2 mA 0.5 mA 1.0 mA 2.0 mA AG Fig. 2. Voltage across the electrodes against the distance between them for the nitrogen pressure of 0.05 Torr for different discharge current values 0 50 100 150 200 250 300 350 400 400 600 800 1000 1200 PC PC U dc , V L, mm p = 0.1 Torr 0.5 mA 1.0 mA 2.0 mA 5.0 mA AG Fig. 3. Voltage across the electrodes against the distance between them for the nitrogen pressure of 0.1 Torr for different discharge current values In Fig. 2 we present the U(L) dependence for the ni- trogen pressure value of 0.05 Torr and discharge current values of 0.2, 0.5, 1 and 2 mA. One observes that at the smallest current value of 0.2 mA there is indeed no well-expressed minimum in the U(L) pattern. If the an- ode is moved away from the cathode, one first observes the obstructed mode with the abrupt decrease of voltage U when the anode is located in the cathode sheath or in the negative glow not far from its boundary. However, with the further gap L increase the voltage across the electrodes remains almost the same and even experienc- es a small decrease. When the anode approaches about the middle of the dark Faraday space, an anode glow appears near its surface (this moment is indicated in Figs. 2-4 with the arrows labeled AG), whereas the in- ter-electrode voltage increases by about 15…20 V (what corresponds to the ionization potential of nitrogen mol- ecules of 15.6 eV). With the further increase of the in- ter-electrode distance and the anode located in the Fara- day dark space the voltage across the electrodes remains unchanged and the anode glow continues to be observa- ble. When the inter-electrode gap increases such that the positive column appears (see the PC label in the figures) the voltage starts to grow linearly with the anode mov- ing away from the cathode. 0 50 100 150 200 250 300 350 400 400 500 600 700 800 900 PCU dc , V L, mm p = 0.2 Torr 1 mA 2 mA 5 mA AG Fig. 4. Voltage across the electrodes against the gap between them for the nitrogen pressure of 0.2 Torr at different discharge current values 0 50 100 150 200 250 300 350 400 5 10 15 20 25 30 d sh , m m L, mm N2 , 5 mA p, Torr 0.05 0.1 0.2 Fig. 5. Cathode sheath thickness against the inter- electrode gap at different nitrogen pressure values for the discharge current of 5 mA At higher discharge current values (0.5 mA and larger) an abruptly expressed minimum appears on the dependence of the voltage across the electrodes against the gap between them, which was discussed in papers [14 - 21]. On decreasing the inter-electrode distance when the anode is traversing the negative glow, the voltage drop experiences a fast decrease, it approaches a minimum, and after the discharge transition to the ob- ISSN 1562-6016. ВАНТ. 2015. №4(98) 204 structed mode the voltage across the electrodes grows abruptly. The depth of this minimum increases with the discharge current growing, but it decreases with gas pressure growing when the discharge current is kept fixed. Figs. 3 and 4 demonstrate the dependence of the voltage across the electrodes on the distance between them for the nitrogen pressure values of 0.1 and 0.2 Torr, respectively. This dependence is qualitatively similar to that described above for the pressure value of 0.05 Torr. However, increasing the gas pressure in- volves the appearance of the anode glow and the posi- tive column at lesser inter-electrode gap values. Be- sides, the electric field in the positive column grows therefore the voltage between the electrodes increases faster when the anode is moving through the positive column. When the anode is moving through the negative glow to the cathode, the voltage drop across the elec- trodes as well as the cathode sheath thickness decrease as is shown in Fig. 5. The effect is most pronounced at low nitrogen pressure values. Thus for the pressure val- ue of 0.05 Torr the sheath thickness decrease amounted to about 6 mm, whereas for 0.1 Torr it was about 3 mm. Earlier the authors of papers [14 - 17] also observed the simultaneous variation of the cathode sheath thickness and the voltage drop across it. The single Langmuir probe technique was employed to measure the axial distributions of plasma parameters in the negative glow for two different values of the in- ter-electrode gap of 30 and 50 mm at the same discharge current value (probe measurements in the cathode sheath are impeded due to a weak electron concentration and the directed flows of charged particles, therefore we did not perform these studies there). Fig. 5 evidences the small electron temperature in both cases not exceed- ing 1 eV, whereas the plasma potential with respect to the anode was in the range of 2…3 V. We remark that with the gap of 30 mm the cathode sheath thickness was 22 mm, and the maximum plasma concentration ap- proached 4⋅109 cm−3. Increasing the distance to 50 mm led to the growth of the cathode sheath thickness to 28 mm and of the maximum plasma concentration to 6⋅109 cm−3. I.e. one requires an enhanced concentration of charged particles to transport current through a longer gap. We may suggest the following mechanism of in- creasing the voltage across the electrodes when the an- ode is moving away from the cathode through the nega- tive glow. As the plasma is positively charged with re- spect to the grounded anode (negative anode voltage drop), only fast electrons accelerated in the cathode sheath may approach its surface [26]. When the dis- charge gap is short (e.g. 30 mm in Fig. 5) the anode is located almost at the boundary of the cathode sheath, fast electrons move through a narrow negative glow performing comparatively not large number of inelastic collisions with gas molecules. When the anode is moved away from the cathode without changing the generator emf, then the discharge current will be decreased as rather less number of fast electrons approach the anode surface because many of them have time to lose much energy due to collisions with gas molecules and be thermalized on their way from the cathode sheath. Therefore to transport a fixed current through a longer gap one has to apply higher voltage across the elec- trodes in order to increase the flow of fast electrons. Then (as we observed in Fig. 5) the cathode sheath thickness as well as the maximum plasma concentration in the negative glow experiences an increase. CONCLUSIONS Thus our present paper reports the results of studies we made into the dependence of the cathode sheath thickness and the voltage drop across the electrodes on the distance between them. We demonstrated that mov- ing the anode away from the cathode through the nega- tive glow is accompanied by the increase of the voltage drop across the electrodes and the sheath thickness. When moving the anode through the dark Faraday space and the positive column we observe that the cathode sheath thickness ceases to depend on the inter-electrode gap. The voltage across the electrodes first experiences a jump when the anode glow appears (this occurs when the anode is located approximately in the middle of the dark Faraday space). Then, when the anode is located in the positive column, the voltage varies linearly with the inter-electrode distance. We employed the probe tech- nique to measure axial profiles of plasma parameters in short discharge gaps when only the cathode sheath and the negative glow can find their place inside the inter- electrode gap. We demonstrate that moving the anode away from the cathode keeping the current fixed leads to the increase of the plasma concentration in the nega- tive glow. Perhaps the transport of the fixed current through the negative glow with a longer inter-electrode gap requires an enhanced flow of fast electrons from the cathode sheath for which higher voltage has to be ap- plied across the electrodes. In its turn, it leads to the increase of the cathode sheath thickness as well as the plasma concentration in the negative glow. REFERENCES 1. M. Endo, R.F. Walter. Gas lasers. Boca Raton, FL: CRC Press, 2007. 2. Springer Handbook of Lasers and Optics / Ed. F. Trager, New York: Springer Science+Business Media, 2007. 3. S. Kitsinelis. Light Sources: Technologies and Ap- plications. Boca Raton, FL: CRC Press, 2011. 4. J. Sarkar. Sputtering Materials for VLSI and Thin Film Devices. Oxford: Elsevier, 2014. 5. H. Akatsuka, A.N. Ezoubtchenko, M. Suzuki. A numerical study of neon isotope separation in a dc discharge through a narrow capillary // J. Phys. D: Appl. Phys. 2000, v. 33, № 8, p. 948-958. 6. F.Y. Huang, M.J. Kushner. A hybrid model for par- ticle transport and electron energy distributions in positive column electrical discharges using equiva- lent species transport // J. Appl. Phys. 1995, v. 78, № 10, p. 5909-5918. 7. G. Mumken, H. Schluter, L.D. Tsendin. Formation mechanisms of radial electron fluxes in a positive column // Phys. Rev. E., 1999, v. 60, № 2, p. 2250- 2259. ISSN 1562-6016. ВАНТ. 2015. №4(98) 205 8. V.A. Lisovskiy, S.D. Yakovin. Experimental Study of a Low-Pressure Glow Discharge in Air in Large- Diameter Discharge Tubes // Plasma Physics Re- ports. 2000, v. 26, № 12, p. 1066-1075. 9. L.L. Alves. Fluid modelling of the positive column of direct-current glow discharges // Plasma Sources Sci. Technol. 2007, v. 16, № 3, p. 557-569. 10. V.A. Lisovskiy, V.A. Koval, E.P. Artushenko, V.D. Yegorenkov. Validating the Goldstein–Wehner law for the stratified positive column of dc discharge in an undergraduate laboratory // Eur. J. Phys. 2012, v. 33, № 6, p. 1537-1545. 11. Y. Zhang, W. Jiang, and A. Bogaerts. Kinetic simu- lation of direct-current driven microdischarges in ar- gon at atmospheric pressure // J. Phys. D: Appl. Phys. 2014, v. 47, № 43, p. 435201. 12. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov. Applicability of Child–Langmuir collision laws for describing a dc cathode sheath in N2O // J. Plasma Physics. 2014, v. 80, part 3, p. 319-327. 13. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov. Calculating reduced electric field in diffusion regime of dc discharge positive column // Problems of Atomic Science and Technology. 2015, № 1, p. 205-208. 14. A. Güntherschulze. Die Abhangigkeit des normalen Kathodenfalles der Glimmentladung von der Gasdichte // Zeitschrift für Physik. 1928, v. 49, p. 473-479. 15. A. Güntherschulze. Die behinderte Glimmentladung // Zeitschrift für Physik. 1930, v. 61, p. 1-14. 16. A. Güntherschulze. Die behinderte Glimmentladung. II // Zeitschrift für Physik. 1930, v. 61, p. 581-586. 17. F.M. Penning. Ueber den Einfluss des Entgasungszustandes der Anode bei der anomalen Glimmentladung // Zeitschrift für Physik. 1931, v. 70, p. 782-785. 18. H. Fischer. Die charakteristischen Grossen der Glimmentladung unter Beruecksichtigung der Uebertemperatur // Zeitschrift für Physik. 1938, v. 110, № 3,4, p. 197-213. 19. M.J. Druyvesteyn. The abnormal cathode fall of the glow discharge // Physica. 1938, v. 5, № 9, p. 875- 881. 20. M.J. Druyvesteyn, F.M. Penning. The mechanism of electrical discharges in gases of low pressure // Rev. Modern Phys. 1940, v. 12, № 2, p. 87-174. 21. G. Francis. The glow discharge at low pressure // Encyclopedia of Physics / Ed. S. Flugge, v. 22, Ber- lin: Springer, 1956, p. 53-208. 22. L.G. Guseva, B.N. Klarfeld, V.V. Vlasov. Interac- tion between the regions of cathode potential drop and negative glow in the glow discharge // Proc. In- tern. Conf. Phenom. Ionized Gases, 1967, Vienna, Austria, p. 85. 23. V.A. Lisovskiy, S.D. Yakovin. Cathode Layer Char- acteristics of a Low-Pressure Glow Discharge in Ar- gon and Nitrogen // Technical Physics Letters. 2000, v. 26, № 10, p. 891-893. 24. Z. Zakrzewski, T. Kopiczynski. Effect of collisions on positive ion collection by a cylindrical Langmuir probe // Plasma Physics. 1974, v. 16, p. 1195-1198. 25. M. Tichy, M. Sicha, P. David, T. David. A Colli- sional Model of the Positive Ion Collection by a Cy- lindrical Langmuir probe // Contrib. Plasma Phys. 1994, v. 34, № 1, p. 59-68. 26. A.A. Kudryavtsev, A.V. Morin, L.D. Tsendin. Role of nonlocal ionization in formation of the short glow discharge // Technical Physics. 2008, v. 53, № 8, p. 1029-1040. Article received 27.04.2015 ВЛИЯНИЕ РАССТОЯНИЯ МЕЖДУ ЭЛЕКТРОДАМИ НА ХАРАКТЕРИСТИКИ ТЛЕЮЩЕГО РАЗРЯДА В АЗОТЕ В.А. Лисовский, Е.П. Артюшенко, В.Д. Егоренков Исследовано влияние расстояния между электродами на падение напряжения на них и толщину катодно- го слоя. Получено, что напряжение на электродах и толщина слоя возрастают, когда анод удаляется от като- да через отрицательное свечение. Зондовым методом показано, что увеличение зазора между электродами при фиксированном токе приводит к повышению плотности плазмы в отрицательном свечении. Разрядный ток через отрицательное свечение переносится быстрыми электронами, ускорившимися в катодном слое, поэтому для поддержания фиксированного тока в более длинном зазоре нужно к электродам приложить бо- лее высокое напряжение. Это приводит к увеличению плотности плазмы в отрицательном свечении и тол- щины катодного слоя. ВПЛИВ ВІДСТАНІ МІЖ ЕЛЕКТРОДАМИ НА ХАРАКТЕРИСТИКИ ТЛІЮЧОГО РОЗРЯДУ В АЗОТІ В.О. Лісовський, К.П. Артюшенко, В.Д. Єгоренков Досліджено вплив відстані між електродами на падіння напруги на них і товщину катодного шару. Отримано, що напруга на електродах і товщина шару зростають, коли анод віддаляється від катода крізь негативне світіння. Зондовим методом показано, що збільшення зазору між електродами при фіксованому струмі призводить до підвищення густини плазми в негативному світінні. Розрядний струм крізь негативне світіння переноситься швидкими електронами, які прискорюються в катодному шарі, тому для підтримки фіксованого струму в більш довгому зазорі потрібно до електродів прикласти вищу напругу. Це призводить до збільшення густини плазми в негативному світінні і товщини катодного шару.