Power of ADS with low-energy accelerator and fissionable target

Prospects and perspectives of ADS based on low-energy accelerator and fissile target design are considered in this paper. Fast reactor core which consists of fissionable target and booster, cooled by liquid metal, is proposed. Different reactor core structures are analyzed. Power in the ADS reactor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2013
Hauptverfasser: Golovkina, A.G., Kudinovich, I.V., Ovsyannikov, D.А.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112149
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Power of ADS with low-energy accelerator and fissionable target / A.G. Golovkina, I.V. Kudinovich, D.А. Ovsyannikov // Вопросы атомной науки и техники. — 2013. — № 4. — С. 328-332. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112149
record_format dspace
spelling irk-123456789-1121492017-01-18T03:03:05Z Power of ADS with low-energy accelerator and fissionable target Golovkina, A.G. Kudinovich, I.V. Ovsyannikov, D.А. Приложения и технологии Prospects and perspectives of ADS based on low-energy accelerator and fissile target design are considered in this paper. Fast reactor core which consists of fissionable target and booster, cooled by liquid metal, is proposed. Different reactor core structures are analyzed. Power in the ADS reactor is calculated. Розглянуто перспективи створення електроядерної установки на базі низькоенергетичного прискорювача і розмножуючої мішені. Пропонується використовувати швидку активну зону, що складається з розмножуючої мішені і бустера, що охолоджуються рідиннометалевим теплоносієм. Проаналізовано різні варіанти компонування активної зони, визначена потужність енерговиділення в реакторі ЕЛЯУ. Рассмотрены перспективы создания электроядерной установки на базе низкоэнергетического ускорителя и размножающей мишени. Предлагается использовать быструю активную зону, состоящую из размножающей мишени и бустера, охлаждаемых жидкометаллическим теплоносителем. Проанализированы различные варианты компоновки активной зоны, определена мощность энерговыделения в реакторе ЭЛЯУ. 2013 Article Power of ADS with low-energy accelerator and fissionable target / A.G. Golovkina, I.V. Kudinovich, D.А. Ovsyannikov // Вопросы атомной науки и техники. — 2013. — № 4. — С. 328-332. — Бібліогр.: 22 назв. — англ. 1562-6016 PACS: 29.17.+w; 28.52.-s http://dspace.nbuv.gov.ua/handle/123456789/112149 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Приложения и технологии
Приложения и технологии
spellingShingle Приложения и технологии
Приложения и технологии
Golovkina, A.G.
Kudinovich, I.V.
Ovsyannikov, D.А.
Power of ADS with low-energy accelerator and fissionable target
Вопросы атомной науки и техники
description Prospects and perspectives of ADS based on low-energy accelerator and fissile target design are considered in this paper. Fast reactor core which consists of fissionable target and booster, cooled by liquid metal, is proposed. Different reactor core structures are analyzed. Power in the ADS reactor is calculated.
format Article
author Golovkina, A.G.
Kudinovich, I.V.
Ovsyannikov, D.А.
author_facet Golovkina, A.G.
Kudinovich, I.V.
Ovsyannikov, D.А.
author_sort Golovkina, A.G.
title Power of ADS with low-energy accelerator and fissionable target
title_short Power of ADS with low-energy accelerator and fissionable target
title_full Power of ADS with low-energy accelerator and fissionable target
title_fullStr Power of ADS with low-energy accelerator and fissionable target
title_full_unstemmed Power of ADS with low-energy accelerator and fissionable target
title_sort power of ads with low-energy accelerator and fissionable target
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Приложения и технологии
url http://dspace.nbuv.gov.ua/handle/123456789/112149
citation_txt Power of ADS with low-energy accelerator and fissionable target / A.G. Golovkina, I.V. Kudinovich, D.А. Ovsyannikov // Вопросы атомной науки и техники. — 2013. — № 4. — С. 328-332. — Бібліогр.: 22 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT golovkinaag powerofadswithlowenergyacceleratorandfissionabletarget
AT kudinovichiv powerofadswithlowenergyacceleratorandfissionabletarget
AT ovsyannikovda powerofadswithlowenergyacceleratorandfissionabletarget
first_indexed 2025-07-08T03:27:58Z
last_indexed 2025-07-08T03:27:58Z
_version_ 1837047773225025536
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 328 POWER OF ADS WITH LOW-ENERGY ACCELERATOR AND FISSIONABLE TARGET* A.G. Golovkina, I.V. Kudinovich, D.А. Ovsyannikov Saint-Petersburg State University, Saint-Petersburg, Russia E-mail: golovkina.a@gmail.com; igor_kudinovich@mail.ru; dovs45@mail.ru Prospects and perspectives of ADS based on low-energy accelerator and fissile target design are considered in this paper. Fast reactor core which consists of fissionable target and booster, cooled by liquid metal, is proposed. Different reactor core structures are analyzed. Power in the ADS reactor is calculated. PACS: 29.17.+w; 28.52.-s INTRODUCTION In ADS fission reaction occurs in subcritical reactor with additional (external) neutron source, generated in the target by accelerated charged particles beam. Nowadays ADS utilization possibility is considered in nuclear power different areas: • transmuting actinides and fission products [1 - 2]; • power generation [3 - 4]; • producing fissile materials [5]; Research in ADS field is carried out in many coun- tries all over the world demonstration ADS plants are designed PDS-XADS, MYRRHA, MEGAPIE, HYPER, TEF, AFCI [6 - 10]. ADS cost and attributes are significantly defined by accelerator-driver characteristics. Proton beam with energy 1…2 GeV and power 10…75 MW [2] is neces- sary for long-lived transuranic elements transmutation. Such charged particles beams could only be obtained in the unique large expensive accelerators. The possibility of accelerator with low particles beam parameters utilization in energy amplifier (ADS) is considered in this paper. In this case it is necessary to significantly amplify the neutron source in the reactor. A proton linac is considered as a low-energy accel- erator-driver [11], which characteristics are presented in the Tabl. 1. It is worth to notice that accelerator parameters can be improved with optimization [13 - 17]. Table 1 Output energy 300 MeV Average current up to 5 mA Duty factor 10% Frequency range of RFQ and DTL 424…433 MHz Beam power 1.5 MW 1. NEUTRON PRODUCING TARGET The electronuclear neutron source intensity is de- fined by the expression ,0 e mI S p= where Ip − average beam current, 0m − neutron yield (average neutron number generating by an accelerated particle in the target), e − accelerated particle charge. Neutron yield from the target irradiated by charge particles depends on parameters of particle beam, target composition and it dimensions. In ADS with targets of non fissile materials (Pb, Bi, etc.) the external neutron source intensity is specified by the spallation neutrons leakage from the target surface. For small size targets a significant part of secondary particles that can induce nuclear fissions leave the tar- get. For large size − radioactive capture of neutrons by the target plays an important role. Because of an anisot- ropy of non-elastic proton scattering the target length should in several times be greater than its radius, mean- while the L value has weak influence on neutron yield if the following condition L>D>λin is fulfilled. A great part of neutron leakage comes from the target face from the side of beam falling. So the neutron yield is maxi- mal with some beam entry point deepening. The optimal dimensions of cylindrical targets are presented in Tabl. 2, and neutron yields from these tar- gets irradiated by the 300 MeV proton beam − in Fig. 1. The presented results were obtained with using GEANT-4.9.5 code. Table 2 Material Dopt, cm Zopt, cm Lopt, cm Pb 66 31 76 Bi 95 49 105 W 7 2 10 Ta 7 2 10 Fig. 1. Neutron yield from target with the optimal sizes In ADS with fissionable targets (for example, U) as initial neutrons are to be considered only spallation neu- trons, because the neutron multiplication due to fission reactions are accounted in neutronics calculation of the reactor core with the target as a part of it. The spallation neutron yields in the infinite uranic target are presented in the Fig. 2 in dependence of the ____________________________________ *Work was supported by SPbSU, grant 9.38.673.2013 ISSN 1562-6016. ВАНТ. 2013. №4(86) 329 protons energy, and the dependence of spallation neu- trons yield inside the target on its radius − in FIg. 3. Fig. 2. Neutron yields in the infinite uranic target (Geant 4.9.5) Fig. 3. Dependence of spallation neutrons yield inside the target on its radius with 300 MeV proton beam (Geant 4.9.5) From the presented results it is followed that for an ADS with 300 MeV proton energy beam it is reasonable to use fissile targets. 2. SUBCRITICAL REACTOR There are several factors influencing on ADS power with the given external neutron source intensity: reactor core subcritical level, external neutron source spatial localization, reactor core structure (homogenous, sec- tions). If the external neutron source spatial energy distribu- tion corresponds to the fission neutrons distribution in the reactor core (reference source [18]), then the fission neutrons generation intensity is described by , k k SQ eff eff f − = 100 where S0 − reference source intensity, keff < 1 − multipli- cation factor of the reactor core. keff value is chosen to provide nuclear safety. Nowa- days for ADS keff is admitted to be 98.0≤effk . In order to maintain ADS power rate at a constant power level during reactor operation with decreasing keff it’s necessary to increase accelerator current. Reactivity reduction as a result of nuclear fuel burning and fission products is about 8% for thermal-neutron reactor and 1…3% for fast-neutron reactor. Thus, in ADS with fast- neutron reactor accelerator current variety during the operation period is significantly less than in ADS with thermal-neutron reactor. Consequently using fast core in ADS is more preferable. In order to estimate the external neutron source spa- tial distribution influence on the reactor core power let introduce the amplification coefficient, which is equal to the ratio of the given neutron source generation intensity to reference neutrons source. , 1 = 1eff ampl ⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ ⋅ − Q Q k k k feff (1) ,= ∫ ∫ ΦΣ V E ff dEdVQ ν ,=1 ∫ ∫ V E s dEdVqQ (r,E)q s − external neutron source intensity, ),( ErfΣ − macro- scopic fission cross-section, ν − average neutrons num- ber born in a fission event, Ф(r,E) − neutron flux spatial energy distribution in the reactor core. In homogenous reactor core case external neutron source localization in the reactor core center allows to increase source neutrons importance, because source neutrons leakage from the reactor core decreases. . The dependence of the external neutron source am- plification coefficient on its localization in the cylindri- cal fast reactor core (keff = 0.98) is presented in the Fig. 4 [18]. Fig. 4. amplk depends on source localization factor. R − reactor core radius, sr − external neutron source radius External neutron source localization in the center of the reactor core allows to increase the external neutron source generation intensity almost in 1.6 times. But tak- ing into account that the fissionable target optimal size (the reactor core central part diameter) corresponds to inλ3 (characteristic inelastic interaction lengths), this way of amplification doesn’t seem to be fully realized. The method aimed to ADS power amplification was proposed in several papers [17, 19, 20]. It is based on the reactor core sectioning (Fig. 5). The sectioned reac- tor core consists of two sections: fissionable target and subcritical booster with broken coupling between booster and target. Then the fissionable target is the first neutron multiplying cascade, and the booster − the sec- ond multiplying cascade. Multiplication factor of the sectioned reactor core [21]: ( ) ,4 2 1 211221 2 2121 ⎟ ⎠ ⎞⎜ ⎝ ⎛ +−++ kkkkkkkk=keff where ,= fiaiii Pkk ∞ ,= fjaj fiaj ij P P k ISSN 1562-6016. ВАНТ. 2013. №4(86) 330 sections i, j: 1 − fissionable target, 2 − booster, k∞i− in- finite multiplication factor for i-th section composition, fiajP − probability for neutron born in section i to be absorbed in section j. Thermal power for the reactor core is defined by the formula ,= ν ff T QE N where Ef — energy released per a fuel nuclei fission. For a sectioned reactor core ,QQQ fff 21 += where , 11 1 Q 00 0i jiij i i j j jij j j i f kk k k k k kk k k k S −⎟⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ − ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − +⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = ,0 0 fiai aiS i P P k = aiSP 0 − probability for source neutrons to be absorbed in the section i. Maximal external neutron source amplification in the sectioned reactor core can be achieved when the neutron coupling between booster and target is com- pletely broken ( 021 =k ). In this case for the fissionable target with a reference source and keff = k1 = k2 = 0.98, k∞1=k∞2=2.1 it could be obtained kampl = 27. Neutron coupling between booster and target break can be implemented by several ways. 1. Cascade fast-thermal reactor core: the inner section is fast and the outer is thermal [20]. The neutron coupling between booster and target is suppressed be- cause of placing a “neutronics gate” (thermal neutrons absorber) between sections (Fig. 5). Fig. 5. Cascade reactor core scheme. 1 − inner section, 2 − “gate”; 3 − outer section; 4 − charged particles beam But it real systems it is impossible to break neutron coupling completely because there are neutrons with rather high energies in the outer section, which can’t be absorbed in the “neutronics gate”. It should be noted that during ADS operating there is a significant ∞k changes due to fuel burnup and fission product build-up. This leads to keff significant decrease. 2. Cascade reactor core with threshold fissionable target: the inner section consists of threshold fissile ma- terial, for example, Np237, that allows to break neutron coupling more efficiently [17]. Transuranic threshold fissile elements are possible to utilize only in transmutation plants. Threshold fissile elements (U238) usage in energy plants isn’t reasonable because in this case the fissionable target has a very low 1k∞ value. 3. Fast-fast cascade reactor core: inner and outer section with hard spectrum divided by a cylindrical gap (this gap can be named “geometrical gap” for conven- ience). Neutron coupling between inner and outer sec- tions is suppressed at the expense of the ratio of the total neutron flux in the inner section to the outer section is in proportion to R1/R2 (in spherical case to 2 2 2 1 RR ). Cascade reactor cores have rather strong power flux irregularity between sections, because in some cases ADS power is limited not by the external neutron source intensity but an acceptable specific power flux in the reactor core, which is defined under the heat engineer- ing reliability condition. The mentioned limitation is occurred for reactor cores with “geometrical gap”, when the fuel volume fraction is rather small and U235 enrich- ment in the fissionable target is greater than in the booster. In such reactor cores it is reasonable to use liq- uid metal coolant, that allows to increase maximal heat density up to 1180 MW/m3 [22]. Heat density distributions for homogenous and cas- cade reactor cores with power 250 MW are presented in Fig. 6. Fig. 6. Dependence of heat density in the reactor core (R3=100 см) on its radius. Solid line − cascade core, dashed line – homogenous The dependence of amplification coefficient, ther- mal power and peak-to-average ratio on R2/R1 for the reactor core (kэф= 0.98) with outer diameter 2 m, height 1 m, the fissionable target diameter 0.28 m, composition is similar to reactor BN-600, but differs in U235 enrich- ment (the fissionable target and booster enrichment vary from 14.4 to 95% in dependence of R2/R1). Neutronics calculations were performed with discrete coordinate method (S16, 44 energy groups) using program SCALE. Initial neutrons yield in the fissionable target is 7.5 neutrons/proton. Results of the reactor core power characteristics calculation with the external neutron source intensity − 2.3 1017 neutrons/с, which is provided by a low-energy accelerator (Tabl. 1) are presented in Tabl. 3. ISSN 1562-6016. ВАНТ. 2013. №4(86) 331 Fig. 7. Dependence of the amplification coefficient and thermal power on R2/R1 in the reactor core (R3=100 сm) Fig. 8. Dependence of the peak-to-average ratio on R2/R1 in the reactor core (R3=100 сm) Table 3 kampl N[МW] qv [МW/m3] kr R=1 m ho- mogenous 1.62 245 232 2.97 R=1 m cas- cade 1.68 255 1098 11.8 R=2 m ho- mogenous 1.56 228 56 3.1 R=1 m cas- cade 2.00 300 700 29.6 The homogenous reactor core with diameter 2 m and height 1 m has thermal power 245 МW, and the corre- spond cascade reactor core with maximal heat density − 255 МW. The cascade reactor core with bigger sizes (diameter 4 m, height 2 m) has thermal power 300 МW. Thus, for reactor cores with rather small sizes cascade scheme is not reasonable, it has advantage just for quite big reactor cores. CONCLUSIONS ADS with low-energy accelerator-driver can be de- signed on the basis of fast reactor core, cooled by liquid metal. The main characteristics of the energy ADS with di- ameter 2 m and height 1 m: • proton beam parameters: current 5 mА, energy 300 МeV; • external neutron source intensity: 2.3·1017 н/с; • multiplication factor of the reactor core: 0.98; • external neutron source amplification coefficient: 2.0; • thermal power: 250 МW. REFERENCES 1. А.S. Gerasimov, G.V. Kiselev. Scientific and tech- nical problems of ADS design for long-lived radio- active wastes trasmutation and energy production (Russian experience) // Bulletin of the public infor- mation center for atomic power. 2000, № 3-4, 5, 7, 8, p. 25-29. 2. H. Nifenecker, S. David, J.M. Loiseaux, O. Meplana. Basics of accelerator driven subcritical reactors // Nuclear Instruments and Methods in Physics Re- search A. 2001, v. 463, p. 428-467. 3. V.А. Bomko, I.М. Karnaukhov, V.I. Lapshin. En- ergy amplifier − the base of the nuclear power in XXI century. NSC KIPT, Kharkov, 2001. 4. С. Rubbia. A high gain energy amplifier operated with fast neutrons // Proceedings of the international conference on accelerator-driven transmutation technologies and applications. 1994, USA. 5. R.G. Vasilkov, V.I. Goldanskyi, V.V. Orlov. On electronuclear breeding // Physical science success. 1983, v. 139, iss. 3, p. 435-464. 6. B. Carluec. The European project PDS-XADS pre- liminary design studies of an experimental accelera- tor driven system // Proceedings of the International workshop on P&T and ADS development. 2003. 7. Accelerator & Spallation Target Technologies for ADS Applications: A Status report. Nuclear Energy Agency, France. 8. H. Aït Abderrahim, P. Kupschus, Ph. Benoit, et al. MYRRHA, a multipurpose accelerator-driven sys- tem for R&D pre-design study completion // Pro- ceedings of 7th Information exchange meeting on actinide and fission product portioning and trans- mutation, Jeju, Korea. 2002, p. 899-908. 9. M.I. Ayzatskiy, B.V. Borts, A.N. Vodin, et al. NSC KIPT neutron source // Problems of Atomic Science and Technology. 2012, № 3, p. 3-9. 10. A.M. Yegorov, A.O. Komarov, V.G. Papkovich, et al. Material testing and radiation problems of sub- critical nuclear energy accelerator driven systems (ADS) // Problems of Atomic Science and Technol- ogy. 2010, № 2, p. 159-163. 11. L.N. Gerasimov, I.V. Kudinovich, Yu.А. Svistunov, V.P. Struev. Small-size electronuclear power plant: possible technical desicions // Transactions of Rus- sian Academy of Science. Energetics. 2005, v. 2, p. 3-16. 12. Yu.A. Svistunov, Yu.V. Zuev, А.D. Ovsyannikov, D.А. Ovsyannikov. Compact deuteron accelerator design for 1 MeV neutron source // Vestnik St. Pe- tersburg University. Ser. 10. 2011, iss. 1, p. 49-59. 13. A.D. Ovsyannikov, D.A. Ovsyannikov, S.-L. Chung. Optimization of a radial matching section // Interna- tional journal of modern physics A. 2009, v. 24, № 5, p. 952-958. ISSN 1562-6016. ВАНТ. 2013. №4(86) 332 14. D.A. Ovsyannikov, A.D. Ovsyannikov, I.V. Antropov, V.A. Kozynchenko. BDO-RFQ code and optimizationmodels // Proceedings of Physcon. 2005, p. 282-288. 15. D.A. Ovsyannikov, A.D. Ovsyannikov, M.F. Vorogushin, Yu.A. Svistunov, A.P. Durkin. Beam dynamics optimization: models, methods and applications // Nuclear instruments and methods in physics research. Section A. 2006, v. 558, № 1, p. 11-19. 16. B. Bondarev, A. Durkin, Y. Ivanov, et al. The LIDOS.RRQ designer development // Proceedings of the IEEE Particle Accelerator Conference, Chi- cago. 2001, p. 2947-2949. 17. V.V. Seliverstov. Multiplication of external source neutrons in subcritical cascade systems with one- directional neutron coupling // Atomic energy. 1996, v. 81, iss. 5, p. 378-390. 18. А.G. Golovkina, I.V. Kudinovich, D.А. Ovsyannikov. Subcritical homogeneous reactor power rate subject to space distribution and energy of the external neu- tron source // Vestnik St. Petersburg University. Ser. 10. 2012, iss. 2, p. 13-24. 19. L. Borst // Physreview. 1957, v. 107, № 3, p. 905- 906. 20. P.N. Alekseev, V.V. Ignat’ev, О.Е. Kolyaskin, et al. Conception of the cascade subcritical enhanced safety reactor// Atomic energy. 1995, v. 79, iss. 5, p. 327-337. 21. R. Avery. Theory of Coupled Reactors // Proceedings of the second international cpnference on peaceful uses of atomic energy. 1958, v. 3, p. 321-340. 22. А. Walter, А. Reynolds. Fast-neutron breeder reac- tors. Moscow: «Energoatomizdat», 1986, p. 544. Article received 24.05.2013. МОЩНОСТЬ ЭЛЕКТРОЯДЕРНОЙ УСТАНОВКИ С НИЗКОЭНЕРГЕТИЧЕСКИМ УСКОРИТЕЛЕМ И РАЗМНОЖАЮЩЕЙ МИШЕНЬЮ А.Г. Головкина, И.В. Кудинович, Д.А. Овсянников Рассмотрены перспективы создания электроядерной установки на базе низкоэнергетического ускорителя и размножающей мишени. Предлагается использовать быструю активную зону, состоящую из размножаю- щей мишени и бустера, охлаждаемых жидкометаллическим теплоносителем. Проанализированы различные варианты компоновки активной зоны, определена мощность энерговыделения в реакторе ЭЛЯУ. ПОТУЖНІСТЬ ЕЛЕКТРОЯДЕРНОЇ УСТАНОВКИ З НИЗЬКОЕНЕРГЕТИЧНИМ ПРИСКОРЮВАЧЕМ І РОЗМНОЖУЮЧОЮ МІШЕННЮ А.Г. Головкіна, І.В. Кудінович, Д.А. Овсянников Розглянуто перспективи створення електроядерної установки на базі низькоенергетичного прискорювача і розмножуючої мішені. Пропонується використовувати швидку активну зону, що складається з розмножу- ючої мішені і бустера, що охолоджуються рідиннометалевим теплоносієм. Проаналізовано різні варіанти компонування активної зони, визначена потужність енерговиділення в реакторі ЕЛЯУ.