Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen

The results of experimental investigation of penning type charged particles source with metal-hydride watercooled cathode are presented. The feature of investigation is hydrogen ion-stimulated desorbtion from metal-hydride as a way of working gas feeding. The influence of ion-stimulated desorbtion o...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Agarkov, A.V., Ryabchikov, D.L., Sereda, I.N., Tseluyko, A.F.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112154
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen / A.V. Agarkov, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 301-303. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112154
record_format dspace
spelling irk-123456789-1121542017-01-18T03:03:55Z Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen Agarkov, A.V. Ryabchikov, D.L. Sereda, I.N. Tseluyko, A.F. Приложения и технологии The results of experimental investigation of penning type charged particles source with metal-hydride watercooled cathode are presented. The feature of investigation is hydrogen ion-stimulated desorbtion from metal-hydride as a way of working gas feeding. The influence of ion-stimulated desorbtion on emissive source characteristics was studied. In outflowing in axial direction charged particles flow the dynamic of energy distribution function of electrons and ions was carried out and their dependence on discharge external parameters was determined. Представлено результати експериментального дослідження джерела заряджених частинок пенінговського типу з металогідридним катодом, що охолоджується. Особливість дослідження полягає в способі напуску робочого газу за рахунок іон-стимульованої десорбції водню з металогідриду. Вивчено вплив іонстимульованої десорбції на емісійні характеристики джерела. У вихідному із джерела в аксіальному напрямку потоці заряджених часток досліджена динаміка функцій розподілу іонів й електронів по енергіях і визначена їхня залежність від зовнішніх параметрів розряду. Представлены результаты экспериментального исследования источника заряженных частиц пеннинговского типа с металлогидридным водоохлажденным катодом. Особенность исследования заключается в способе напуска рабочего газа за счет ион-стимулированной десорбции водорода из металлогидрида. Изучено влияние ион-стимулированной десорбции на эмиссионные характеристики источника. В выходящем из источника в аксиальном направлении потоке заряженных частиц исследована динамика функций распределения ионов и электронов по энергиям и определена их зависимость от внешних параметров разряда. 2013 Article Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen / A.V. Agarkov, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 301-303. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 52.80.Sm http://dspace.nbuv.gov.ua/handle/123456789/112154 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Приложения и технологии
Приложения и технологии
spellingShingle Приложения и технологии
Приложения и технологии
Agarkov, A.V.
Ryabchikov, D.L.
Sereda, I.N.
Tseluyko, A.F.
Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen
Вопросы атомной науки и техники
description The results of experimental investigation of penning type charged particles source with metal-hydride watercooled cathode are presented. The feature of investigation is hydrogen ion-stimulated desorbtion from metal-hydride as a way of working gas feeding. The influence of ion-stimulated desorbtion on emissive source characteristics was studied. In outflowing in axial direction charged particles flow the dynamic of energy distribution function of electrons and ions was carried out and their dependence on discharge external parameters was determined.
format Article
author Agarkov, A.V.
Ryabchikov, D.L.
Sereda, I.N.
Tseluyko, A.F.
author_facet Agarkov, A.V.
Ryabchikov, D.L.
Sereda, I.N.
Tseluyko, A.F.
author_sort Agarkov, A.V.
title Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen
title_short Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen
title_full Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen
title_fullStr Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen
title_full_unstemmed Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen
title_sort pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Приложения и технологии
url http://dspace.nbuv.gov.ua/handle/123456789/112154
citation_txt Pig with metal-hydride cathode under ion-stimulated desorbtion of hydrogen / A.V. Agarkov, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 301-303. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT agarkovav pigwithmetalhydridecathodeunderionstimulateddesorbtionofhydrogen
AT ryabchikovdl pigwithmetalhydridecathodeunderionstimulateddesorbtionofhydrogen
AT seredain pigwithmetalhydridecathodeunderionstimulateddesorbtionofhydrogen
AT tseluykoaf pigwithmetalhydridecathodeunderionstimulateddesorbtionofhydrogen
first_indexed 2025-07-08T03:28:23Z
last_indexed 2025-07-08T03:28:23Z
_version_ 1837047800062279680
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 301 PIG WITH METAL-HYDRIDE CATHODE UNDER ION-STIMULATED DESORBTION OF HYDROGEN A.V. Agarkov, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko V.N. Karazin Kharkov National University, Kharkov, Ukraine E-mail: igorsereda@mail.ru The results of experimental investigation of penning type charged particles source with metal-hydride water- cooled cathode are presented. The feature of investigation is hydrogen ion-stimulated desorbtion from metal-hydride as a way of working gas feeding. The influence of ion-stimulated desorbtion on emissive source characteristics was studied. In outflowing in axial direction charged particles flow the dynamic of energy distribution function of elec- trons and ions was carried out and their dependence on discharge external parameters was determined. PACS: 52.80.Sm INTRODUCTION Metal-hydride cathode (MH-cathode) applying in plasma sources of charged particles is of interest for modern science. Desorbed from the cathode hydrogen due to exposure to heat is in activated state and has the ionization potential on 0.5 eV lower and ionization cross-section in 1.5 times higher than common molecu- lar balloon hydrogen [1]. This is sufficiently raising the efficiency of an ion source. The complementary advan- tages of MH-cathode using are compactness and safety of hydrogen store as well as possibility to realize the local gas feeding. But for all that MH-cathode using leads to discharges parameters and characteristics of outflowing charged particles flow changing [2]. It con- cerned with state changing of feeding hydrogen [3]. The problem in creation of working source is strong dependence of desorbed hydrogen flow on MH-cathode temperature that makes difficult to stabilize the dis- charge regime. For solving this problem the authors offer to apply forced water-cooling of MH-cathode. In this case maintaining temperature of MH-cathode lower than hydride phase decomposition one, the hydrogen desorbtion should be realized due to ion-stimulated processes and desorbtion velocity should be determined only by ion current bombardment of metal-hydride sur- face. 1. EXPERIMENTAL SETUP The experimental investigations were carried out in discharge cell of penning configuration set in longitudi- nal magnetic field (Fig. 1). The cylindrical anode was 3.7 cm in diameter and 3 cm in length. MH-cathode (2) was a disk 2 cm in diameter and 0.5 cm in thick. It was pressed from powder mixture of saturated with hydro- gen Zr50V50Hx alloy and copper stuff. The initial satura- tion of MH-cathode with hydrogen was about 900 cm3 at normal conditions MH-cathode was placed in copper cathode- holder (3) 2.5 cm in diameter, which has water-cooling. For ensuring a good heat contact of MH-cathode with cathode-holder its surface was covered with heat- conducting spread. The MH-cathode temperature was controlled by thermocouple (4). The copper cathode- reflector (5) 2 cm in diameter and 0.5 cm in thick has a hole at the center 0.5 cm in diameter. Behind the hole the collector (6) for outflow charged particles current measurement was set. At energy spectra investigation by the method of retarding field the collector was changed on 4th electrode electrostatic energy-analyzer. On the first grid the tearing potential +3 kV or -0.2 kV for separation of electron or ion part in outflow current correspondingly was supplied. The distance between anode and cathodes was 1 cm. In check experiments MH-cathode was changed with copper one of same form and dimensions. The whole electrode system was fixed inside the quartz cylinder played a role of electrostatic shield. Fig. 1. The scheme of discharge cell: 1 – anode; 2 – MH-cathode; 3 – cathode-holder; 4 – thermocouple; 5 – cathode-reflector; 6 – collector The residual pressure in vacuum chamber not ex- ceeds 3⋅10-6 Torr. The investigations were carried out at the pressure of 10–6…10–4 Torr. 2. RESULTS AND DISCUSSION The forced MH-cathode cooling is shown to stabi- lize the discharge working pressure and eliminates hy- drogen kick due to uncontrolled thermal decomposition of hydride phases. Low temperature of MH-cathode (lower than hydride phases decomposition one) ensures hydrogen desporbtion only by ion-stimulated processes. It gives the possibility to operate the hydrogen de- sorbtion velocity by current discharge. At that hydrogen consumption sufficiently reduces and time of the source continuous work raises. Fig. 2 shows typical dependences of pressure (a), discharge current (b) and collector current (c) on dis- charge voltage. The discharge was ignited on residual pressure P = 5·10-6 Torr. There is no external gas supply so the pressure change during the discharges working could be unambiguously joined with hydrogen de- sorbtion from MH-cathode. One can see that in case of two copper cathodes the pressure changes weakly (dotted line on Fig. 2,a). At the same time in case of MH-cathode (solid line) starting from discharge voltage Ud ≈ 2 kV (it corresponds to discharge current Id ≈ 0.2 mA (see Fig. 2,b) the pressure rises due to hydrogen desorbtion under ion-stimulated 1 2 3 4 water 56 ISSN 1562-6016. ВАНТ. 2013. №4(86) 302 processes. Increasing Id up to 1 mA leads to working pressure set up on the level of 2·10-5 Torr. 0 1 2 3 4 5 4 6 8 10 12 14 16 P* 10 -6 T or Ud, kV a 0 1 2 3 4 5 0,0 0,5 1,0 1,5 1' 2' 2I d, m A Ud, kV 1 b 0 1 2 3 4 5 -80 -60 -40 -20 0 20 2' 2 1'I c, μ A Ud, kV 1 c Fig. 2. Dependences of pressure (a), discharge current (b) and collector current (c) on discharge voltage at initial pressure P = 5·10-6 Torr. Dotted line corresponds to check discharge, solid line – discharge with MH-cathode. 1 – MH-cathode, Н = 600 Э; 1’ – check discharge; 2 – MH-cathode, Н = 1000 Э; 2’ – check discharge It is important that the pressure in vacuum chamber is determined by discharge current and at changing it in one or another side the pressure rapidly changes and stabilizes on the new level. The current-voltage characteristics presented in Fig. 2,b are show to require heightened voltage drop in case of discharge with MH-cathode as compared with check one. The reason is repeatedly discussed, for in- stance in [4], and obviously concerned with dissociative capture of slow electrons by vibrationaly excited mole- cules of desorbed hydrogen. There are differences in outflowing from discharge flows of charged particles (see Fig. 2,c) as well. At high magnetic field the discharge with MH-cathode works at three-regimes (curve 2). The first one is characterized by axial electron yield (Ud ≈ 1…2.3 kV), the second one – by ion yield (Ud > 2.4 kV) and the third one – again by electron yield (Ud > 3.5 kV). Such a behavior was typical in the range of magnetic field changing from 700 up to 1000 Oe. These regimes are in detail described in [2, 3] and concerned with oscillation processes in anode layer. There is no 3rd regime when using both copper cathodes (curve 2’). At low magnetic fields about 500…600 Oe both in case of MH-cathode and in check experiments the col- lector was registered only negative current value (see curves 1 and 1’ in Fig. 2,b). The collector current in discharge with MH-cathode is about in two times bigger than in check one that obviously due to transition of the first regime straight away to the third one. The check discharge keep works in the first regime (curve 1’). It should be pointed out that such a behavior in the check discharge was only at residual pressure working. At even minor balloon hydrogen feeding the collector cur- rent turned in to positive values already at Ud > 2 kV: the discharge transits to the second regime. In the other side the discharge with MH-cathode transited to three-regime working only as from the pres- sure of 3·10-5 Тorr (Fig. 3). But for all that balloon hy- drogen was feed for working pressure set up. (In our case the only hydrogen desorbtion due to ion-stimulated processes was not enough). 0 1 2 3 4 5 -100 -80 -60 -40 -20 0 20 I c, μA Ud, kV 12 3 4 Fig. 3. The dependence of collector current on discharge voltage at Н = 600 Oe for different pressures. 1 – P = 5·10-6 Torr; 2 – P = 2·10-5 Torr; 3 – P = 3·10-5 Torr; 4 – P = 5·10-5 Torr Such a behavior was typical either at pressure or at magnetic field rising. It is agreed with results carried out in [2]. At magnetic field lower than 500 Oe the dis- charge works only in second regime (with ions yield in axial direction) in whole investigated range of pressure. The analysis of energy spectra of outflowing charged particles flow revealed a number of peculiari- ties as well. At working on residual pressure electrons have weak dependence of energy both on discharge voltage and magnetic field. The most likely electron energy there is about 20 eV (Fig. 4,a), and the main part of electrons posses energy in the range from 10 to 75 eV. Increasing of initial pressure due to external balloon hydrogen feeding leads to widening of electron energy distribution function and maxima shifting in direction of bigger energy values (Fig. 4,b). It is important to note the fact is most pronounced at the pressure of P = 3·10-5 Torr, which corresponds to discharge transi- tion in to three-regime working (see curve 3 in Fig. 3) and concerned with extra energy getting of electrons against an intensive oscillation development in the dis- charge [3]. The same dependence of distribution func- tion is registered at more high values of magnetic field. The reversed situation is observed at ion component in outflowing axial flow investigation. Magnetic field increasing leads to significant rising of ion energy (Fig. 5). If at Н = 600 Oe ion energy was about 8% from discharge voltage then at Н > 700 Oe – about 50% with tendency to saturation at discharge voltage drop rising. At heightened values of magnetic field or initial pressures in chamber the average ion energy has a weak dependence on these parameters. ISSN 1562-6016. ВАНТ. 2013. №4(86) 303 0 10 20 30 40 50 60 70 0,0 0,1 0,2 0,3 0,4 0,5 0,6 a H = 1000 Oe H = 800 Oe H = 600 Oe E, eV arb. units 0 20 40 60 80 100 120 140 160 180 0,0 0,1 0,2 0,3 0,4 b P = 3*10-5 Tor P = 1*10-5 Tor P = 5*10-6 Tor E, eV arb. units Fig. 4. Electron energy distribution function at Ud = 4.5 kV for constant pressure P = 5·10-6 Torr (a) and for constant magnetic field Н = 600 Oe (b) 0 500 1000 1500 2000 2500 3000 0,000 0,002 0,004 0,006 H = 1000 Oe H = 800 Oe arb. units E, eV H = 600 Oe Fig. 5. Ion energy distribution function at Ud = 4.5 kV for initial pressure P = 5·10-6 Torr Thus, in the range of external parameters described with curves 1 and 2 in Fig. 3 (P < 3·10-5 Torr, H ≈ 500…600 Oe), when the second regime of dis- charge working is absent, the average energy of ions outflew along the axis is small. The electron energy possesses a minimal value as well. In this case ioniza- tion of desorbed hydrogen with oscillated along the axis electrons occurs mainly by the axis where the space potential is small. The discharge transition to the three- regime working causes by instability development in anode layer [2, 3]. Electron energy at that rises, and the area of main ionization shifts from the axis in to anode layer. And last but not the least, forced water cooling of MH-cathode is shown to stabilize the discharge working pressure and provides hydrogen desorbtion only by ion- stimulated processes. REFERENCES 1. Yu.F. Shmal’ko, Ye.V. Klochko, N.V. Lototsky. Influence of isotopic effect on the shift of the ioniza- tion potential of hydrogen desorbed from metal hy- dride surface // Int. J. Hydrogen energy. 1996, v. 21, p. 1057-1059. 2. Ye.V. Klochko, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko. Influence of metal-hydride cathode on electron yield from PIG // Probl. of Atomic Sci. and Tech. Series “Plasma Electronics and New Ac- celeration Methods” (7). 2010, № 4, p. 226-229 (in Russian). 3. I.V. Borgun, D.L. Ryabchikov, I.N. Sereda, A.F. Tseluyko. Experimental simulation of metal- hydride cathode working in Penning discharge // Probl. of Atomic Sci. and Tech. Series “Plasma Physics” (83). 2013, № 1, p. 228-230. 4. V.N. Borisko, Ye.V. Klochko, I.N. Sereda. Influence of saturation degree of metal-hydride cathode on characteristics of Penning type ion source of hydro- gen // Probl. of Atomic Sci. and Tech. Series “Plasma Physics”(3). 2003, № 3, p. 217-220. Article received 13.03.2013. РАЗРЯД ПЕННИНГА С МЕТАЛЛОГИДРИДНЫМ КАТОДОМ ПРИ ИОН-СТИМУЛИРОВАННОЙ ДЕСОРБЦИИ ВОДОРОДА А.В. Агарков, Д.Л. Рябчиков, И.Н. Середа, А.Ф. Целуйко Представлены результаты экспериментального исследования источника заряженных частиц пеннингов- ского типа с металлогидридным водоохлажденным катодом. Особенность исследования заключается в спо- собе напуска рабочего газа за счет ион-стимулированной десорбции водорода из металлогидрида. Изучено влияние ион-стимулированной десорбции на эмиссионные характеристики источника. В выходящем из ис- точника в аксиальном направлении потоке заряженных частиц исследована динамика функций распределе- ния ионов и электронов по энергиям и определена их зависимость от внешних параметров разряда. РОЗРЯД ПЕНІНГУ З МЕТАЛОГІДРИДНИМ КАТОДОМ ПРИ ІОН-СТИМУЛЬОВАНІЙ ДЕСОРБЦІЇ ВОДНЮ А.В. Агарков, Д.Л. Рябчиков, І.М. Середа, О.Ф. Целуйко Представлено результати експериментального дослідження джерела заряджених частинок пенінговсько- го типу з металогідридним катодом, що охолоджується. Особливість дослідження полягає в способі напуску робочого газу за рахунок іон-стимульованої десорбції водню з металогідриду. Вивчено вплив іон- стимульованої десорбції на емісійні характеристики джерела. У вихідному із джерела в аксіальному напря- мку потоці заряджених часток досліджена динаміка функцій розподілу іонів й електронів по енергіях і ви- значена їхня залежність від зовнішніх параметрів розряду. Torr Torr Torr