Investigation of electric ARC plasma between composite Cu–C electrodes
Plasma of electric arc discharge in air between composite Cu–C electrodes at arc current 3.5 A in the assumption of local thermodynamic equilibrium was investigated. Special electric device for arc ignition was suggested. The radial profiles of temperature in discharge column were obtained by optica...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112168 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Investigation of electric ARC plasma between composite Cu–C electrodes / A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid΄, S.A. Fesenko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 204-208. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112168 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121682017-01-18T03:03:25Z Investigation of electric ARC plasma between composite Cu–C electrodes Veklich, A.N. Boretskij, V.F. Ivanisik, A.I. Lebid, A.V. Fesenko, S.A. Плазменно-пучковый разряд, газовый разряд и плазмохимия Plasma of electric arc discharge in air between composite Cu–C electrodes at arc current 3.5 A in the assumption of local thermodynamic equilibrium was investigated. Special electric device for arc ignition was suggested. The radial profiles of temperature in discharge column were obtained by optical emission spectroscopy. The radial profiles of copper density were obtained by laser absorption spectroscopy. Досліджували плазму електродугового розряду між композитними Cu–C-електродами при силі струму дуги 3,5 А у припущенні локальної термодинамічної рівноваги. Запропоновано спеціальний електронний пристрій для ініціації дугового розряду. Радіальні розподіли температури в розрядному проміжку отримані за допомогою оптичної емісійної спектроскопії. Радіальні розподіли концентрації атомів міді отримані за допомогою лазерної абсорбційної спектроскопії. Исследовали плазму электродугового разряда между композитными Cu–C-электродами при силе тока дуги 3,5 А в предположении локального термодинамического равновесия. Предложено специальное электронное устройство для инициации дугового разряда. Радиальные распределения температуры в разрядном промежутке получены с использованием оптической эмиссионной спектроскопии. Радиальные распределения концентрации атомов меди получены с помощью лазерной абсорбционной спектроскопии. 2013 Article Investigation of electric ARC plasma between composite Cu–C electrodes / A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid΄, S.A. Fesenko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 204-208. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.70.-m, 84.30.Sk http://dspace.nbuv.gov.ua/handle/123456789/112168 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия |
spellingShingle |
Плазменно-пучковый разряд, газовый разряд и плазмохимия Плазменно-пучковый разряд, газовый разряд и плазмохимия Veklich, A.N. Boretskij, V.F. Ivanisik, A.I. Lebid, A.V. Fesenko, S.A. Investigation of electric ARC plasma between composite Cu–C electrodes Вопросы атомной науки и техники |
description |
Plasma of electric arc discharge in air between composite Cu–C electrodes at arc current 3.5 A in the assumption of local thermodynamic equilibrium was investigated. Special electric device for arc ignition was suggested. The radial profiles of temperature in discharge column were obtained by optical emission spectroscopy. The radial profiles of copper density were obtained by laser absorption spectroscopy. |
format |
Article |
author |
Veklich, A.N. Boretskij, V.F. Ivanisik, A.I. Lebid, A.V. Fesenko, S.A. |
author_facet |
Veklich, A.N. Boretskij, V.F. Ivanisik, A.I. Lebid, A.V. Fesenko, S.A. |
author_sort |
Veklich, A.N. |
title |
Investigation of electric ARC plasma between composite Cu–C electrodes |
title_short |
Investigation of electric ARC plasma between composite Cu–C electrodes |
title_full |
Investigation of electric ARC plasma between composite Cu–C electrodes |
title_fullStr |
Investigation of electric ARC plasma between composite Cu–C electrodes |
title_full_unstemmed |
Investigation of electric ARC plasma between composite Cu–C electrodes |
title_sort |
investigation of electric arc plasma between composite cu–c electrodes |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Плазменно-пучковый разряд, газовый разряд и плазмохимия |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112168 |
citation_txt |
Investigation of electric ARC plasma between composite Cu–C electrodes / A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid΄, S.A. Fesenko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 204-208. — Бібліогр.: 8 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT veklichan investigationofelectricarcplasmabetweencompositecucelectrodes AT boretskijvf investigationofelectricarcplasmabetweencompositecucelectrodes AT ivanisikai investigationofelectricarcplasmabetweencompositecucelectrodes AT lebidav investigationofelectricarcplasmabetweencompositecucelectrodes AT fesenkosa investigationofelectricarcplasmabetweencompositecucelectrodes |
first_indexed |
2025-07-08T03:29:29Z |
last_indexed |
2025-07-08T03:29:29Z |
_version_ |
1837047868326674432 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №4(86) 204
INVESTIGATION OF ELECTRIC ARC PLASMA BETWEEN
COMPOSITE Cu–C ELECTRODES
A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid΄, S.A. Fesenko
Taras Shevchenko Kiev National University, Radio Physics Faculty, Kiev, Ukraine
E-mail: van@univ.kiev.ua
Plasma of electric arc discharge in air between composite Cu–C electrodes at arc current 3.5 A in the assump-
tion of local thermodynamic equilibrium was investigated. Special electric device for arc ignition was suggested.
The radial profiles of temperature in discharge column were obtained by optical emission spectroscopy. The ra-
dial profiles of copper density were obtained by laser absorption spectroscopy.
PACS: 52.70.-m, 84.30.Sk
INTRODUCTION
Nowadays, the electromotive vehicle using copper
wire and various types of contacts that are attached to
the surface of the pantograph [1]. During the move-
ment of trains, electric arc between the wire and pan-
tograph contacts often occurs, which significantly
reduces the contact pair resource. The investigation
of plasma properties of such electric arcs can be used
for prolongation of the contact pair resource. In this
study the model source of electric arc was used.
1. EXPERIMENTAL SETUP
1.1. MODEL SOURCE OF BREAKING ARC
Scheme of such source model is shown in Fig. 1. The
arc plasma was ignited between the end surfaces of un-
cooled electrodes. The electromagnet with control
scheme was used for arc breaking imitation and the direct
synchronization with measurement circuits. Special elec-
tronic scheme (Fig. 2) for the electromagnet operation
and control of the electric arc power source was devel-
oped. For electromagnet anchor retracting considerably
higher voltage is required in comparison with its normal
containment. This voltage is created by back–inverter and
stored in the capacitor C9. The voltage retention is regu-
lated by pulse width modulation. The bottom electrode
can hit the top one during anchor electromagnet release.
In order to avoid this effect voltage from the capacitor
C10 is applied to the electromagnet coil while the upward
movement of the electrode. This voltage was adjusted by
pulse width modulation to achieve maximum damping
effect.
The electrical circuit of the power supply of an
electric arc is shown in Fig. 3. The XX3 plug provides
connection to the control scheme (see Fig. 2).
1.2. EXPERIMENTAL TECHNIQUES
Copper-graphite composite is often used as a mate-
rial for the sliding contacts of pantograph. That is why
in this study copper-graphite electrodes with a copper
content of 20% were used. The diameter of the elec-
trodes was 6 mm, discharge gap was 8 mm. Discharge
was operated at arc current 3.5 A.
At the first stage, parameters of stationary plasma
were investigated. The complex of this study includes
two independent techniques: optical emission spec-
troscopy (OES) and laser absorption spectroscopy
(LAS). Experimental setup for the OES is shown in
Fig. 4. The middle cross-section of the image of an
electric arc projected on the entrance slit of the diffrac-
tion spectrometer (600 lines/mm) by condenser lens.
The spectrum was recorded by CCD camera [2].
Fig. 1. Scheme of the electrode unit. 1 – coil electro-
magnet; 2 – anchor; 3 – arm; 4 – spring; 5 – mandrel
holder electrode; 6 – electric arc; 7 – electrodes;
8 – electrodes mandrels collet clamps
Experimental setup for the LAS is shown in Fig. 5.
Emission radiation of copper vapor laser, passed
through the arc discharge plasma, was recorded by
CCD matrix [3]. Due to the presence of copper in
such multicomponent plasma, the main mechanism,
which is responsible for reducing the intensity of the
laser radiation, is resonant absorption by copper at-
oms. Therefore, by measuring of the spatial distribu-
tion of the plasma optical thickness, the appropriate
distribution of copper atom concentration can be de-
termined.
2. RESULTS AND DISCUSSION
The optical emission spectroscopy was carried out
at the initial stage of this study. Emission spectrum of
the plasma arc discharge between copper-graphite
electrodes is shown in Fig. 6. Spectral lines of the
copper atom are well recognized in this spectrum. As
soon as the selected for diagnostics spectral lines are
not overlapped with the spectral lines of another
plasma components it is possible to use them in the
temperature determination by the Boltzmann’s plot
technique.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 205
Fig. 2. The electric circuit of the electromagnet control. XX1 – internal connector for the microcontroller programming,
XX2 – electromagnet connector, XX3 – connector to the power supply of electric arc, XX4 – input synchronization
It must be noted that the recorded intensity of each
spectral line is a result of the integration along the line
of sight. To determine its local values the integral equa-
tion must be solved, which depends on the type of the
distribution function of the local intensity values. This
problem has a solution in the case of axial symmetry of
the distribution function of the local radiation intensity,
and then the solution has the form of Abel's integral
transformation [4]. To use this solution correctly each
measurement was carefully examined from the point of
view of axial symmetry of observed emission distribu-
tion. So, the radial plasma temperature distribution was
determined by the Boltzmann plot method under the
assumption of local thermodynamic equilibrium
(Fig. 7). Copper atom spectral lines 510.5; 515.3; 521.8;
570.0 and 578.2 nm and appropriate spectroscopic con-
stants taken from [5] were used in this case. This radial
distribution was compared with the plasma temperature
distribution [6] in arc discharge between copper elec-
trodes under the same experimental conditions. As one
can see from the Fig. 7 radial distributions of tempera-
ture are almost the same for both types of electrodes.
Therefore, we can summarize that the copper con-
tent in plasma of such discharges is comparable.
Copper vapor laser “Kriostat 1” was used in the laser
absorption spectroscopy. There are two spectral lines
510.5 and 578.2 nm in its generation spectrum. Addi-
tional diffraction grating was used [3] to select
510.5 nm line, which corresponds to the transition
4p 2P3/2 (3.817 еV) → 4s2 2D5/2 (1,389 еV).
Fig. 3. The electrical circuit of the power supply electric
arc plasma. C – cathode, A – anode
ISSN 1562-6016. ВАНТ. 2013. №4(86) 206
Fig. 4. Experimental setup for optical emission spectroscopy of plasma.
1 – arc; 2 – condenser lens; 3 – input slit; 4 – collimator; 5 – diffraction grating; 6 – mirror; 7 – CCD camera
Fig. 5. Experimental setup for laser absorption spectroscopy of plasma.
1 – copper vapor laser "Kriostat 1"; 2 – laser radiation; 3 – arc; 4 – CCD matrix
450 500 550 600
0
200
400
600
800
λ, nm
І,a.u.
CuI 510,5nm
CuI 515,3nm
CuI 521,8nm
CuI 570,0nm
CuI 578,2nm
Fig. 6. The emission spectrum of the plasma arc discharge between copper–graphite electrodes
As one can see from Fig. 6 this spectral line is well
isolated from others. Since the divergence of the laser
radiation is small, it was an opportunity to place the
CCD matrix at a distance from the electric arc sufficient
to neglect by own plasma emission. The plasma optical
thickness is defined as follows:
( ) ( ) ( )( )xIxIx ,,ln, 02010 λλλτ = (1)
where, I1, І2 – the intensity of the probing and absorbed
radiation respectively, x – coordinate perpendicular to
the direction of the laser beam. As far as half width of
laser spectral line is more narrower than absorption line
of plasma, so it can be assumed as absorption in the
center of spectral line. Therefore experimentally ob-
tained optical thickness correspond to the absorption at
the center (λ=λ0) of the spectral line. Under the assump-
tion of axial symmetry of the plasma object one can
obtain the radial distribution of absorption coefficient
κ(λ0,r) using Abel integral equation [4].
The absorption coefficient κ(λ0,r) depends on the
number of absorbing centers (in this case copper atoms,
that are at the 4s2 2D5/2 level). Relation between the local
values of the absorption coefficient and level population
is [1]:
( ) ( )
( )⎟
⎟
⎠
⎞
⎜⎜
⎝
⎛
−⋅⋅⋅=∫
∞
rNg
rNg
rNf
cm
edr
ki
ik
kki 1
0
),(1
2
0
2
2
πλλκ
λ
, (2)
where Ni – population of the upper level (4p 2P3/2), Nk –
population of the lower level (4s2 2D5/2), fki – oscillator
strength, gk, gi – statistical weights of levels, λ –
wavelength, m0, e – mass and charge of an electron, с –
speed of light. To link the integral in expression (1) with
ISSN 1562-6016. ВАНТ. 2013. №4(86) 207
the experimentally measured absorption coefficient at
the center of the spectral line, one must know the shape
of its contour. Since the broadening of this line in the
above discharge type caused by Doppler mechanism, we
consider Gaussian line contour:
( ) ( ) ( ) ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
⎟
⎠
⎞
⎜
⎝
⎛ −
⋅
⋅
−⋅=
2
0
2
0 2
exp,,
λ
λλμ
λκλκ
rRT
crr , (3)
where, μ – molar mass of atoms, R – universal gas con-
stant, T(r) – radial temperature distribution. Then, the inte-
gral can be written as:
( ) ( ) ( )
μ
πλλκλλκ
λ
rRT
c
rdr 2,
0
,1 0
02 ⋅∫
∞
= . (4)
In our case, the terms ( )
( )rNg
rNg
ki
ik in the expression (1) can
be neglected. Then, the population of the lower level
(4s2 2D5/2) has the form:
( ) ( ) ( )
πμ
λ
λκ
rRT
fe
cmrrN
ki
k
2, 2
00
0 ⋅= . (5)
Therefore, knowing the absorption coefficient we can
determine the spatial distribution of the corresponding
level population.
Radial distribution of the absorption coefficient and
4s2 2D5/2 level population for copper-graphite electrodes
are shown in Fig. 8. In addition, the distribution of the
same level population for the discharge between copper
electrodes under the same experimental conditions [3] is
shown in Fig. 8.
Radial distribution of the copper atoms concentra-
tion can be obtained from the Boltzmann distribution in
the local thermodynamic equilibrium (LTE) assump-
tion:
( ) ( ) ( )( )
( ) ⎟⎟⎠
⎞
⎜⎜
⎝
⎛
=
rkT
E
g
rTUrNrN k
k
kCu exp , (6)
where Ek and gk energy and the statistical weight of
level 4s2 2D5/2, U(T) – partition function of the copper
atom:
( ) ∑ ⎟
⎠
⎞
⎜
⎝
⎛=
i
i
i kT
EgTU exp . (7)
Radial distributions of the copper atoms concentra-
tion in the plasma for copper-graphite and copper elec-
trodes are shown in Fig. 9. Values for the discharge be-
tween copper electrodes were taken from [3] under the
same experimental conditions.
0.5 1.0 1.5
3000
4000
5000
6000
7000
Cu-C
Cu
r, mm
T, K
Fig. 7. Radial temperature distribution of plasma
between copper–graphite end copper electrodes
0.5 1.0 1.5
0.4
0.6
0.8
1.0 k0
r, mm
Nk,cm-3
k0,cm-1
2x1013
3x1013
4x1013
5x1013
6x1013
Nk(Cu-C)
Nk(Cu)
Fig. 8. Radial distribution of κ(λ0) and Nk in the arc
discharge plasma between composite Cu-C and copper
[3] electrodes
0.0 0.5 1.0 1.5
2x1014
3x1014
4x1014
NCu,(Cu-C)
NCu,(Cu)
r, mm
NCu,cm-3
Fig. 9. Radial distribution of the copper atom concen-
tration in the middle cross section of the arc discharge
between copper-graphite and copper [3] electrodes
Fig. 7 shows that the plasma temperature for cop-
per-graphite and copper electrodes are almost identi-
cal. This is the interesting result taking into account
that the mass fraction of copper in copper-graphite
electrodes is 20%. This result directly indicates that
the plasma parameters for copper–graphite electrodes
are mainly determined by copper component. Indeed,
the simple analysis of the distribution of the copper
atoms concentration in Fig. 9 displays that they are
almost the same for copper and copper-graphite elec-
trodes. This can be explained by the considerable dif-
ference in the ionization potential for copper (7.72 eV)
and carbon (11.25 eV). In addition, almost identical
copper component concentration in plasma arc between
copper and copper-graphite electrodes indicates about
approximately the same erosion of copper in this elec-
trodes. One can conclude the possible realization of the
formation of copper islands on the electrode surfaces, to
which arc "tieds". However, this assumption can be fi-
nally clarified by additional metallographic studies [7, 8].
CONCLUSIONS
Model plasma source unit with real breaking arc was
developed for the simulation of discharges which oc-
curred during sliding of Cu-C composite electrodes on
copper wire at electromotive vehicles. The electromag-
net was used for arc breaking. Microcontroller control
system allows damping of moving part oscillations and
synchronization with measurement circuits.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 208
It was found, that radial profiles of temperature and
copper atoms concentration obtained for Cu-C compos-
ite electrodes in stationary mode of electric arc are
comparable with results for discharge between copper
electrodes. So, one can conclude, that properties of arc
discharge between composite Cu-C electrodes are
mainly determined by copper impurity. Therefore, as-
sumption of possible formation of copper islands on the
investigated electrodes’ surface is suggested.
REFERENCES
1. V.Ya. Berent, S.A. Gnezdilov. Improvement of per-
formance of current collectors on the carbon base //
Friction and lubrication of machinery. 2009, № 2,
p. 18-23.
2. A. Veklich, A. Lebid. Technique of electric arc dis-
charge plasma diagnostic: peculiarities of registra-
tion and treatment of spectra // Bulletin of Taras
Shevchenko National University of Kyiv. Series
“Radiophysics & Electronics”. 2012, № 18, p. 6-9.
3. I.L. Babich, V.F. Boretskij, A.N. Veklich,
A.I. Ivanisik. Spectroscopy of plasma arc discharge
with copper alloy // Electrical contacts and elec-
trodes. Kyiv: “Frantsevich Institute for Problems of
Materials Science”. 2008, p. 4-13.
4. K. Bockasten. Transformation of Observed Radi-
ances into Radial Distribution of the Emission of a
Plasma // Journal of the optical society of America
(51). 1961, № 9, p. 943-947.
5. I.L. Babich, V.F. Boretskij, A.N. Veklich,
A.I. Ivanisik, R.V. Semenyshyn, L.O. Kryachko,
M.Ye. Golovkova. Spectroscopy of electric arc
plasma between composite electrodes Ag-CuO //
Electrical contacts and electrodes. Kyiv: “Frant-
sevich Institute for Problems of Materials Science”.
2010, p. 82-115.
6. V. Boretskij, A. Veklich, Y. Cressault, A. Gleizes,
Ph. Teulet. Non-equilibrium plasma properties of
electric arc discharge in air between copper elec-
trodes // Problems of Atomic Science and Technol-
ogy. Series “Plasma Physics” (18). 2012, № 6,
p. 181-183.
7. R.V. Minakova, Ye.V. Chomehko, G.Ye. Kopulova,
M.Ye. Golovkova, A.N. Veklich, P.V. Soroka. Sec-
ondary structure of working layer of composite ma-
terials and their functional properties // Electrical
contacts and electrodes. Kyiv: “Frantsevich Institute
for Problems of Materials Science”. 2012, p. 38-47.
8. I.L. Babich, V.F. Boretskij, A.N. Veklich,
L.O. Kryachko, A.V. Lebid, R.V. Semenyshyn.
Spectroscopy of electric arc plasma between com-
posite electrodes Ag – SnO2 – ZnO // Electrical con-
tacts and electrodes. Kyiv: “Frantsevich Institute for
Problems of Materials Science”. 2012, p. 81-90.
Article received 16.05.2013
ИССЛЕДОВАНИЕ ПЛАЗМЫ ЭЛЕКТРОДУГОВОГО РАЗРЯДА МЕЖДУ КОМПОЗИТНЫМИ
Cu–C-ЭЛЕКТРОДАМИ
А.Н. Веклич, В.Ф. Борецкий, А.И. Иванисик, А.В. Лебедь, С.А. Фесенко
Исследовали плазму электродугового разряда между композитными Cu–C-электродами при силе тока
дуги 3,5 А в предположении локального термодинамического равновесия. Предложено специальное элек-
тронное устройство для инициации дугового разряда. Радиальные распределения температуры в разрядном
промежутке получены с использованием оптической эмиссионной спектроскопии. Радиальные распределе-
ния концентрации атомов меди получены с помощью лазерной абсорбционной спектроскопии.
ДОСЛІДЖЕННЯ ПЛАЗМИ ЕЛЕКТРОДУГОВОГО РОЗРЯДУ МІЖ КОМПОЗИТНИМИ
Cu–-C-ЕЛЕКТРОДАМИ
А.М. Веклич, В.Ф. Борецький, А.І. Іванісік, А.В. Лебідь, С.О. Фесенко
Досліджували плазму електродугового розряду між композитними Cu–C-електродами при силі струму
дуги 3,5 А у припущенні локальної термодинамічної рівноваги. Запропоновано спеціальний електронний
пристрій для ініціації дугового розряду. Радіальні розподіли температури в розрядному проміжку отримані
за допомогою оптичної емісійної спектроскопії. Радіальні розподіли концентрації атомів міді отримані за
допомогою лазерної абсорбційної спектроскопії.
|