Investigation of electric ARC plasma between composite Cu–C electrodes

Plasma of electric arc discharge in air between composite Cu–C electrodes at arc current 3.5 A in the assumption of local thermodynamic equilibrium was investigated. Special electric device for arc ignition was suggested. The radial profiles of temperature in discharge column were obtained by optica...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Veklich, A.N., Boretskij, V.F., Ivanisik, A.I., Lebid, A.V., Fesenko, S.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112168
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Investigation of electric ARC plasma between composite Cu–C electrodes / A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid΄, S.A. Fesenko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 204-208. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112168
record_format dspace
spelling irk-123456789-1121682017-01-18T03:03:25Z Investigation of electric ARC plasma between composite Cu–C electrodes Veklich, A.N. Boretskij, V.F. Ivanisik, A.I. Lebid, A.V. Fesenko, S.A. Плазменно-пучковый разряд, газовый разряд и плазмохимия Plasma of electric arc discharge in air between composite Cu–C electrodes at arc current 3.5 A in the assumption of local thermodynamic equilibrium was investigated. Special electric device for arc ignition was suggested. The radial profiles of temperature in discharge column were obtained by optical emission spectroscopy. The radial profiles of copper density were obtained by laser absorption spectroscopy. Досліджували плазму електродугового розряду між композитними Cu–C-електродами при силі струму дуги 3,5 А у припущенні локальної термодинамічної рівноваги. Запропоновано спеціальний електронний пристрій для ініціації дугового розряду. Радіальні розподіли температури в розрядному проміжку отримані за допомогою оптичної емісійної спектроскопії. Радіальні розподіли концентрації атомів міді отримані за допомогою лазерної абсорбційної спектроскопії. Исследовали плазму электродугового разряда между композитными Cu–C-электродами при силе тока дуги 3,5 А в предположении локального термодинамического равновесия. Предложено специальное электронное устройство для инициации дугового разряда. Радиальные распределения температуры в разрядном промежутке получены с использованием оптической эмиссионной спектроскопии. Радиальные распределения концентрации атомов меди получены с помощью лазерной абсорбционной спектроскопии. 2013 Article Investigation of electric ARC plasma between composite Cu–C electrodes / A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid΄, S.A. Fesenko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 204-208. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.70.-m, 84.30.Sk http://dspace.nbuv.gov.ua/handle/123456789/112168 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Veklich, A.N.
Boretskij, V.F.
Ivanisik, A.I.
Lebid, A.V.
Fesenko, S.A.
Investigation of electric ARC plasma between composite Cu–C electrodes
Вопросы атомной науки и техники
description Plasma of electric arc discharge in air between composite Cu–C electrodes at arc current 3.5 A in the assumption of local thermodynamic equilibrium was investigated. Special electric device for arc ignition was suggested. The radial profiles of temperature in discharge column were obtained by optical emission spectroscopy. The radial profiles of copper density were obtained by laser absorption spectroscopy.
format Article
author Veklich, A.N.
Boretskij, V.F.
Ivanisik, A.I.
Lebid, A.V.
Fesenko, S.A.
author_facet Veklich, A.N.
Boretskij, V.F.
Ivanisik, A.I.
Lebid, A.V.
Fesenko, S.A.
author_sort Veklich, A.N.
title Investigation of electric ARC plasma between composite Cu–C electrodes
title_short Investigation of electric ARC plasma between composite Cu–C electrodes
title_full Investigation of electric ARC plasma between composite Cu–C electrodes
title_fullStr Investigation of electric ARC plasma between composite Cu–C electrodes
title_full_unstemmed Investigation of electric ARC plasma between composite Cu–C electrodes
title_sort investigation of electric arc plasma between composite cu–c electrodes
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/112168
citation_txt Investigation of electric ARC plasma between composite Cu–C electrodes / A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid΄, S.A. Fesenko // Вопросы атомной науки и техники. — 2013. — № 4. — С. 204-208. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT veklichan investigationofelectricarcplasmabetweencompositecucelectrodes
AT boretskijvf investigationofelectricarcplasmabetweencompositecucelectrodes
AT ivanisikai investigationofelectricarcplasmabetweencompositecucelectrodes
AT lebidav investigationofelectricarcplasmabetweencompositecucelectrodes
AT fesenkosa investigationofelectricarcplasmabetweencompositecucelectrodes
first_indexed 2025-07-08T03:29:29Z
last_indexed 2025-07-08T03:29:29Z
_version_ 1837047868326674432
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 204 INVESTIGATION OF ELECTRIC ARC PLASMA BETWEEN COMPOSITE Cu–C ELECTRODES A.N. Veklich, V.F. Boretskij, A.I. Ivanisik, A.V. Lebid΄, S.A. Fesenko Taras Shevchenko Kiev National University, Radio Physics Faculty, Kiev, Ukraine E-mail: van@univ.kiev.ua Plasma of electric arc discharge in air between composite Cu–C electrodes at arc current 3.5 A in the assump- tion of local thermodynamic equilibrium was investigated. Special electric device for arc ignition was suggested. The radial profiles of temperature in discharge column were obtained by optical emission spectroscopy. The ra- dial profiles of copper density were obtained by laser absorption spectroscopy. PACS: 52.70.-m, 84.30.Sk INTRODUCTION Nowadays, the electromotive vehicle using copper wire and various types of contacts that are attached to the surface of the pantograph [1]. During the move- ment of trains, electric arc between the wire and pan- tograph contacts often occurs, which significantly reduces the contact pair resource. The investigation of plasma properties of such electric arcs can be used for prolongation of the contact pair resource. In this study the model source of electric arc was used. 1. EXPERIMENTAL SETUP 1.1. MODEL SOURCE OF BREAKING ARC Scheme of such source model is shown in Fig. 1. The arc plasma was ignited between the end surfaces of un- cooled electrodes. The electromagnet with control scheme was used for arc breaking imitation and the direct synchronization with measurement circuits. Special elec- tronic scheme (Fig. 2) for the electromagnet operation and control of the electric arc power source was devel- oped. For electromagnet anchor retracting considerably higher voltage is required in comparison with its normal containment. This voltage is created by back–inverter and stored in the capacitor C9. The voltage retention is regu- lated by pulse width modulation. The bottom electrode can hit the top one during anchor electromagnet release. In order to avoid this effect voltage from the capacitor C10 is applied to the electromagnet coil while the upward movement of the electrode. This voltage was adjusted by pulse width modulation to achieve maximum damping effect. The electrical circuit of the power supply of an electric arc is shown in Fig. 3. The XX3 plug provides connection to the control scheme (see Fig. 2). 1.2. EXPERIMENTAL TECHNIQUES Copper-graphite composite is often used as a mate- rial for the sliding contacts of pantograph. That is why in this study copper-graphite electrodes with a copper content of 20% were used. The diameter of the elec- trodes was 6 mm, discharge gap was 8 mm. Discharge was operated at arc current 3.5 A. At the first stage, parameters of stationary plasma were investigated. The complex of this study includes two independent techniques: optical emission spec- troscopy (OES) and laser absorption spectroscopy (LAS). Experimental setup for the OES is shown in Fig. 4. The middle cross-section of the image of an electric arc projected on the entrance slit of the diffrac- tion spectrometer (600 lines/mm) by condenser lens. The spectrum was recorded by CCD camera [2]. Fig. 1. Scheme of the electrode unit. 1 – coil electro- magnet; 2 – anchor; 3 – arm; 4 – spring; 5 – mandrel holder electrode; 6 – electric arc; 7 – electrodes; 8 – electrodes mandrels collet clamps Experimental setup for the LAS is shown in Fig. 5. Emission radiation of copper vapor laser, passed through the arc discharge plasma, was recorded by CCD matrix [3]. Due to the presence of copper in such multicomponent plasma, the main mechanism, which is responsible for reducing the intensity of the laser radiation, is resonant absorption by copper at- oms. Therefore, by measuring of the spatial distribu- tion of the plasma optical thickness, the appropriate distribution of copper atom concentration can be de- termined. 2. RESULTS AND DISCUSSION The optical emission spectroscopy was carried out at the initial stage of this study. Emission spectrum of the plasma arc discharge between copper-graphite electrodes is shown in Fig. 6. Spectral lines of the copper atom are well recognized in this spectrum. As soon as the selected for diagnostics spectral lines are not overlapped with the spectral lines of another plasma components it is possible to use them in the temperature determination by the Boltzmann’s plot technique. ISSN 1562-6016. ВАНТ. 2013. №4(86) 205 Fig. 2. The electric circuit of the electromagnet control. XX1 – internal connector for the microcontroller programming, XX2 – electromagnet connector, XX3 – connector to the power supply of electric arc, XX4 – input synchronization It must be noted that the recorded intensity of each spectral line is a result of the integration along the line of sight. To determine its local values the integral equa- tion must be solved, which depends on the type of the distribution function of the local intensity values. This problem has a solution in the case of axial symmetry of the distribution function of the local radiation intensity, and then the solution has the form of Abel's integral transformation [4]. To use this solution correctly each measurement was carefully examined from the point of view of axial symmetry of observed emission distribu- tion. So, the radial plasma temperature distribution was determined by the Boltzmann plot method under the assumption of local thermodynamic equilibrium (Fig. 7). Copper atom spectral lines 510.5; 515.3; 521.8; 570.0 and 578.2 nm and appropriate spectroscopic con- stants taken from [5] were used in this case. This radial distribution was compared with the plasma temperature distribution [6] in arc discharge between copper elec- trodes under the same experimental conditions. As one can see from the Fig. 7 radial distributions of tempera- ture are almost the same for both types of electrodes. Therefore, we can summarize that the copper con- tent in plasma of such discharges is comparable. Copper vapor laser “Kriostat 1” was used in the laser absorption spectroscopy. There are two spectral lines 510.5 and 578.2 nm in its generation spectrum. Addi- tional diffraction grating was used [3] to select 510.5 nm line, which corresponds to the transition 4p 2P3/2 (3.817 еV) → 4s2 2D5/2 (1,389 еV). Fig. 3. The electrical circuit of the power supply electric arc plasma. C – cathode, A – anode ISSN 1562-6016. ВАНТ. 2013. №4(86) 206 Fig. 4. Experimental setup for optical emission spectroscopy of plasma. 1 – arc; 2 – condenser lens; 3 – input slit; 4 – collimator; 5 – diffraction grating; 6 – mirror; 7 – CCD camera Fig. 5. Experimental setup for laser absorption spectroscopy of plasma. 1 – copper vapor laser "Kriostat 1"; 2 – laser radiation; 3 – arc; 4 – CCD matrix 450 500 550 600 0 200 400 600 800 λ, nm І,a.u. CuI 510,5nm CuI 515,3nm CuI 521,8nm CuI 570,0nm CuI 578,2nm Fig. 6. The emission spectrum of the plasma arc discharge between copper–graphite electrodes As one can see from Fig. 6 this spectral line is well isolated from others. Since the divergence of the laser radiation is small, it was an opportunity to place the CCD matrix at a distance from the electric arc sufficient to neglect by own plasma emission. The plasma optical thickness is defined as follows: ( ) ( ) ( )( )xIxIx ,,ln, 02010 λλλτ = (1) where, I1, І2 – the intensity of the probing and absorbed radiation respectively, x – coordinate perpendicular to the direction of the laser beam. As far as half width of laser spectral line is more narrower than absorption line of plasma, so it can be assumed as absorption in the center of spectral line. Therefore experimentally ob- tained optical thickness correspond to the absorption at the center (λ=λ0) of the spectral line. Under the assump- tion of axial symmetry of the plasma object one can obtain the radial distribution of absorption coefficient κ(λ0,r) using Abel integral equation [4]. The absorption coefficient κ(λ0,r) depends on the number of absorbing centers (in this case copper atoms, that are at the 4s2 2D5/2 level). Relation between the local values of the absorption coefficient and level population is [1]: ( ) ( ) ( )⎟ ⎟ ⎠ ⎞ ⎜⎜ ⎝ ⎛ −⋅⋅⋅=∫ ∞ rNg rNg rNf cm edr ki ik kki 1 0 ),(1 2 0 2 2 πλλκ λ , (2) where Ni – population of the upper level (4p 2P3/2), Nk – population of the lower level (4s2 2D5/2), fki – oscillator strength, gk, gi – statistical weights of levels, λ – wavelength, m0, e – mass and charge of an electron, с – speed of light. To link the integral in expression (1) with ISSN 1562-6016. ВАНТ. 2013. №4(86) 207 the experimentally measured absorption coefficient at the center of the spectral line, one must know the shape of its contour. Since the broadening of this line in the above discharge type caused by Doppler mechanism, we consider Gaussian line contour: ( ) ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ⋅ ⋅ −⋅= 2 0 2 0 2 exp,, λ λλμ λκλκ rRT crr , (3) where, μ – molar mass of atoms, R – universal gas con- stant, T(r) – radial temperature distribution. Then, the inte- gral can be written as: ( ) ( ) ( ) μ πλλκλλκ λ rRT c rdr 2, 0 ,1 0 02 ⋅∫ ∞ = . (4) In our case, the terms ( ) ( )rNg rNg ki ik in the expression (1) can be neglected. Then, the population of the lower level (4s2 2D5/2) has the form: ( ) ( ) ( ) πμ λ λκ rRT fe cmrrN ki k 2, 2 00 0 ⋅= . (5) Therefore, knowing the absorption coefficient we can determine the spatial distribution of the corresponding level population. Radial distribution of the absorption coefficient and 4s2 2D5/2 level population for copper-graphite electrodes are shown in Fig. 8. In addition, the distribution of the same level population for the discharge between copper electrodes under the same experimental conditions [3] is shown in Fig. 8. Radial distribution of the copper atoms concentra- tion can be obtained from the Boltzmann distribution in the local thermodynamic equilibrium (LTE) assump- tion: ( ) ( ) ( )( ) ( ) ⎟⎟⎠ ⎞ ⎜⎜ ⎝ ⎛ = rkT E g rTUrNrN k k kCu exp , (6) where Ek and gk energy and the statistical weight of level 4s2 2D5/2, U(T) – partition function of the copper atom: ( ) ∑ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛= i i i kT EgTU exp . (7) Radial distributions of the copper atoms concentra- tion in the plasma for copper-graphite and copper elec- trodes are shown in Fig. 9. Values for the discharge be- tween copper electrodes were taken from [3] under the same experimental conditions. 0.5 1.0 1.5 3000 4000 5000 6000 7000 Cu-C Cu r, mm T, K Fig. 7. Radial temperature distribution of plasma between copper–graphite end copper electrodes 0.5 1.0 1.5 0.4 0.6 0.8 1.0 k0 r, mm Nk,cm-3 k0,cm-1 2x1013 3x1013 4x1013 5x1013 6x1013 Nk(Cu-C) Nk(Cu) Fig. 8. Radial distribution of κ(λ0) and Nk in the arc discharge plasma between composite Cu-C and copper [3] electrodes 0.0 0.5 1.0 1.5 2x1014 3x1014 4x1014 NCu,(Cu-C) NCu,(Cu) r, mm NCu,cm-3 Fig. 9. Radial distribution of the copper atom concen- tration in the middle cross section of the arc discharge between copper-graphite and copper [3] electrodes Fig. 7 shows that the plasma temperature for cop- per-graphite and copper electrodes are almost identi- cal. This is the interesting result taking into account that the mass fraction of copper in copper-graphite electrodes is 20%. This result directly indicates that the plasma parameters for copper–graphite electrodes are mainly determined by copper component. Indeed, the simple analysis of the distribution of the copper atoms concentration in Fig. 9 displays that they are almost the same for copper and copper-graphite elec- trodes. This can be explained by the considerable dif- ference in the ionization potential for copper (7.72 eV) and carbon (11.25 eV). In addition, almost identical copper component concentration in plasma arc between copper and copper-graphite electrodes indicates about approximately the same erosion of copper in this elec- trodes. One can conclude the possible realization of the formation of copper islands on the electrode surfaces, to which arc "tieds". However, this assumption can be fi- nally clarified by additional metallographic studies [7, 8]. CONCLUSIONS Model plasma source unit with real breaking arc was developed for the simulation of discharges which oc- curred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The electromag- net was used for arc breaking. Microcontroller control system allows damping of moving part oscillations and synchronization with measurement circuits. ISSN 1562-6016. ВАНТ. 2013. №4(86) 208 It was found, that radial profiles of temperature and copper atoms concentration obtained for Cu-C compos- ite electrodes in stationary mode of electric arc are comparable with results for discharge between copper electrodes. So, one can conclude, that properties of arc discharge between composite Cu-C electrodes are mainly determined by copper impurity. Therefore, as- sumption of possible formation of copper islands on the investigated electrodes’ surface is suggested. REFERENCES 1. V.Ya. Berent, S.A. Gnezdilov. Improvement of per- formance of current collectors on the carbon base // Friction and lubrication of machinery. 2009, № 2, p. 18-23. 2. A. Veklich, A. Lebid. Technique of electric arc dis- charge plasma diagnostic: peculiarities of registra- tion and treatment of spectra // Bulletin of Taras Shevchenko National University of Kyiv. Series “Radiophysics & Electronics”. 2012, № 18, p. 6-9. 3. I.L. Babich, V.F. Boretskij, A.N. Veklich, A.I. Ivanisik. Spectroscopy of plasma arc discharge with copper alloy // Electrical contacts and elec- trodes. Kyiv: “Frantsevich Institute for Problems of Materials Science”. 2008, p. 4-13. 4. K. Bockasten. Transformation of Observed Radi- ances into Radial Distribution of the Emission of a Plasma // Journal of the optical society of America (51). 1961, № 9, p. 943-947. 5. I.L. Babich, V.F. Boretskij, A.N. Veklich, A.I. Ivanisik, R.V. Semenyshyn, L.O. Kryachko, M.Ye. Golovkova. Spectroscopy of electric arc plasma between composite electrodes Ag-CuO // Electrical contacts and electrodes. Kyiv: “Frant- sevich Institute for Problems of Materials Science”. 2010, p. 82-115. 6. V. Boretskij, A. Veklich, Y. Cressault, A. Gleizes, Ph. Teulet. Non-equilibrium plasma properties of electric arc discharge in air between copper elec- trodes // Problems of Atomic Science and Technol- ogy. Series “Plasma Physics” (18). 2012, № 6, p. 181-183. 7. R.V. Minakova, Ye.V. Chomehko, G.Ye. Kopulova, M.Ye. Golovkova, A.N. Veklich, P.V. Soroka. Sec- ondary structure of working layer of composite ma- terials and their functional properties // Electrical contacts and electrodes. Kyiv: “Frantsevich Institute for Problems of Materials Science”. 2012, p. 38-47. 8. I.L. Babich, V.F. Boretskij, A.N. Veklich, L.O. Kryachko, A.V. Lebid, R.V. Semenyshyn. Spectroscopy of electric arc plasma between com- posite electrodes Ag – SnO2 – ZnO // Electrical con- tacts and electrodes. Kyiv: “Frantsevich Institute for Problems of Materials Science”. 2012, p. 81-90. Article received 16.05.2013 ИССЛЕДОВАНИЕ ПЛАЗМЫ ЭЛЕКТРОДУГОВОГО РАЗРЯДА МЕЖДУ КОМПОЗИТНЫМИ Cu–C-ЭЛЕКТРОДАМИ А.Н. Веклич, В.Ф. Борецкий, А.И. Иванисик, А.В. Лебедь, С.А. Фесенко Исследовали плазму электродугового разряда между композитными Cu–C-электродами при силе тока дуги 3,5 А в предположении локального термодинамического равновесия. Предложено специальное элек- тронное устройство для инициации дугового разряда. Радиальные распределения температуры в разрядном промежутке получены с использованием оптической эмиссионной спектроскопии. Радиальные распределе- ния концентрации атомов меди получены с помощью лазерной абсорбционной спектроскопии. ДОСЛІДЖЕННЯ ПЛАЗМИ ЕЛЕКТРОДУГОВОГО РОЗРЯДУ МІЖ КОМПОЗИТНИМИ Cu–-C-ЕЛЕКТРОДАМИ А.М. Веклич, В.Ф. Борецький, А.І. Іванісік, А.В. Лебідь, С.О. Фесенко Досліджували плазму електродугового розряду між композитними Cu–C-електродами при силі струму дуги 3,5 А у припущенні локальної термодинамічної рівноваги. Запропоновано спеціальний електронний пристрій для ініціації дугового розряду. Радіальні розподіли температури в розрядному проміжку отримані за допомогою оптичної емісійної спектроскопії. Радіальні розподіли концентрації атомів міді отримані за допомогою лазерної абсорбційної спектроскопії.