Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator
Paper is devoted of the formation mechanism of metal the nanoparticles in the development of high-current pulsed electric discharge in a limited volume at atmospheric pressure. The original design of the axial electrothermal plasma accelerator was used to create the discharge operating in the gas-dy...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2013
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112174 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator / Yu.E. Kolyada, V.I. Fedun, V.I. Tyutyunnikov, N.A. Savinkov, A.E. Kapustin // Вопросы атомной науки и техники. — 2013. — № 4. — С. 297-300. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112174 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1121742017-01-18T03:04:08Z Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator Kolyada, Yu.E. Fedun, V.I. Tyutyunnikov, V.I. Savinkov, N.A. Kapustin, A.E. Приложения и технологии Paper is devoted of the formation mechanism of metal the nanoparticles in the development of high-current pulsed electric discharge in a limited volume at atmospheric pressure. The original design of the axial electrothermal plasma accelerator was used to create the discharge operating in the gas-dynamic mode. The analysis of chemical composition and dimensions of the formed particles was carried out. It is established that formation of nanoparticles caused solely through the mechanism of nonequilibrium condensation of supersaturated vapor. Досліджується механізм формування металевих наночастинок при розвитку потужнострумового імпульсного електричного розряду в обмеженому обсязі при атмосферному тиску. Для створення розряду використовувалася оригінальна конструкція електротермічного плазмового аксіального прискорювача, працюючого у газодинамічному режимі. Проведено аналіз хімічного складу і розмірів синтезованих частинок. Встановлено, що формування наночастинок обумовлено виключно за рахунок механізму нерівноважної конденсації пересиченого пару. Исследуется механизм формирования металлических наночастиц при развитии сильноточного импульсного электрического разряда в ограниченном объёме при атмосферном давлении. Для создания разряда использовалась оригинальная конструкция электротермического плазменного аксиального ускорителя, работающего в газодинамическом режиме. Проведён анализ химического состава и размеров синтезированных частиц. Установлено, что формирование наночастиц обусловлено исключительно за счёт механизма неравновесной конденсации пересыщенного пара. 2013 Article Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator / Yu.E. Kolyada, V.I. Fedun, V.I. Tyutyunnikov, N.A. Savinkov, A.E. Kapustin // Вопросы атомной науки и техники. — 2013. — № 4. — С. 297-300. — Бібліогр.: 11 назв. — англ. 1562-6016 http://dspace.nbuv.gov.ua/handle/123456789/112174 PACS: 52.77. - j en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Приложения и технологии Приложения и технологии |
spellingShingle |
Приложения и технологии Приложения и технологии Kolyada, Yu.E. Fedun, V.I. Tyutyunnikov, V.I. Savinkov, N.A. Kapustin, A.E. Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator Вопросы атомной науки и техники |
description |
Paper is devoted of the formation mechanism of metal the nanoparticles in the development of high-current pulsed electric discharge in a limited volume at atmospheric pressure. The original design of the axial electrothermal plasma accelerator was used to create the discharge operating in the gas-dynamic mode. The analysis of chemical composition and dimensions of the formed particles was carried out. It is established that formation of nanoparticles caused solely through the mechanism of nonequilibrium condensation of supersaturated vapor. |
format |
Article |
author |
Kolyada, Yu.E. Fedun, V.I. Tyutyunnikov, V.I. Savinkov, N.A. Kapustin, A.E. |
author_facet |
Kolyada, Yu.E. Fedun, V.I. Tyutyunnikov, V.I. Savinkov, N.A. Kapustin, A.E. |
author_sort |
Kolyada, Yu.E. |
title |
Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator |
title_short |
Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator |
title_full |
Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator |
title_fullStr |
Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator |
title_full_unstemmed |
Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator |
title_sort |
formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2013 |
topic_facet |
Приложения и технологии |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112174 |
citation_txt |
Formation mechanism of the metallic nanostructures using pulsed axial electrothermal plasma accelerator / Yu.E. Kolyada, V.I. Fedun, V.I. Tyutyunnikov, N.A. Savinkov, A.E. Kapustin // Вопросы атомной науки и техники. — 2013. — № 4. — С. 297-300. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT kolyadayue formationmechanismofthemetallicnanostructuresusingpulsedaxialelectrothermalplasmaaccelerator AT fedunvi formationmechanismofthemetallicnanostructuresusingpulsedaxialelectrothermalplasmaaccelerator AT tyutyunnikovvi formationmechanismofthemetallicnanostructuresusingpulsedaxialelectrothermalplasmaaccelerator AT savinkovna formationmechanismofthemetallicnanostructuresusingpulsedaxialelectrothermalplasmaaccelerator AT kapustinae formationmechanismofthemetallicnanostructuresusingpulsedaxialelectrothermalplasmaaccelerator |
first_indexed |
2025-07-08T03:29:55Z |
last_indexed |
2025-07-08T03:29:55Z |
_version_ |
1837047895148199936 |
fulltext |
ISSN 1562-6016. ВАНТ. 2013. №4(86) 297
FORMATION MECHANISM OF THE METALLIC NANOSTRUCTURES
USING PULSED AXIAL ELECTROTHERMAL PLASMA
ACCELERATOR
Yu.E. Kolyada1, V.I. Fedun2, V.I. Tyutyunnikov2, N.A. Savinkov2, A.E. Kapustin2
1Mariupol State University, Mariupol, Ukraine;
2Priazovskyi State Technical University, Mariupol, Ukraine
E-mail: yukol@ukr.net
Paper is devoted of the formation mechanism of metal the nanoparticles in the development of high-current
pulsed electric discharge in a limited volume at atmospheric pressure. The original design of the axial electrothermal
plasma accelerator was used to create the discharge operating in the gas-dynamic mode. The analysis of chemical
composition and dimensions of the formed particles was carried out. It is established that formation of nanoparticles
caused solely through the mechanism of nonequilibrium condensation of supersaturated vapor.
PACS: 52.77. - j
INTRODUCTION
Nowadays there exist various methods of formation
of dielectric, semi-conductor and metallic nanoparticles
and nanostructures [1,2]. The well-known technologies
are divided into two basic groups: ”top-down” and “bot-
tom-up”. The first group is based on receiving nanopar-
ticles from macro-objects, for instance, by mechanical
crushing of a solid body, selective removal of the mate-
rial, previously inserted upon the substrate layer or
three-dimensional metal treatment by means of ionic
beams. The second group is based on synthesizing of
nanoparticles by means of merging of separate atoms
and is carried out at chemical reactions inside a solid
body, or chemical reactions in nanodimensional scale,
based on the principal of colloid chemistry, on the re-
verse micelle method.
The simplest and most promising for practical appli-
cation is the gas-phase method for the synthesis of
nanoparticles (bottom-up), at which metal, alloy or
semi-conductor is evaporated both in vacuum and in the
atmosphere of inert gas and low pressure with subse-
quent steam condensation. This is the simplest method
of obtaining nanocrystal powders. For example, conden-
sation of aluminum vapours in Ar and He at various
gas pressure made it possible to obtain particles 100 to
20 nm in dimension. Besides of simplicity the advan-
tage of the method is to obtain from the gas-phase iso-
lated nanoparticles and their clusters.
Devices which use the principle of evaporation and
condensation, differ by the method of introduction of
the material to be evaporated, the method of supply en-
ergy for evaporation, the working environment etc.
Evapouration and condensation can take place in vac-
uum, inside motionless inert gas, in gas flow, including
plasma jet. There are techniques in which the condensat
chamber coaxially comes two jets – steam gas mixture
is fed along the axis, and on the periphery of the jet en-
ters a cold inert gas. As a result of the turbulent mixing
of the metal vapor temperature drops sharply and there
is a rapid condensation. Evaporation of the metal can
occur out of the crucible by the ion beam or electron
laser beam. Metal may enroll in zone heating and
evaporation, for example, in the form of wire.
As can be seen, all these installations are quite com-
plex, and the produced particles are characterized by
significant variation in size and parameters of the syn-
thesized materials.
In [3] an original design of an impulse axial electro-
thermal plasma accelerator is described, which works in
gas-dynamic mode. Its principle of work is based upon
development of a high-current impulse electric dis-
charge inside limited volume at atmospheric pressure.
Given system allows forming high enthalpy gas-plasma
flow. In [4] a similar device was used as reactor ceramic
nanomaterials. From our point of view this accelerator
can be used not only for obtaining ceramic nanomateri-
als, but also for formation of metallic nanoparticles. It
should be noted here that a high-current pulsed electric
discharge is used as a working environment in nanoma-
terials reactors quite often [5, 6]. It is in during of high-
current pulsed discharges were received high energy
parameters of supersaturated vapor. It should be noted
that in the above devices synthesized nanomaterials
scatter, in practice, by the solid angle of 4π. But an
pulsed axial electrothermal plasma accelerator permits
to form a directed substance flow, which significantly
increases its manufacturabilityas when using in nano-
physics and in plasma technology.
However, when the pulse energy release at the sur-
face of metals and alloys, exceeding the level of abla-
tion remains unclear mechanism of nanostructure for-
mation: formation of nanoparticles is due to the conden-
sation of supersaturated vapor evaporating substance or
by spraying droplets of a liquid metal? In some works,
this process is associated with the formation of ectons
on the cathode’s surface in electrical discharges with
subsequent spraying of metal droplets [7]. In other
works has been suggested that the formation of nanopar-
ticles in these conditions is due to the non-equilibrium
condensation of the metal vapor [8]. This equally ap-
plies to the pulse electrothermal axial plasma accelera-
tors, as the reactor metallic nanoparticles. In this con-
nection purpose of the present work is to study forma-
tion mechanism of metallic nanoparticles, synthesized
with application of an pulsed axial electrothermal
plasma accelerator (PA).
1. AN EXPERIMENTAL DEVICE
This work was preceded by the results published in
[9] in which the nanoparticles were obtained during the
development of a pulsed high-voltage vacuum dis-
ISSN 1562-6016. ВАНТ. 2013. №4(86) 298
charge, accompanied by the emergence of micro-
explosions on the surface of the cathode and the forma-
tion ectons [7, 10].
In these experiments were investigated receipts of
nanoscale materials using a pulsed high-current
discharge at atmospheric pressure with adiabatically
expanding super-sonic gas stream, to study the chemical
composition and dimensions of the synthesized
particles.
For the experiments used PA, its diagram is shown
in Fig. 1. The housing 1 was made of a thick-walled
rigid paper − bakelite tube 40 cm in length. The internal
diameter was – 8 mm, the wall’s thickness being 1 cm.
The edges of the dielectric shell were pressed with
metal shells 3 and 4. A changeable rod electrode 2
6 mm in diameter is fixed to the shell 3, acting as a
cathode. One end of this electrode is inserted into the
internal channel inside the shell, the other one protrude
outside. A metal shell 4 with an orifice 5 acts as an an-
ode, its diameter being 6 mm. The distance between the
cathode and the circular anode was regulated within the
level 8 to 15 cm. Anode 4 was grounded, and voltage
from capacitive energy storage was applied to the rod
cathode. The material of the rod cathode used in the
work: bronze, , , ,Fe Al Cu Pb . Operating pressure – at-
mospheric, working gas-air.
Fig. 1. Axial electrothermal plasma accelerator – atop,
and to the down its electrical circuit
Electrical block diagram of the plasma accelerator,
consisting of a capacitive storage and starting circuits is
shown o in the bottom part of Fig. 1. Capacitor’s value
С1 = (1.5…3.0)⋅10-3 f, working voltage up to 5 kV and
the maximum storage energy was changed within the
values equal to (18.75…37) kJ. Triggered scheme in-
cludes elements C1 and L. Detailed description of the
the element base of the scheme and obtained the cur-
rent-voltage characteristics is given in [3].
A high-current pulsed arc with high pressure dis-
charge was initiated between the cathode and the anode,
restricted by a narrow dielectric channel. The charge
duration was 1.4 ms, the maximal current reached 4 kА.
The working substance, in this case, is supplied into the
charge’s channel by means of intensive evapouration of
electrodes and the wall’s substance of dielectric cham-
ber. As the result pressure inside the channel is shortly
raised to (100…150) atm. An impulse injection of a
dense gas-plasma clot through the circular anode into
the surroundings takes place. The working mode of this
plasma accelerator is gas-dynamic. Plasma parameters
were estimated: density and temperature about 1016 cm-3
and (1…2) eV, correspondingly. Discharge accompa-
nied by light intensity and sound effect. Fig. 2 presents a
photograph (a violet filter was used) of a plasma clot.
Length of the light formation reached 0.8 m.
Fig. 2. A photograph of plasma clot
Gas-plasma clot’s flow through the circular anode
into the surroundings happens in adiabatic mode at su-
personic velocity, this is verified by formation of “bar-
rels”, which could be seen in the photograph and by
direct measurement of velocity with application of opti-
cal sensors. Expiration of gas-plasma clot through the
annular anode into the environment is in the adiabatic
regime at a supersonic speed, as evidenced by the for-
mation of "barrels" that are visible in the photograph,
and the direct measurement of the velocity using optical
sensors.
2. EXPERIMENTAL RESULTS
AND DISCUSSION
For collection and subsequent analysis of micro par-
ticles glass plates were used, their sizes being (3×3) cm,
they were installed at the distance (6…8) cm from the
circular anode outside PA. The particles were collected
upon a glass substrate per one impulse. Their sizes were
investigated by means of a scanning electronic micro-
scope ISM-6390LV (manufactured by IEOL company,
Japan), the accelerating voltage being 10 kV and the
maximum resolution ~ 20 nm and more. Fig. 3 presents
the photographs of erosion products the iron and alumi-
num cathodes. The number of particles various sizes in
a single photo is 300…500 pieces.
As it follows from the photographs, supplied on the
substrates both particles of nanometer range and the
particles in the form of large drops of micrometer range
can be seen. It is important to note that this method of
forming a gas-plasma clot it may contain the atoms and
molecules of the wall material, the electrodes and the
air, which may lead to the formation of oxides, nitrides,
and hydrocarbon groups. Moreover, inside the combus-
tion products of a heavy current arc are presence and
ejection of drops fraction of electrodes materials can
occur. Hence, it is of interest to investigate the chemical
composition of the synthesized particles and the mecha-
nism of their formation.
ISSN 1562-6016. ВАНТ. 2013. №4(86) 299
Fig. 3. Pictures of nanoparticles.
Scales are indicate on each picture:
а) iron (magnification 5 000, scale − 5 μм);
b) aluminum (magnification 30 000, scale − 0.5 μм)
X-ray fluorescent analysis was used with this pur-
pose in this work. The investigation was performed on
Thermosinetific OXAS (Switzerland) instrument. For
this analysis was carried out X-ray spectra of nanoparti-
cles on glass substrates and the spectra of the electrode
material, resulting in what can be compared to the ele-
mental composition of the starting material with the
composition of the synthesized nanostructures.
The Table contains the results of such comparative
analysis for a bronze cathode. It should be noted that it
was the cathode, which underwent the biggest erosion in
the charge. In the table in the left part (printed in bold
type) elements composition of nanoparticles on the
glass can be seen, in the right part there is the chemical
composition of the bronze cathode. As it can seen in the
table the elements like Si, Ca, Na, Mg et al., which are
present in the left list and are missing in the right, for
mass composition one attribute to about ≈ 81 %, reflect-
ing the chemical composition of glass. For copper mass
share, which is nearly 82% in bronze, in nanoparticles
its share is only 5.56%.
If we deduce the mass share of the aforementioned
elements, and the remaining ≈ 19 %, i.e. the mass share
of nanoparticles multiply by 5 (in order to get ≈100% as
the result), then we’ll get ≈ 27.8% for copper. This
value is substantially lower than copper content in
bronze. For aluminum, the situation is reversed in light
of the above, its share in the nanoparticles is increased
to ≈ 31.5%, and in bronze, its share was 12.17%.
A similar discrepancy between the elemental com-
position in nanoparticles and in bronze is also observed
for the other elements. Thus, the percentage of the same
elements for the cathode and for nanoparticles, synthe-
sized on the substrates differs substantially. It is impor-
tant to note here that a number of elements, peculiar to
the original bronze cathode was missing in the synthe-
sized nanoparticles. Such elements, like Ge, Hg, Ta, Zn,
W were not found in nanoparticles. The same regularity
is typical for other alloys, used for cathode, particularly
for iron and aluminum.
Elements composition of nanoparticles and cathode’s
material for bronze
El m/m% StdErr% El m/m% StdErr%
Si 55.19 0.25 Cu 82.02000 0.2000
Ca 11.29 0.16 Al 12.17000 0.2000
Na 10.64 0.15 Mn 2.39000 0.0800
Al 6.30 0.12 S 0.60300 0.0380
Cu 5.56 0.11 Cl 0.51200 0.0410
Fe 4.27 0.10 Si 0.47100 0.0460
Mg 3.34 0.09 W 0.37300 0.0220
K 1.32 0.06 Fe 0.34600 0.0170
Ti 0.547 0.027 Ni 0.24500 0.0120
Px 0.488 0.024 Au 0.22100 0.0270
Sx 0.332 0.017 Zn 0.17600 0.0090
Mn 0.307 0.015 Ta 0.15000 0.0700
Ni 0.167 0.008 Ca 0.13900 0.0120
Cl 0.0997 0.0087 Hg 0.09600 0.0190
Cr 0.0947 0.0047 Cr 0.05350 0.0055
Zr 0.0164 0.0029 K 0.02280 0.0083
Ar 0.0147 0.0061 Ge 0.01390 0.0062
Rb 0.0125 0.0024 − − −
Sr 0.0058 0.0026 − − −
99.9948 −
− 100.0022 −
This means that the formation of nanostructures in
the conditions of this experiment is not due to the result
of the "splashing" of metal droplets but exclusively be-
cause of the non-equilibrium condensation of supersatu-
rated vapor metals. This mechanism of nanoparticles
formation is similar to condensation of metallic vapours
at adiabatically expanding super-sonic stream in Laval’s
nozzle, when as the result of quick expansion a high
temperature gradient is formed and almost immediate
vapour condensation occurs [1]. A similar situation oc-
curs in our case − the supersonic flow of gas and its
rapid cooling and the rapidly drop in pressure in the
discharge channel from hundred atmospheres up to sev-
eral Torr [11].
MAIN CONCLUSIONS
1. The paper demonstrated the possibility of produc-
ing nanoscale metal particles in the development of
high-current pulsed arc discharge in a limited narrow
dielectric channel at atmospheric pressure. We used the
axial electrothermal plasma accelerator, working in a
gas-dynamic mode. The indisputable advantage of this
method is the absence of a vacuum system, which sig-
nificantly simplifies the experimental technique.
2. On the basis of X-ray fluorescence analysis
showed that the synthesis of nanoparticles in the ex-
perimental conditions occurs exclusively by homogene-
ous condensation of supersaturated vapor cathode mate-
rial. This mechanism leads to the formation of particles
as nanometer and micrometer range.
a
b
ISSN 1562-6016. ВАНТ. 2013. №4(86) 300
3. There is reason to believe that such a mechanism
is predominant in the synthesis of nanostructures using
pulsed concentrated energy flows and the role of disper-
sal and fragmentation of the drop fraction of the liquid
metal cathode to the individual nanoparticles is found to
be insignificant. That is the dominant mechanism for the
"bottom up".
4. The design of the plasma accelerator used in the
experiments allows to obtain nanoparticles of all metals
and alloys. Performance of nanomaterials is ~ 100 kJ/g.
REFERENCES
1. V.V. Klimov. Nanoplazmonika. Moscow: "Fizmat-
lit", 2009, 480 p. (in Russian).
2. A.I. Gusev. Nanomaterials, nanostructures,
nanotehnologii. Moscow: "Fizmatlit", 2009, p. 416.
3. Yu.E. Kolyada, V.I. Fedun, I.N. Onishchenko,
E.A. Kornilov. The use of a magnetic switch for
commutation of high-current pulse circuits // In-
struments and Experimental Techniques. 2001,
v. 44, № 2, p. 213-214.
4. United States Patent № 6472632, October 29, 2002.
D.R. Peterson, D.E. Wilson. Мethod and apparatus
for direct electrothermal-physical conversion of ce-
ramic into nanopowder.
5. V.S. Koidan, E.E. Barkalov, M.N. Kazeev,
V.F. Kozlov, Y.S. Tolstov. The formation of nanos-
tructures with erozii electrodes in pulsed discharge //
4th All-Russian Conference on Nanomaterials. Mos-
cow. 01-04 March 2011. Book.-M.: Institute of Met-
allurgy, Russian Academy of Sciences. 2011, p. 88.
6. United States Patent № 6777639, August 17, 2004.
K.A. Schroder, D.K. Jackson. Radial Pulsed Arc
Discharge Gun For Synthesizing Nanopowders.
7. G.A. Mesjats. Ecton-electron avalanche from metal
// Uspehi Physicheskih Nauk. 1995, v. 165, № 6,
p. 601-626 (in Russian).
8. E.L. Fenko. Generation of ultradisperse particles
during irradiation of a metal target with a powerful
electron beam. Avtoreferat diss. Candidate Physics
and Mathematics Sciences, Ekaterinburg, 2010.
9. Yu.E. Kolyada, O.N. Bulaunchuk, V.I. Fedun,
I.N. Onishchenko. Aerosol microparticles and emis-
sion characteristics of the pulsed high – current vac-
uum diode in a microsecond range // Proceedings of
the 19th International Symposium on Discharges and
Electrical Insulation in Vacuum. – Xi’an, China.
September 18-22, 2000, v. 1, p. 68-71.
10. S.A. Popov, D.I. Proskurovsky, A.V. Batrakov.
Regularities of formation droplets an explosive
liquid metal cathode // Izvestija vuzov. Physics.
1999, № 3, p. 105-108 (in Russian).
11. Yu.E. Kolyada. Formation of high-current electron
pulse beams outside the vacuum conditions // Tech-
nical Physics Letters. 2000, v. 26, № 16, p. 52-56.
Article received 15.03.2013
МЕХАНИЗМ ФОРМИРОВАНИЯ МЕТАЛЛИЧЕСКИХ НАНОСТРУКТУР С ИСПОЛЬЗОВАНИЕМ
ИМПУЛЬСНОГО ЭЛЕКТРОТЕРМИЧЕСКОГО ПЛАЗМЕННОГО УСКОРИТЕЛЯ
Ю.Е. Коляда, В.И. Федун, В.И. Тютюников, Н.А. Савинков, А.Е. Капустин
Исследуется механизм формирования металлических наночастиц при развитии сильноточного импульс-
ного электрического разряда в ограниченном объёме при атмосферном давлении. Для создания разряда ис-
пользовалась оригинальная конструкция электротермического плазменного аксиального ускорителя, рабо-
тающего в газодинамическом режиме. Проведён анализ химического состава и размеров синтезированных
частиц. Установлено, что формирование наночастиц обусловлено исключительно за счёт механизма нерав-
новесной конденсации пересыщенного пара.
МЕХАНІЗМ ФОРМУВАННЯ МЕТАЛЕВИХ НАНОСТРУКТУР З ВИКОРИСТАННЯМ
ІМПУЛЬСНОГО ЕЛЕКТРОТЕРМІЧНОГО ПЛАЗМОВОГО ПРИСКОРЮВАЧА
Ю.Є. Коляда, В.І. Федун, В.І. Тютюников, Н.А. Савинков, А.Є. Капустин
Досліджується механізм формування металевих наночастинок при розвитку потужнострумового імпуль-
сного електричного розряду в обмеженому обсязі при атмосферному тиску. Для створення розряду викорис-
товувалася оригінальна конструкція електротермічного плазмового аксіального прискорювача, працюючого
у газодинамічному режимі. Проведено аналіз хімічного складу і розмірів синтезованих частинок. Встанов-
лено, що формування наночастинок обумовлено виключно за рахунок механізму нерівноважної конденсації
пересиченого пару.
|