Сharging processes and phase states of macroparticles in low-pressure arc discharge

The effects of plasma density and ionic charge on the floating potential of the solitary macroparticle (MP) in a low-pressure arc discharge have been investigated. The energy balance has been studied taking into account mutual influence on each other of the charging processes and heating of the MP....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Bizyukov, А.А., Chibisov, А.D., Sereda, K.N., Romashchenko, E.V., Dimitrova, V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2013
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112184
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Сharging processes and phase states of macroparticles in low-pressure arc discharge / А.А. Bizyukov, А.D. Chibisov, K.N. Sereda, E.V. Romashchenko, V. Dimitrova // Вопросы атомной науки и техники. — 2013. — № 4. — С. 176-178. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112184
record_format dspace
spelling irk-123456789-1121842017-01-23T22:30:04Z Сharging processes and phase states of macroparticles in low-pressure arc discharge Bizyukov, А.А. Chibisov, А.D. Sereda, K.N. Romashchenko, E.V. Dimitrova, V. Плазменно-пучковый разряд, газовый разряд и плазмохимия The effects of plasma density and ionic charge on the floating potential of the solitary macroparticle (MP) in a low-pressure arc discharge have been investigated. The energy balance has been studied taking into account mutual influence on each other of the charging processes and heating of the MP. The possibility of the evaporation of the MP is shown. У дуговому розряді низького тиску було досліджено вплив густини плазми та заряду іонів на плаваючий потенціал відокремленої макрочастинки (МЧ). Розглянуто енергетичний баланс з урахуванням взаємного впливу один на одного процесів зарядження та розігріву МЧ. Показано можливість випаровування МЧ В дуговом разряде низкого давления исследуется влияние плотности плазмы и заряда ионов на плавающий потенциал уединенной макрочастицы (МЧ). Рассмотрен энергетический баланс с учетом взаимного влияния друг на друга процессов зарядки и разогрева МЧ. Показана возможность испарения МЧ. 2013 Article Сharging processes and phase states of macroparticles in low-pressure arc discharge / А.А. Bizyukov, А.D. Chibisov, K.N. Sereda, E.V. Romashchenko, V. Dimitrova // Вопросы атомной науки и техники. — 2013. — № 4. — С. 176-178. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 52.40.Hf http://dspace.nbuv.gov.ua/handle/123456789/112184 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Bizyukov, А.А.
Chibisov, А.D.
Sereda, K.N.
Romashchenko, E.V.
Dimitrova, V.
Сharging processes and phase states of macroparticles in low-pressure arc discharge
Вопросы атомной науки и техники
description The effects of plasma density and ionic charge on the floating potential of the solitary macroparticle (MP) in a low-pressure arc discharge have been investigated. The energy balance has been studied taking into account mutual influence on each other of the charging processes and heating of the MP. The possibility of the evaporation of the MP is shown.
format Article
author Bizyukov, А.А.
Chibisov, А.D.
Sereda, K.N.
Romashchenko, E.V.
Dimitrova, V.
author_facet Bizyukov, А.А.
Chibisov, А.D.
Sereda, K.N.
Romashchenko, E.V.
Dimitrova, V.
author_sort Bizyukov, А.А.
title Сharging processes and phase states of macroparticles in low-pressure arc discharge
title_short Сharging processes and phase states of macroparticles in low-pressure arc discharge
title_full Сharging processes and phase states of macroparticles in low-pressure arc discharge
title_fullStr Сharging processes and phase states of macroparticles in low-pressure arc discharge
title_full_unstemmed Сharging processes and phase states of macroparticles in low-pressure arc discharge
title_sort сharging processes and phase states of macroparticles in low-pressure arc discharge
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2013
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/112184
citation_txt Сharging processes and phase states of macroparticles in low-pressure arc discharge / А.А. Bizyukov, А.D. Chibisov, K.N. Sereda, E.V. Romashchenko, V. Dimitrova // Вопросы атомной науки и техники. — 2013. — № 4. — С. 176-178. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT bizyukovaa shargingprocessesandphasestatesofmacroparticlesinlowpressurearcdischarge
AT chibisovad shargingprocessesandphasestatesofmacroparticlesinlowpressurearcdischarge
AT seredakn shargingprocessesandphasestatesofmacroparticlesinlowpressurearcdischarge
AT romashchenkoev shargingprocessesandphasestatesofmacroparticlesinlowpressurearcdischarge
AT dimitrovav shargingprocessesandphasestatesofmacroparticlesinlowpressurearcdischarge
first_indexed 2025-07-08T03:30:39Z
last_indexed 2025-07-08T03:30:39Z
_version_ 1837047941843386368
fulltext ISSN 1562-6016. ВАНТ. 2013. №4(86) 176 CHARGING PROCESSES AND PHASE STATES OF MACROPARTICLES IN LOW-PRESSURE ARC DISCHARGE А.А. Bizyukov1, А.D. Chibisov1, K.N. Sereda1, E.V. Romashchenko2, V. Dimitrova3 1 V.N. Karazin Kharkov National University, Kharkov, Ukraine; 2 V. Dahl East Ukrainian National University, Lugansk, Ukraine; 3 Sofia University St. Kliment Ohridski, Bulgaria E-mail: bizyukov@mail.ru The effects of plasma density and ionic charge on the floating potential of the solitary macroparticle (MP) in a low-pressure arc discharge have been investigated. The energy balance has been studied taking into account mutual influence on each other of the charging processes and heating of the MP. The possibility of the evaporation of the MP is shown. PACS: 52.40.Hf INTRODUCTION The usage of arc vacuum discharge in technological processes requires the control of melted drops in the plasma flow. There are conditions when the drops of the cathode substance can be evaporated during its passing through the plasma from cathode of arc evaporator to substrate [1, 2]. The analysis of the charging processes and energy exchange at the MP surface denotes the pos- sibility of the evaporation of the MP. The influence of the parameters of low-temperature collisionless plasma with singly charged ions on the floating potential and equilibrium temperature of the MP has been investi- gated in [2]. The authors also considered the mutual influence on each other of the charging processes and heating of the MP. In this paper, we consider a more general plasma situation in which the multi-charged ions have some streaming speed. This case corresponds to plasma of the low-pressure arc discharge. The inter- action of MP with such plasma has been studied. The effects of plasma density and ionic charge on the MP floating potential have been investigated. The possibil- ity of the evaporation of the MP in a low-pressure arc discharge has been studied. 1. FLOATING POTENTIAL OF MP Let us consider a charging process of the MP in me- tallic plasma which produced by a low-pressure arc dis- charge. There are ions with different charges in such plasmas. Moreover, the plasma is characterized by high velocity of plasma flow [3]. The MP is immersed in plasma charges to the some floating potential mpϕ due to flows the plasma particles and various kinds of emis- sion on its surface [2, 4]. The MP is mainly charged by the collection of electrons and ions from the plasma. Expressions for the charging currents flowing onto MP surface in a collisionless plasma can be derived from the OML (orbit motion limited) approximation [5]. The electron and ion currents to a MP with a negative poten- tial are ( )2 08 expe Te mp eI a n e v e Tπ ϕ= − , (1) ( ) ( )2 2 0 21 2 i iDi i i aT I n Z e a e e m a χ χλ π π − − ⎡ ⎤+ = − +⎢ ⎥ ⎢ ⎥⎣ ⎦ , (2) where ( ) 12 2 1mp D i i Ze a T a ϕ λ χ − ⎡ ⎤+ = −⎢ ⎥ ⎢ ⎥⎣ ⎦ . Here, 0n is the plasma density, Z is the ionic charge, ( )e iT is the electron (ion) temperature, ( ) ( ) ( )Te i e i e iv T m= is the electron (ion) thermal veloc- ity. The interaction of MP with plasma ions incident onto the MP surface causes emissions of electrons from the MP surface. The emitted electrons are known as secondary. The value of the secondary ion-electron yield depends on ionic charge. The electron current emitted from MP surface is written as follows i e b i e s i sI I δ− −= , (3) where i e sδ − is the secondary ion-electron yield [6]. The effective current is defined as ( )1eff i e i e i i s i sI I I I δ− −= + = + . (4) There is another significant charging process at high temperature of MP – it is thermionic emission [2]. Tak- ing into account the work function reduction by the ef- fect of the external electric field E (Schottky effect) the thermionic current is calculated through [7]: ( ) 2 3/ 4 1 2 13/ 4 1 2 exp sin mp mpsh e mpmp T E T EI a TE T φ π − −− ⎡ ⎤− = ⋅ ⋅ −⎢ ⎥ ⎢ ⎥⎣ ⎦ , (5) where E is the electric field on MP surface, Tmp is the MP temperature, φ is the work function. In a case of formation of the space charge around MP surface, the thermionic current is limited by the Child-Langmuir Law [8] that in spherical geometry is given by ( )( ) 3 2 3/2 2 4 2 9 mp e e D e I m a a ϕ α λ = + , (6) where Dλ is the Debye length, 2α is the transcendental function [8]. Thus, using (5) and (6), the thermionic emission cur- rent from the MP surface is determined by conditions: ( ) ( ) ( ) ( ) 3/ 2 3/ 2 3/ 2 , ; , . sh e e mp e mpth e sh sh e e mp e mp I I I I I I I ϕ ϕ ϕ ϕ ⎧ >⎪= ⎨ <⎪⎩ (7) ISSN 1562-6016. ВАНТ. 2013. №4(86) 177 The MP floating potential is determined by the bal- ance of charging currents (1), (4), (7) to its surface: ( ) ( ) ( ) 0eff th e mp i mp e mpI I Iϕ ϕ ϕ+ + = . (8) For ions with charges Z=1, 2, 3, we numerically solve Eq. (8) for some typical ion energies that are rep- resentative of low-temperature arc discharge. 109 1010 1011 1012 1013 1014 -60 -50 -40 -30 -20 -10 0 ϕ m p, V n0, cm-3 1' 2' 3' 1 2 3 Fig. 1. The dependence of the tungsten MP potential on plasma density: 1,1' – 1Z = ; 2,2’ – 2Z = ; 3,3’ – 3Z = ; dashed lines 1,2,3 – 20 eV, solid lines –1’,2’,3’ – 35 eV Fig. 1 shows that the potential is considerably gov- erned by the ionic charge. The ions carry charges to MP and cause the secondary ion-electron emission simulta- neously. The increase in the ionic charge leads to in- crease of secondary ion-electron yield. It decreases the magnitude of MP surface potential. The ionic energy has no significant effect on the magnitude of potential in the energy region compared to effect of the ionic charge. 2. HEATING OF MP Now consider the contribution of basic processes of energy exchange between the plasma and MP that lead to heating of MP. In the OML theory the plasma particle energy fluxes to MP are determined by: ( )2 08 2 exppl e Te mp e eP a n v e T Tπ ϕ= − , (9) ( )( ) /pl pl i i i mp recP I T e Z e Zϕ ε= + + , (10) where rec iε is the recombination energy of an ion. The values of recombination energy of tungsten ions are given in Table. Z=1 Z=2 Z=3 ,rec i eVε 7,131 15,72 29,6 The power of thermal radiation from MP surface is defined by the Stefan-Boltzmann low and is given by: 2 44rad a mpP a Tπ θσ= , (11) where θ is the emissivity of MP material, σ is the Ste- fan-Boltzmann constant. The MP temperature changes in time and describes by equation: ( )mp mpcm dT dt P TΣ= , where c is the specific heat of MP substance, mpm is MP mass, ( ) pl pl rad mp e i aP T P P PΣ = + − is total energy flow, that includes of basic processes of the energy ex- change on MP surface (9) - (11). The initially MP tem- perature is equal 0T , then due to energy flows on its surface the MP temperature changes until the energy equilibrium is reached. This occurs when ( ) 0eq mp mpP TΣ = . (12) Hence, we obtain the equilibrium temperature eq mpT . The MP temperature, affects on the potential of MP due to the effect of thermionic emission, and its poten- tial, in turn, affects on to the flow of energy from the plasma to the MP surface. To consider the mutual influ- ence of the MP temperature and potential, we numeri- cally analyze the system of balance equations (8) and (12). The results of analysis for tungsten MP are pre- sented in Fig. 2. 109 1010 1011 1012 1013 1014 -60 -50 -40 -30 -20 -10 0 ϕ m p,V n0, cm-3 1 2 3 1' 2' 3' (a) 109 1010 1011 1012 1013 1014 0 1000 2000 3000 4000 5000 T e q m p, o K n0, cm-3 1 2 3 2' 3' 1' (b) Fig. 2. The dependence of potential (a) and corresponding temperature (b) of tungsten MP on plasma density: 1,1' – 1Z = ; 2,2’ – 2Z = ; 3,3’ – 3Z = ; dashed lines 1,2,3…20 eV, solid lines 1,2,3…35 eV In case of ionic energy 20iT < eV, the results for MP in plasma with density 13 0 10n < cm-3 do not differ from results for cold MP. For plasma density 13 0 10n > cm-3, efficient heating of MP (see Fig. 2,b) leads to an increase of the thermionic current, and as a result the magnitude of the MP potential decreases. This case corresponds to plasma of the pulse arc discharge. Fig. 2 illustrates that the results for MP in plasma with singly charged ions with energy 30iT ≈ eV and the results for cold MP are similar. In the case of ions with charge Z=2 and Z=3 in plasma with density 10 0 10n < cm-3 and 11 0 3 10n < ⋅ cm-3, respectively, the MP potential decreases to null. This effect associates with MP discharging by thermionic emission, which causes due to efficient heating of MP. The MP heating is con- nected to the energy release caused by recombination of ions on the MP surface. The energy released on the MP ISSN 1562-6016. ВАНТ. 2013. №4(86) 178 surface in a plasma with doubly and triply charged ions is larger than it of single charged ions in 2,2 and 4,15 times, respectively. For plasma with low density, the electron current does not compensate for thermionic emission. If we increase the plasma density, the electron current increases and compensates for discharging by thermionic emission, and as a result the potential in- creases. A further increase in the plasma density leads to increase of the energy flux from plasma and MP tem- perature. The effect considered above leads to an in- crease of thermionic emission and as result decrease of MP absolute potential, whereas the equilibrium tem- perature considerably increases. The growth of MP temperature stops when it reaches the boil temperature of MP substance. The MP radius changes in time during it boiling and describes by equa- tion: ( ) 24 b mp mpH P Tdr dt rπ ρ Σ = − , (13) where ρ is the substance density, H is vaporization heat. The total evaporation time of the MP with radius a is given by: ( ) 2 0 4 a b b mp mp r drt H P T πρ Σ = ∫ . (14) 1013 101410-3 10-2 10-1 100 101 t b, s n0, cm-3 1 2 Fig. 3. The dependence of the tungsten MP evaporation time on plasma density: 1 – 1 μm; 2 – 10 μm averaged over an ionic energy Fig. 3. shows dependence of tungsten MP’s evapora- tion time versus plasma density. For tungsten MPs with radii 1 μm and 10 μm, immersed in plasma with den- sity 14 0 10n = cm-3, the evaporation time are 310− and 22 10−⋅ s, respectively. For plasma densities 14 0 10n < cm-3, the evaporation time rapidly increases. CONCLUSIONS To summarize, we have examined the effects of io- nic charge and energy as well as plasma density on the MP floating potential. It is shown that the potential is considerably gov- erned by the ionic charge. The ionic energy has no sig- nificant effect on the magnitude of MP potential in the typical energy region of the arc discharges. For doubly and triply charged ions due to recombi- nation of ions on MP surface, efficient heating takes place. Thus, MP is discharged by thermionic emission. The MP evaporation is possible in dense plasma. REFERENCES 1. А.А. Бизюков, К.Н. Середа, А.Д. Чибисов. Дина- мика капельной фазы в плазме дугового разряда низкого давления // Visnyk Kharkivs΄koho natsion- alnoho universytetu im. V.N. Karazina. Seriya fizy- chna «Yadra, chastynky, polya». 2004, № 42, iss. 3(25), p. 42-46 (in Russian). 2. A.A. Bizyukov, A.D. Chibisov. Effect of the pa- rameters of a gas-discharge plasma on the equilib- rium temperature and floating potential of macropar- ticle // Problems of Atomic Science and Technology. Series «Plasma Physics». 2012, № 6, p. 175-177. 3. I.I. Aksen 4. ov. Vakuumnaya duga v eroziynykh istochnikakh plazmy. Khar'kov: «NNTS KHFTI», 2005, p 65-79 (in Russian). 5. V.E. Fortov, A.G. Khrapak, et al. Dusty plasmas// Uspekhi Fizicheskikh Nauk. 2004, v. 174, p. 495-544 (in Russian). 6. H.M. Mott-Smith, I. Langmuir. The Theory of Col- lectors in Gaseous Discharges // Phys. Rev. 1926, v. 28, р. 727-763. 7. M. Kaminskiy. Atomnyye i ionnyye stolknoveniya na poverkhnosti metalla. M.: «Mir», 1967 (in Russian). 8. E.L. Murphy, R.H. Good. Thermionic emission, field emission and the transition region // Phys. Rev. 1956, v. 102, p. 1464-1473. 9. I. Langmuir, K.B. Blodgett. Current limited by space charge between concentric spheres // Phys. Rev. 1924, v. 24, № 1, р. 49-59. Article received 12.04.2013. ПРОЦЕССЫ ЗАРЯДКИ И ФАЗОВЫЕ СОСТОЯНИЯ МАКРОЧАСТИЦ В ДУГОВОМ РАЗРЯДЕ НИЗКОГО ДАВЛЕНИЯ А.А. Бизюков, А.Д. Чибисов, К.Н. Середа, Е.В. Ромащенко, В. Димитрова В дуговом разряде низкого давления исследуется влияние плотности плазмы и заряда ионов на плаваю- щий потенциал уединенной макрочастицы (МЧ). Рассмотрен энергетический баланс с учетом взаимного влияния друг на друга процессов зарядки и разогрева МЧ. Показана возможность испарения МЧ. ПРОЦЕСИ ЗАРЯДЖЕННЯ ТА ФАЗОВІ СТАНИ МАКРОЧАСТИНОК У ДУГОВОМУ РОЗРЯДІ НИЗЬКОГО ТИСКУ О.А. Бізюков, О.Д. Чибисов, К.М. Середа, О.В. Ромащенко, В. Дімітрова У дуговому розряді низького тиску було досліджено вплив густини плазми та заряду іонів на плаваючий потенціал відокремленої макрочастинки (МЧ). Розглянуто енергетичний баланс з урахуванням взаємного впливу один на одного процесів зарядження та розігріву МЧ. Показано можливість випаровування МЧ.