Stochastic heating of charged particles in absence of first order resonances

Dynamics of charged particles in external electromagnetic fields in the absence of resonances proportional to the first degree of intensity of an electromagnetic field is investigated. Two schemes are investigated. In the first existence of several regular electromagnetic waves is supposed. It is su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Antonov, A.N., Buts, V.A., Kornilov, E.A., Svichensky, V.G., Kuzmin, V.V., Tolstoluzhsky, A.P.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112194
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Stochastic heating of charged particles in absence of first order resonances / A.N. Antonov, V.A. Buts, E.A. Kornilov, V.G. Svichensky, V.V. Kuzmin, A.P. Tolstoluzhsky // Вопросы атомной науки и техники. — 2015. — № 4. — С. 161-166. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112194
record_format dspace
spelling irk-123456789-1121942017-01-18T03:04:29Z Stochastic heating of charged particles in absence of first order resonances Antonov, A.N. Buts, V.A. Kornilov, E.A. Svichensky, V.G. Kuzmin, V.V. Tolstoluzhsky, A.P. Плазменно-пучковый разряд, газовый разряд и плазмохимия Dynamics of charged particles in external electromagnetic fields in the absence of resonances proportional to the first degree of intensity of an electromagnetic field is investigated. Two schemes are investigated. In the first existence of several regular electromagnetic waves is supposed. It is supposed that frequencies and wave vector of these waves are such that the phase velocity one of beating waves is close to thermal velocity of particles. It is essential that thus organized Cherenkov resonances are proportional to square of small parameter (a square of dimensionless intensity of the field). In the second scheme is supposed that the phase of the field of wave changes by jump under the random law. Parameters of the studied systems at which one or other scheme of transmission of energy the field to particles has advantage are found. Досліджується динаміка заряджених частинок у зовнішніх електромагнітних полях при відсутності резонансів, які пропорційні першому ступеню напруженості електромагнітного поля. Досліджуються дві схеми. У першій передбачається наявність декількох регулярних електромагнітних хвиль. Передбачається, що частоти і хвильові вектори цих хвиль такі, що фазова швидкість однієї з хвиль биття близька до теплових швидкостей частинок. Істотно, що таким чином організовані черенковські резонанси пропорційні квадрату малого параметра (квадрату безрозмірної напруженості поля). У другій схемі передбачається, що фаза поля хвилі змінюється стрибком за випадковим законом. Знайдено параметри досліджуваних систем, при яких має перевагу одна або інша схема передачі енергії поля частинкам. Исследуется динамика заряженных частиц во внешних электромагнитных полях в отсутствие резонансов, пропорциональных первой степени напряженности электромагнитного поля. Исследуются две схемы. В первой предполагается наличие нескольких регулярных электромагнитных волн. Предполагается, что частоты и волновые векторы этих волн таковы, что фазовая скорость волн биения близка к тепловым скоростям частиц. Существенно, что таким образом организованные черенковские резонансы пропорциональны квадрату малого параметра (квадрату безразмерной напряженности поля). Во второй схеме предполагается, что фаза поля волны изменяется скачком по случайному закону. Найдены параметры изучаемых систем, при которых имеет преимущество одна или другая схема передачи энергии поля частицам. 2015 Article Stochastic heating of charged particles in absence of first order resonances / A.N. Antonov, V.A. Buts, E.A. Kornilov, V.G. Svichensky, V.V. Kuzmin, A.P. Tolstoluzhsky // Вопросы атомной науки и техники. — 2015. — № 4. — С. 161-166. — Бібліогр.: 6 назв. — англ. 1562-6016 PACS: 05.45.PQ, 52.35.MW, 41.20.JB, 41.75.Jv http://dspace.nbuv.gov.ua/handle/123456789/112194 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
spellingShingle Плазменно-пучковый разряд, газовый разряд и плазмохимия
Плазменно-пучковый разряд, газовый разряд и плазмохимия
Antonov, A.N.
Buts, V.A.
Kornilov, E.A.
Svichensky, V.G.
Kuzmin, V.V.
Tolstoluzhsky, A.P.
Stochastic heating of charged particles in absence of first order resonances
Вопросы атомной науки и техники
description Dynamics of charged particles in external electromagnetic fields in the absence of resonances proportional to the first degree of intensity of an electromagnetic field is investigated. Two schemes are investigated. In the first existence of several regular electromagnetic waves is supposed. It is supposed that frequencies and wave vector of these waves are such that the phase velocity one of beating waves is close to thermal velocity of particles. It is essential that thus organized Cherenkov resonances are proportional to square of small parameter (a square of dimensionless intensity of the field). In the second scheme is supposed that the phase of the field of wave changes by jump under the random law. Parameters of the studied systems at which one or other scheme of transmission of energy the field to particles has advantage are found.
format Article
author Antonov, A.N.
Buts, V.A.
Kornilov, E.A.
Svichensky, V.G.
Kuzmin, V.V.
Tolstoluzhsky, A.P.
author_facet Antonov, A.N.
Buts, V.A.
Kornilov, E.A.
Svichensky, V.G.
Kuzmin, V.V.
Tolstoluzhsky, A.P.
author_sort Antonov, A.N.
title Stochastic heating of charged particles in absence of first order resonances
title_short Stochastic heating of charged particles in absence of first order resonances
title_full Stochastic heating of charged particles in absence of first order resonances
title_fullStr Stochastic heating of charged particles in absence of first order resonances
title_full_unstemmed Stochastic heating of charged particles in absence of first order resonances
title_sort stochastic heating of charged particles in absence of first order resonances
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Плазменно-пучковый разряд, газовый разряд и плазмохимия
url http://dspace.nbuv.gov.ua/handle/123456789/112194
citation_txt Stochastic heating of charged particles in absence of first order resonances / A.N. Antonov, V.A. Buts, E.A. Kornilov, V.G. Svichensky, V.V. Kuzmin, A.P. Tolstoluzhsky // Вопросы атомной науки и техники. — 2015. — № 4. — С. 161-166. — Бібліогр.: 6 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT antonovan stochasticheatingofchargedparticlesinabsenceoffirstorderresonances
AT butsva stochasticheatingofchargedparticlesinabsenceoffirstorderresonances
AT kornilovea stochasticheatingofchargedparticlesinabsenceoffirstorderresonances
AT svichenskyvg stochasticheatingofchargedparticlesinabsenceoffirstorderresonances
AT kuzminvv stochasticheatingofchargedparticlesinabsenceoffirstorderresonances
AT tolstoluzhskyap stochasticheatingofchargedparticlesinabsenceoffirstorderresonances
first_indexed 2025-07-08T03:31:28Z
last_indexed 2025-07-08T03:31:28Z
_version_ 1837047993065275392
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 161 PLASMA-BEAM DISCHARGE, DISCHARGE AND PLASMACHEMISTRY STOCHASTIC HEATING OF CHARGED PARTICLES IN ABSENCE OF FIRST ORDER RESONANCES A.N. Antonov1, V.A. Buts1,2, E.A. Kornilov1, V.G. Svichensky1, V.V. Kuzmin1, A.P. Tolstoluzhsky1 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: tolstoluzhsky@kipt.kharkov.ua Dynamics of charged particles in external electromagnetic fields in the absence of resonances proportional to the first degree of intensity of an electromagnetic field is investigated. Two schemes are investigated. In the first exist- ence of several regular electromagnetic waves is supposed. It is supposed that frequencies and wave vector of these waves are such that the phase velocity one of beating waves is close to thermal velocity of particles. It is essential that thus organized Cherenkov resonances are proportional to square of small parameter (a square of dimensionless intensity of the field). In the second scheme is supposed that the phase of the field of wave changes by jump under the random law. Parameters of the studied systems at which one or other scheme of transmission of energy the field to particles has advantage are found. PACS: 05.45.PQ, 52.35.MW, 41.20.JB, 41.75.Jv INTRODUCTION Previously, it was shown that in all cases for the same energy stored in the wave scheme with regular fields significantly more effective than scheme heating particles by the noise fields [1]. However, if resonances of particles with electromagnetic fields are absent, the only mechanisms of heating are mechanisms using the noise fields. In particular waves with random jumping phase [2, 3]. In all previous studies suggested that the resonances are usual resonances of the first-order of the field [4, 5]. It is possible to organize such resonances only in the presence medium (Cherenkov resonances), or in the presence of an external constant magnetic field (cyclotron resonances, resonances on normal and anom- alous effect of Doppler). In absence of medium and the external magnetic field such resonances can't be orga- nized. However, even in vacuum it is possible to organ- ize Cherenkov resonances fields’ proportional to the second order of the field strength. Such resonances, in particular, are used in the FEL schemes and in schemes of the accelerating type of in- verse free-electron laser. It must be said that the effec- tiveness of the interaction of charged particles with fields with such resonances are significantly lower than in the interaction of first-order of the field. However, as we will see below, they can also play an essential role in processes of transmission of energy from electromag- netic waves to particles. Below we will investigate mechanism of the charged particles heating in a vacuum in the absence of resonances of the first-order in the field. The essence of this mechanism is that the velocity the charged particles in the field of several waves can be in the Cherenkov resonance with the field of beating wave (combination wave). The essence of this mechanism is that the speed of the charged particles in the field multiple waves can be in the Cerenkov resonance with the wave field heartbeat (combination wave) and, when the width of this reso- nance is large enough so the separatrix of this resonance touches separatrix of nonlinear resonance on other com- bination wave, the motion of the particles becomes lo- cally unstable. The dynamics of particles is similar to the dynamics of particles in a random field, and there is their stochastic heating 1. STATEMENT OF PROBLEM AND THE BASIC EQUATIONS Let's consider dynamics of the charged particles in a field of several electromagnetic waves. Expressions for electric and magnetic fields of these waves can be pre- sented in such kind: n n E E=∑   , ,n n H H=∑   Re( ),ni n nE eψ=   [ ],n n n n cH k E ω =    (1) where n n nk r tψ ω= −   . The equations of movement in fields (1) look like: [ ].dP eeE vH dt c = +     (2) These equations are convenient rewrite in dimen- sionless variables: PP mc ≡ , 0 n n ωω ω ≡ , 0tτ ω≡ , dPP dτ ≡    , vr c ≡    , n n n eEE mcω ≡   , ,n n n e mcω ≡     n n n k ck ω ≡   , 0r r c ω ≡   (3) Substituting fields (1) in the equations (2) and using dimensionless variables it is possible to receive the fol- lowing, the equations: ( ) ( ),n n n n n n n P E k r k rEω= − +∑ ∑          (4) n n n P Eγ ω γ = ∑    , where ( )Re ni n nE eψ=    . ISSN 1562-6016. ВАНТ. 2015. №4(98) 162 For the further analysis it is convenient to enter also a certain auxiliary characteristic of a particle which we further shall name partial energy of a particle which satisfies to the following equation: ( )n n nrEγ ω=     . (5) From definition of this partial to energy follows, that it determines those value of energy which the particle would have if it moved only in the field of one n -th electromagnetic wave. Using definition of this partial energy, from the equations (4), (5) it is possible to re- ceive the following integral of movement: Re( )ni n n n n n n kP i e Cψ γ ω − − =∑ ∑     . (6) Generally the equations (4), (5) together with inte- gral (6) can be investigated only by numerical methods. For obtain of analytical results we shall consider, that the parameter of force of each of waves working on a particle is small. In this case all description particles (its energy, a pulse, coordinate, speed) can be presented as the sum slowly and quickly varying sizes: P P P= +     n n nγ γ γ= +  . In this case it is possible to receive the following ex- pressions and the equations which connect fast and slow variables: n n n n kP Cγ ω = +∑   , Re( ) /ni n n n n n n P i e kψ γ ω= +∑ ∑      , (7) Re( )ni n n n n nvE v eψγ ω ω= =        , n n nvEγ ω=    , Re( )ni n neψγ = Γ , where /n n n ni vω ψΓ = −    . The equations for fast variables can be integrated: ( )Re /ni n n n n ni v e k vψγ ω ω = −        , { }Re ( ) /ni n n n n n P ie k vψ ω = + ∑        . The equations for slow variables will get the kind: ( ) ( ) , 1 Re Rem ni i n m n m n P k i e eψ ψ γ    =    ∑       , ( ) ( ) , , 1 Re( ) Re( ) 1 cos / 2 2 cos / 2 . m ni i m n n m n n n m m n m n m n i e eψ ψγ ω γ ω ψ ψ π γ ψ ψ π = = = + + + + − +  ∑ ∑         (8) The equations (8) are equivalent to the equation of a nonlinear pendulum (a mathematical pendulum) on which external periodic force operates. We shall show it. Let among those waves which operate on a particle, are available two waves (at number 1 and 2) which pal- pation form a combinational wave which phase speed, is close to average speed of a particle. We shall designate a difference of phases of these waves through θ : 1 2θ ψ ψ≡ − . For this difference of phases it is possible to receive the following differential equation. ( )d v dt θ χ γ= −Ω = ∆   , (9) where 1 2k kχ ≡ −    , 1 2ω ωΩ ≡ − . Thus we count that / vχΩ ≅ . Equation (8) we now can rewrite as: ( )1 cosd F d γ θ τ τ γ = Ω + , (10) where 1 2=   , ( )F τ – periodic function. Let's consider that initial energy of a particle in ac- curacy corresponds of Cerenkov resonance of a particle with a combinational wave. It means, what: 0( ) 0γ∆ = . Besides we shall take into account that as a result of interaction of waves with particles energy of a particle has changed not on many. In this case detune it is possi- ble to spread out in Taylor's number: 0 0( ) γ γ δγ γ  ∂∆ ∆ = ∆ +  ∂  . Then the equations (9) and (10) will be completely closed and will accept the following kind: 0 d d γ θ δγ τ γ  ∂∆ =  ∂  , 0 cos ( )d F d δγ θ τ τ γ Ω = +  . (11) The system of the equations (11) is equivalent to the equation of a mathematical pendulum taking place un- der influence of external periodic force ( )F τ ( ) ( ) 0 0/ ( / ) cos F γ θ γ γ θ τ= ∂∆ ∂ Ω +  . (12) The equation (12) correctly describes dynamics of particles at small amplitudes of waves working on them. And the described dynamics is less than amplitude of these waves, the more precisely. 2. NUMERICAL RESEARCHES OF DYNAMICS OF PARTICLES We are interested in the dynamics, both at small and at high field strengths. Therefore, we performed a series of numerical studies of the initial system of equations (4). We investigated the dynamics of the particle num- ber in the most interesting field configuration, which is the field 3n ≥ of propagating electromagnetic waves. The dispersion diagram in Fig. 1 illustrates the appear- ance of combination waves. Fig. 1. The dispersion diagram of interacting waves The conditions for the appearance of stochastic in- stability are conditions of overlapping nonlinear reso- nances of combination waves 1 1 0 0 1 02 0 0 0 ( ) i i i iph ph i iv v k v ω ω γ+ ++  − ≤ ∆ + ∆     , (13) where { }0 0 0/ ( ), 1,2,.. , 1 iph i i i iv k k i nω ω ω= ∆ + = ∆ ≡ − . ISSN 1562-6016. ВАНТ. 2015. №4(98) 163 We chose two values for the field strengths of each of the waves 0.03i = , 0.3i = and different values of the wave numbers. The initial velocities of the particles were chosen to be zero. Fig. 2 shows the change of energy versus time for a single particle with the initial phase 0 0ψ = three waves with strengths 0.03i = , 0.3i = and wave numbers 1 2 30.8, 1, 1.2k k k= − = − = . Fig. 2. The energy of single particle 0.03i = Fig. 3. The energy of single particle 0.3i = From Fig. 2 and Fig. 3 it is visible that at small strength of electromagnetic field of waves the particles oscillate regular, being in single nonlinear resonance of the combination wave. With increasing field strength under the action of fields there is transition of the parti- cle from resonance in the resonance, dynamics of the particles motion has irregular character with significant changes of particles energy. To determine the laws of interaction of charged par- ticles with electromagnetic fields we will investigate the energy averaged over ensemble of 30 particles. Depend- ences on time of average energy with various initial values of phases 0π ϕ π− < ∆ < for three waves with strength 0.3i = and various values of wave numbers are given in plots of Figs. 4,5. Fig. 4. Energy averaged over ensemble of particles 1 2 30.8, 1, 1.2k k k= − = − = Fig. 5. Energy averaged over ensemble of particles 1 2 30.9, 1, 1.1k k k= − = − = Dependences on time of average energy with various initial values of phases 0π ϕ π− < ∆ < for five waves with strength 0.3i = and various values of wave num- bers are given in plots of Figs. 6,7. Fig.6. Energy averaged over ensemble of particles 1 2 30.8, 1, 1.2k k k= − = − = 4 50.6, 0.4k k= − = − Fig.7. Energy averaged over ensemble of particles 1 2 30.9, 1, 1.1,k k k= − = − = 4 50.7, 0.7k k= − = − As can be seen from these Figures the growth rate of the average energy of the ensemble of particles and its maximum energy depends on the magnitude of the strength of electromagnetic waves, and the number of combination waves involved in the interaction, as well as the distance between their nonlinear resonances. So the maximum energy that can collect particles in the case of overlapping of Cherenkov resonances from the combination of waves, is the sum of the distances be- tween resonances 1 0 1 0 i i N N ph ph ph ph n v v v v + − = − = −∑ . The degree of nonlinear resonances overlapping, de- pending on the amplitudes of the interacting waves, determines the time of particle transition from reso- nance to resonance, thereby determining the velocity and dynamics of the particles on time. The dynamics of growth of the average energy of the particles also de- pends on the time spent by the particles inside the non- linear resonance. 3. MODEL OF WAVE WITH RANDOMLY JUMPING OF PHASE For a base for formation of the wave with chaotically jumping phase, the travelling harmonic wave of kind 0( , ) cos( )f t r a t krω ϕ= − +    is taken (regular wave), to phase of which we will add stochastic function of time ( )tξ . For a numerical analysis the scheme of the numerical analysis which allows to vary the quantity of an interval of phases in which there is the jump of phase change, is realized. Also it is realized the possibility to select the interval of time in which, during the random moment of time, the phase jump occurs. Time of jump is supposed considerably smaller than the wave period. On plots Fig. 8, as example, one can see the initial part of realization (length of 1000 period) of the wave field strength time dependence at random jump of the phase at each period of wave for interval of phases jump ( 0π ϕ π− < ∆ < ) and spectral density of power of this realization. а b Fig. 8. Field of wave and spectrum From these plots it is visible that phase jump occurs at random moment of time at each period of the regular wave Fig. 8,а, and quantity of this jump also is random and lies in the range of phases (-π, π). The spectrum (see Fig. 8,b) is widened enough with a maximum near to unity. а b Fig. 9. Spectrum of wave: one at one period with jump ( 0/ 2 / 2π ϕ π− < ∆ < ) (a); one at 5-th period with jump ( 0π ϕ π− < ∆ < ) (b) ISSN 1562-6016. ВАНТ. 2015. №4(98) 164 With increasing of the interval of time on which there is jump of the phase and reduction of an interval of the phase jumps, the spectrum of the wave is consid- erably narrowed see plots Fig. 9. Spectral bandwidth reduction is proportional both to reduction of quantity of jump, and increasing interval of time in which this jump takes place. 4. DYNAMICS OF PARTICLES IN THE FIELD OF WAVE WITH RANDOM CHANGING PHASE The dynamics of the particle obeys to the vector equation (14), in which ( )tξ is a stochastic function changing under the law described above. Numerical modeling of the particle motion in the field of wave with chaotically changing phase is carried out in the absence of a magnetic field 0 0H = at various intervals of change of the phase jump ( 0π ϕ π− < ∆ < ) and various intervals of time in which, at random moment, there is the phase jump. On Fig. 10 time dependence of the energy change for single particle with initial phase 0 0ψ = and aver- aged on ensemble from 30 particles with initial phases from interval ( 0π ϕ π− < ∆ < ) for case of single jump at period and interval of the phase jumps ( 0π ϕ π− < ∆ < ), is presented. On the same plot, for comparison with the diffuse law of the energies growth with time, the curve of the time dependence of the energy change is given: ( )dγ τ α τ= at value of coefficient α = 0.5. The pa- rameter of the wave force is 1ε = . а b Fig. 10. Energy particle gain at the field: one particle (a); ensemble averaging (b) From these graphs it is visible that the single particle at interaction with the wave field in a random way gain- ing and loses energy. However when averaged over ensemble of particles (a particle with different initial phases) a certain regularity of the particles energy growth is observed. The graphs of dependence of the particles energy on time averaged over ensemble of 30 particles for interval of jump of phases 0π ϕ π− < ∆ < and values of the force wave parameter 0.3ε = and 1ε = are given in Fig. 11 a b Fig. 11. Energy particle gain at the field with random jumping phase with one jump at period: 0.3ε = (a); 1ε = (b) From Fig. 11 it is visible that dependence of average energy on time has close to diffusion character – smooth curves ( )dγ τ α τ= with α = 0.5. For a more detailed analysis of the influence of dif- ferent parts of the spectrum in the dynamics of energy exchange of charged particles with the wave field with randomly changing phase of this wave identified three main region of the spectrum: a low, basic and high fre- quency. In this case, the missing parts of the frequency spectrum supplemented by zero values. With the help of the inverse Fourier transform has been restored realiza- tions which correspond to each parts of the spectrum. Figs. 12-14 shows plots the spectral power parts of spec- trum and the corresponding initial part of restored field for regions low 3 0 010 0.5ω ω ω− < < , main 0 00.5 1.5ω ω ω< < and the high frequency 01.5ω ω> . а b Fig. 12. a – low region of spectrum; b – initial part of restored field from low region of spectrum а b Fig. 13. a – main region of spectrum; b – initial part of restored field from main region of spectrum а b Fig. 14. High frequency region of spectrum (a); initial part of field restored main region of spectrum (b) For each of the reconstructed field realizations has been investigated the dynamics of particles in these fields for different values of the field amplitude. For small amplitudes of the field strength of the wave pa- rameter’s 0.01,ε ≤ the main contribution to the energy exchange between the field and particles is in the low frequency range. Figs. 15, 16 shows graphs of the longi- tudinal momentum (energy) of the particles from time to time, averaged over an ensemble of 30 particles using the restored realization from various parts of the spectral expansion. Graphics averaged momentum for the high frequen- cy part of the spectrum is similar graphs for the middle part of the spectrum. As seen from these graphs for small field amplitude ( 0 0.1ε< < ) a major role in the energy exchange of particles with field has low frequen- cy. γ ISSN 1562-6016. ВАНТ. 2015. №4(98) 165 а b Fig. 15. The average pulse 0.01ε = . a – low-frequency part of spectrum;b – main part of spectrum а b Fig. 16. The average pulse 0.1ε = : low-frequency part of spectrum (a); main part of spectrum (b) With increase of the amplitude ( 0.1ε > ) major role in the energy exchange of particles with field has main part of frequency spectrum. It should be noted that the model of wave, consid- ered above, with jumps of the phase leads to significant broadening of the spectrum and thus the most part of the spectrum can be a small effective for heating. However there are schemes with jumps of phases [6, 7] which don't lead to significant broadening of the spectrum in vicinity of basic frequency ω (by the statement of the authors). In this case efficiency of heating can be high. 5. EXPERIMENTAL INVESTIGATIONS Higher we saw that it is necessary for formation of slow virtual waves (beating waves) that the particle in- teracted at least with two running towards each other waves. In the resonator filled with rare plasma such conditions can be realized at decay of a high-frequency wave on a high-frequency wave and on the plasmas wave. Such process especially effectively proceeds in conditions when distance on frequencies between the main modes of the resonator are close to plasmas fre- quency. In addition, the nature of the decay process (speed of its flow, regular or chaotic dynamics) generally depends on the intensity of the decaying waves. Besides, character of the decay process (speed of its flow, regular or chaotic dynamics) depends in general on intensity of the decaing wave. To understand these features we put a series of experiments. The resonator filled with rare plasma ( 2 2 pω ω<< ) was excited in these experiments from an external source (magnetron) at a frequency 2.7 GHz. The spectrum of the oscillations excited in the resonator depending on the level of the RF power entered into resonator was studied. It was found that at the level of the input power close to 52 kW or more in the resonator regular process of decay takes place. As a result of such decay there is a low-frequency wave at frequency close to pω besides, there was a new high-frequency wave which frequency there was less than frequency of the magnetron on close to pω . Thus in these cases (cases rather small strength of RF wave) in the experiment classical regular process of decay was observed. Such processes of decay (cascade of decays) can form the required set of slow combination wave for effective self-consistent plasma heating. It should, how- ever, bear in mind that with further increase in the am- plitude of the RF wave which excites the cavity, decay process becomes less regular. Moreover at excess mag- netron power over some critical value the decay process becomes irregular. Note that this occurs when the growth rate of decay instability becomes greater of the plasma frequency. The listed above features are illus- trated by Figs. 17-20. In these figures the spectrum of the excited oscillations is presented at the inputting power of 52 kW (see Fig.18). Plasma frequency in these figures isn’t presented. When the power of the excited oscillations increased that the spectrum of the excited oscillations has essentially extended. When reaching of power level 167 kW the spectrum becomes almost con- tinuous (see Fig. 19). Dependence of the spectrum width on the level of input power is presented on Fig. 20. Fig. 17. Oscillations spectrum at P=17 kW Fig. 18. Oscillations spectrum at P=52 kW 0 50 100 150 200 250 300 350 400 0 50 100 150 200 P, kW S, MHz Fig. 19. Oscillations spectrum at P=167 kW Fig. 20. Dependence of the spectrum width on the input power P CONCLUSIONS To compare the effectiveness of a set of energy par- ticles in the combination of waves (in terms of overlap- ping nonlinear resonances of the second order in the field), and in the wave field with a randomly jumping phase will proceed from the natural assumption of the equality of power in the regular waves and wave with jumping phase reg chW W= . Here we have: 2 2 0 ~ / N reg i i reg i W N Qε ω ε = = ∆∑ ; ~ 1/i iQω∆ ; 2 ch chW ε ω= ∆ ; ~ 1chω∆ . From these relations we find the following relation between the amplitudes of the regular wave and noise wave: 2 2~ /reg chQ Nε ε . We will also use the natural assumption that at de- velopment of dynamic chaos, between the regular and the amplitudes of the noise field exist the relation: ISSN 1562-6016. ВАНТ. 2015. №4(98) 166 2~ ~comb reg chε ε ε . In this case, one can enter the follow- ing coefficient of efficiency ( ) /chK Q Nε= ⋅ . If this ratio is greater than one ( 1K > ), efficiency of the heating by the field of regular wave is higher than the heating by the noise field. The provided experiment show that in the cavity filled with the rare plasma, it is possible to realize the conditions for heating of plasma by exciting in the cavi- ty several eigenmodes of the resonator. Note also that the scheme described above is relevant only to the heat- ing of the plasma at relatively low field strengths. If the power source rf oscillations (magnetron) which excites resonator close to 150 kW or more, in the cavity devel- oping a modified decay. The fields excited thus are ramdon and there is no need for realization of the de- scribed mechanism. This work was supported in part by special-purpose program “Perspective study of plasma physics, con- trolled thermonuclear fusion and plasma technologies.” (Order of Presidium of the National Academy of Sci- ences of Ukraine № 151 of 12 March 2014). REFERENCES 1. V.A. Buts, K.N. Stepanov. Stoxasticheskij nagrev plazmy polem lazernogo izlucheniya // Pisma v ZhETF. 1993, v.58, p. 520-523 (in Russian). 1. 2. F.G. Bass, Ya.B. Fainberg, V.D. Shapiro. Kvazi- linejnaya teoriya slaboturbulentnoj plazmy s uchetom korrelyacii elektricheskix polej // ZhETF. 1965, v. 49, p. 329-334 (in Russian). 2. V.I. Karas’, Ya.B. Fainberg, A.F. Alisov, A.M. Artamoshkin, R. Bingham, I.V. Gavrilenko, V.D. Levchenko, M. Lontano. V.I. Mirny, I.F. Potapenko, A.N. Starostin. Interaction of Microwave Radiation Undergoing Stochastic Phase Jumps with Plasmas or Gases // Plasma Physics Reports. 2005, v. 31, № 5, p. 746-760. 3. V.A. Balakirev, V.A. Buts, A.P. Tolstoluzhskii, Yu.A. Turkin. Randomization of motion of a beam of phased oscillators // Zh. Eksp. Teor. Fiz. 1983, v. 84, p. 1279-1289. 4. V.A. Balakirev, V.A. Buts, A.P. Tolstoluzhskii, Yu. A. Turkin. Charged-particle dynamics in the field of two electromagnetic waves // Zh. Eksp. Teor. Fiz. 1989, v. 95, p. 1231-1245. 5. A.F. Alisov, A.M. Artamoshkin, S.A. Berdina, V.I. Golota, A.M. Egorov, A.G. Zagorodny, I.A. Zagrebel’ny, V.I. Zasenko, V.I. Karas’, I.V. Karas’, I.F. Potapenko, A.N. Starostin. Low- Pressure Discharge Induced by Microwave Radia- tion with a Stochastically Jumping Phase // Plasma Physics Reports. 2010, v. 36, № 8, p. 736-749. 6. V.I. Karas’, A.M. Artamoshkin, A.F. Alisov, O.V. Bolotov, V.I. Golota, I.V. Karas, A.M. Yegorov, I.A. Zagrebelny, I.F. Potapenko, A.N. Starostin. Special Features of Low-Pressure Discharge Initiat- ed by Microwave Radiation with Stochastic Jumping Phase // IEEE Transactions on Plasma Science. 2013, v. 41, № 9, p. 1458-1463. Article received 19.05.2015 СТОХАСТИЧЕСКИЙ НАГРЕВ ЗАРЯЖЕННЫХ ЧАСТИЦ В ОТСУТСТВИЕ РЕЗОНАНСОВ ПЕРВОГО ПОРЯДКА А.Н. Антонов, В.А. Буц, Е.А. Корнилов, В.Г. Свиченский, В.В. Кузьмин, А.П. Толстолужский Исследуется динамика заряженных частиц во внешних электромагнитных полях в отсутствие резонан- сов, пропорциональных первой степени напряженности электромагнитного поля. Исследуются две схемы. В первой предполагается наличие нескольких регулярных электромагнитных волн. Предполагается, что часто- ты и волновые векторы этих волн таковы, что фазовая скорость волн биения близка к тепловым скоростям частиц. Существенно, что таким образом организованные черенковские резонансы пропорциональны квад- рату малого параметра (квадрату безразмерной напряженности поля). Во второй схеме предполагается, что фаза поля волны изменяется скачком по случайному закону. Найдены параметры изучаемых систем, при которых имеет преимущество одна или другая схема передачи энергии поля частицам. СТОХАСТИЧНЕ НАГРІВАННЯ ЗАРЯДЖЕНИХ ЧАСТИНОК У ВІДСУТНОСТІ РЕЗОНАНСІВ ПЕРШОГО ПОРЯДКУ О.М. Антонов, В.О. Буц, Є.О. Корнілов, В.Г. Свіченський, В.В. Кузьмін, О.П. Толстолужський Досліджується динаміка заряджених частинок у зовнішніх електромагнітних полях при відсутності резо- нансів, які пропорційні першому ступеню напруженості електромагнітного поля. Досліджуються дві схеми. У першій передбачається наявність декількох регулярних електромагнітних хвиль. Передбачається, що час- тоти і хвильові вектори цих хвиль такі, що фазова швидкість однієї з хвиль биття близька до теплових шви- дкостей частинок. Істотно, що таким чином організовані черенковські резонанси пропорційні квадрату ма- лого параметра (квадрату безрозмірної напруженості поля). У другій схемі передбачається, що фаза поля хвилі змінюється стрибком за випадковим законом. Знайдено параметри досліджуваних систем, при яких має перевагу одна або інша схема передачі енергії поля частинкам. introduction 5. experimental INVESTIGATIONS СТОХАСТИЧЕСКИЙ НАГРЕВ ЗАРЯЖЕННЫХ ЧАСТИЦ В ОТСУТСТВИЕ РЕЗОНАНСОВ ПЕРВОГО ПОРЯДКА СТОХАСТИЧНЕ НАГРІВАННЯ ЗАРЯДЖЕНИХ ЧАСТИНОК У ВІДСУТНОСТІ РЕЗОНАНСІВ ПЕРШОГО ПОРЯДКУ