Forward and backward electron emission in binary cell of radioisotope current source

It was shown that ratio of forward and backward yields for Ti-Ti binary cell of the SERICS was close to other materials. Isotropic emission of alpha particles from the surface of radioisotope source led to dependency of projectile effective charge and convoy electron yield on incidence angle. The in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Kononenko, S.I., Zhurenko, V.P., Kalantaryan, O.V., Semerenskiy, A.A.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112204
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Forward and backward electron emission in binary cell of radioisotope current source / S.I. Kononenko, V.P. Zhurenko, O.V. Kalantaryan, A.A. Semerenskiy // Вопросы атомной науки и техники. — 2015. — № 4. — С. 331-334. — Бібліогр.: 17 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112204
record_format dspace
spelling irk-123456789-1122042017-01-19T03:02:15Z Forward and backward electron emission in binary cell of radioisotope current source Kononenko, S.I. Zhurenko, V.P. Kalantaryan, O.V. Semerenskiy, A.A. Приложения и технологии It was shown that ratio of forward and backward yields for Ti-Ti binary cell of the SERICS was close to other materials. Isotropic emission of alpha particles from the surface of radioisotope source led to dependency of projectile effective charge and convoy electron yield on incidence angle. The influence of convoy electrons on total electron yield can be neglected. Показано, що відношення електронних виходів у прямому і зворотному напрямках для Ti-Ti-бінарної комірки SERICS близьке до деяких інших матеріалів. Ізотропне випромінювання альфа-частинок з поверхні радіоізотопного джерела призвело до залежності ефективних зарядів і виходу конвойних електронів від кута взаємодії. Впливом конвойних електронів на загальний вихід електронів можна знехтувати. Показано, что отношение электронных выходов в прямом и обратном направлениях для Ti-Ti-бинарной ячейки SERICS близко к некоторым другим материалам. Изотропное испускание альфа-частиц с поверхности радиоизотопного источника привело к зависимостям эффективных зарядов и выхода конвойных электронов от угла взаимодействия. Влиянием конвойных электронов на общий выход электронов можно пренебречь. 2015 Article Forward and backward electron emission in binary cell of radioisotope current source / S.I. Kononenko, V.P. Zhurenko, O.V. Kalantaryan, A.A. Semerenskiy // Вопросы атомной науки и техники. — 2015. — № 4. — С. 331-334. — Бібліогр.: 17 назв. — англ. 1562-6016 PACS: 79.20 http://dspace.nbuv.gov.ua/handle/123456789/112204 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Приложения и технологии
Приложения и технологии
spellingShingle Приложения и технологии
Приложения и технологии
Kononenko, S.I.
Zhurenko, V.P.
Kalantaryan, O.V.
Semerenskiy, A.A.
Forward and backward electron emission in binary cell of radioisotope current source
Вопросы атомной науки и техники
description It was shown that ratio of forward and backward yields for Ti-Ti binary cell of the SERICS was close to other materials. Isotropic emission of alpha particles from the surface of radioisotope source led to dependency of projectile effective charge and convoy electron yield on incidence angle. The influence of convoy electrons on total electron yield can be neglected.
format Article
author Kononenko, S.I.
Zhurenko, V.P.
Kalantaryan, O.V.
Semerenskiy, A.A.
author_facet Kononenko, S.I.
Zhurenko, V.P.
Kalantaryan, O.V.
Semerenskiy, A.A.
author_sort Kononenko, S.I.
title Forward and backward electron emission in binary cell of radioisotope current source
title_short Forward and backward electron emission in binary cell of radioisotope current source
title_full Forward and backward electron emission in binary cell of radioisotope current source
title_fullStr Forward and backward electron emission in binary cell of radioisotope current source
title_full_unstemmed Forward and backward electron emission in binary cell of radioisotope current source
title_sort forward and backward electron emission in binary cell of radioisotope current source
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Приложения и технологии
url http://dspace.nbuv.gov.ua/handle/123456789/112204
citation_txt Forward and backward electron emission in binary cell of radioisotope current source / S.I. Kononenko, V.P. Zhurenko, O.V. Kalantaryan, A.A. Semerenskiy // Вопросы атомной науки и техники. — 2015. — № 4. — С. 331-334. — Бібліогр.: 17 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kononenkosi forwardandbackwardelectronemissioninbinarycellofradioisotopecurrentsource
AT zhurenkovp forwardandbackwardelectronemissioninbinarycellofradioisotopecurrentsource
AT kalantaryanov forwardandbackwardelectronemissioninbinarycellofradioisotopecurrentsource
AT semerenskiyaa forwardandbackwardelectronemissioninbinarycellofradioisotopecurrentsource
first_indexed 2025-07-08T03:32:13Z
last_indexed 2025-07-08T03:32:13Z
_version_ 1837048040262729728
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 331 FORWARD AND BACKWARD ELECTRON EMISSION IN BINARY CELL OF RADIOISOTOPE CURRENT SOURCE S.I. Kononenko, V.P. Zhurenko, O.V. Kalantaryan, A.A. Semerenskiy V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: sergiy.i.kononenko@gmail.com It was shown that ratio of forward and backward yields for Ti-Ti binary cell of the SERICS was close to other materials. Isotropic emission of alpha particles from the surface of radioisotope source led to dependency of projec- tile effective charge and convoy electron yield on incidence angle. The influence of convoy electrons on total elec- tron yield can be neglected. PACS: 79.20 1. INTRODUCTION 1.1. BACKGROUND An ion propagating through a matter produces free electrons, some of which, with the proper values and directions of momentum, can escape from the medium. This process is called ion induced electron emission (IIEE). At present, it is proved theoretically and experi- mentally that the IIEE coefficient in the case of light ions is directly proportional to the mean specific ioniza- tion loss dE/dx of an ion in a matter [1, 2]. Consequent- ly, the investigation of SEE makes it possible to derive information about the energy lost by an ion as it moved through a solid-state plasma and about how this energy is distributed between different electron groups. The mean specific ionization loss dE/dx of an ion at each point in a medium can be represented as a sum of the losses associated with energy transfer to the electrons that move in the same direction as the primary ion, (dE/dx)F, and with the energy transfer to the electrons that move in the opposite direction, (dE/dx)B: dE/dx = (dE/dx)F+(dE/dx)B. In our opinion, it is quite natural that the quantities (dE/dx)F and(dE/dx)B are pro- portional to the coefficients of IIEE in the propagation direction of a fast light ion (in the forward direction),γF , and in the opposite (backward) direction, γB , respective- ly. Hence, by investigating the kinetic ion-electron emission from a thin film in the forward and backward directions, it is possible to study the anisotropy of ener- gy transfer from a primary ionizing charged particle. In the energy spectrum of the secondary emission electrons we can distinguish three electron groups: 1. Slow electrons with energies E < Ep, where Ep = hωp is the energy of the plasma oscillations with fre- quency ωp. These electrons are produced from the ionization by plasma oscillations and from direct collisions with large impact parameters, accompa- nied by small momentum transfers. 2. Moderate-energy electrons, which are produced ex- clusively in direct collisions accompanied by mod- erate momentum transfers. 3. Fast electrons, which move preferentially in the propagation direction of the ion. These are convoy electrons and δ-electrons, which produced from di- rect collisions with small impact parameters, accom- panied by large momentum transfers. The velocity convoy electrons, coincides in magnitude with the velocity of the ion, ve = vp, and has the same direc- tion. The velocity of the δ-electrons that corresponds to the maximum possible momentum transfer can be defined as vδ = vpcosθ, where vp is the velocity of a bombarding ion and the angle θ is measured from its propagation direction. 1.2. SECONDARY EMISSION RADIOISOTOPE CURRENT SOURCE New technique for nuclear decay energy conversion to electrical was based on the power law distribution of emission electrons induced by ions. This phenomenon was predicted theoretically early [3]. Some differences between the experimental values and theoretical power law indexes were related with the time evolution of the electron distribution function [4]. Main channel of fast ion energy loss in matter is processes of atom ionization [5]. At that part of substance electrons can leave the surface leading to a secondary ion-induced electron emission [6 - 8]. The integral characteristic of the emis- sion is coefficient γ frequently called in the literature as an electronic yield [6 - 8]. Emission coefficient is de- fined as a relation of a number of secondary electrons Ne emitted to a number of primary incident ions Ni: γ=Ne/Ni. (1) Coefficient γ can vary depending on ion energy, tar- get substance and a number of other parameters [6 - 8]. Fig. 1. Schematic diagram of SERICS: 1 – vacuum container; 2 − α-radioisotope; 3 and 4 – emitting thin layers with different emission coefficients By using α-particles emitted by radioisotope as pro- jectiles and pair of thin emitting layers (insulated from each other) with different coefficients γ it is possible to convert energy of nuclear particles into electricity. This idea underlies secondary emission radioisotope current source (SERICS) [9 - 11]. SERICS schematic diagram is presented on Fig. 1. Radioisotope 2 emitting α-particles towards two half- ISSN 1562-6016. ВАНТ. 2015. №4(98) 332 spheres is situated in vacuum container 1. Two emitters of electrons are located on both sides of the radioiso- tope. Each emitter is a set of some pairs of thin emitting layers (so-called binary cells) of two different materials 3 and 4. One of the materials should have high emission coefficient, whereas the other should have low one. All of the layers are parallel and insulated with each other. Layers from one material electrically connected in par- allel and have own contact. As α-particle passes through emitter, difference of charges between the layers of bi- nary cell arises. By close the circuit with useful load it is possible to use the charge difference as a source of cur- rent. Effectiveness of energy conversion is proportional to the number of emitting pairs N and difference of the emission coefficients [6]. Fig. 2. Binary cell of SERIC: 1 − layer of higher IIEE yield (γ1); 2 − layer of lower IIEE yield (γ2); σ1 and σ2 SEEE yields respectively The basis of SERICS is a binary cell which consists of two different materials (Fig. 2). We established that secondary electron-electron emission (SEEE) (tertiary emission) influenced strong at efficiency of SERICS. Titanium and some other materials have SEEE yield less than one. We carried out forward and backward emission study for Ti-Ti binary cell. The results are pre- sented in this paper. 2. THE EXPERIMENTAL SETUP The experiments were carried out with the device, which schematic diagram is shown in Fig. 3. Fig. 3. The experimental device: 1 – vacuum chamber; 2 – Pu239 radioisotope source of α-particles; 3 – target; 4 – movable diaphragm; 5 – collector; 6 – B5-50 dc source; 7 – electrometric voltmeter The prototype of the binary cell, consisting of radio- isotope source of α-particles with Pu-239 isotope 2, the emitter of a titanium foil 3 and the Ti massive collector 5, were placed in a vacuum cylinder chamber 1. The radioisotope source 2 produced α-particle flow with intensity of 4.64⋅106 particles/s and energy of 5.15 MeV. The alpha-particles current Ic0 was measured of multiple Faraday cylinder collector. The titanium foil thickness of 5.6 µm was chosen to be less than a mean path of α-particle with given energy in this material. The α-particle passed through the emitter 3 and induced the electron emission from the forward emitter surface and from the surface of the massive collector 5. The measurements of a collector current were made by an electrometric voltmeter 7 with input impedance of 1016 Ohm. Voltage of different polarities was applied to the emitter-collector gap and was changed from 1 to 300 V. For adjusting the system a moveable damper 4, shutting the flows of α-particles and emitted electrons, was placed between the emitter and the collector. The residual gas pressure in the vacuum chamber was less than 10-4 Pa. The chamber was pumped out with a mag- netic discharge pump 9 and mechanical rough pump with a nitrogen-cooled trap. 3. THE EXPERIMENTAL RESULTS AND DISCUSSION The collector current as a function of voltage applied between the titanium foil (as emitter) and titanium plate (as collector) is shown in Fig. 4. Fig. 4. The experimental current-voltage character- istics for Ti-target and Ti-collector This coefficient γ for forward and backward cases was calculated by the following formulas: 0 0 2 ,f c F f k I I k I α α γ + = 0 0 2 f c B f k I I k I α α γ − = , (2) where Ic is the collector current and kf is the fraction of alpha-particles that have passed through the target. The ratio R of the forward IIEE coefficient γF to the back- ward one γB, was measured earlier and was equal to 1.57 for aluminum, 1.69 for copper, and 1.82 for nickel [13]. We found thatR ratio for titanium was equal to 1.62. According to these data, the R ratio for different sub- stances varies insignificantly (lower than 10% of the mean value). The charge of moving projectile in matter depends on its velocity. In our case, different incidence angles for alpha particles led to various effective charges on the target surface. Analytical formula for effective charge Z eff calculation according to the Bohr model was obtained in [12]: ISSN 1562-6016. ВАНТ. 2015. №4(98) 333                 −−= 3/2 20 1 1 exp1 Zv vZZeff , (3) where Z1 and Z2 are charges of projectile and target at- oms respectively, v1 is projectile velocity, v0 is Bohr velocity. The best agreement with experiment is given by the formula obtained in [13]                 −−= 3/2 20 1 1 92,0exp1 Zv vZZeff . (4) When fast ions penetrate a solid or gaseous medium, they can be accompanied by electrons which move at nearly the same velocity as the ion. These electrons have been called convoy ones [15]. Influence of differ- ent interaction parameters on convoy electrons was studied in many investigations (see for example [16, 17]). Authors [17] summarized their experimental re- sults by the empirical equation for yield of convoy elec- trons: 4 2,75 2,25 11 10 ( )c T effC Z Z Eγ − −= × , (5) where Zeff is the effective charge of the incident particle with energy E1 in MeV/amu, and C is a constant de- pending on the target material; C(Au) = 1.65, C(Ag) = 1.25, C(A1) = C(C) = 1.0. All the values have accuracy 0.15. Alpha particles were emitted isotropically from the surface of radioisotope source. These projectiles moved at different angles with respect to the target surface and, consequently, passed different path in the matter of the foil. As a result, their energy losses were different too (Fig. 5). 0 10 20 30 40 50 60 70 80 0 1000 2000 3000 4000 5000 E, K eV θ, deg Fig. 5. Dependence of alpha-particle energy at the back surface of the titanium foil 0 10 20 30 40 50 60 70 80 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Ze ff, a rb .u n. θ, deg Fig. 6. Effective charge of alpha-particles in the target foil as function of incidence angle The effective charge is a function of projectile ve- locity. Consequently, it depends on the incidence angles too (Fig. 6). In this case, yield of convoy electrons according (5) varied from 5.7·10-4 (0°) to 0.82 (75°). The influence of convoy electrons on total electron yield can be neglect- ed. However, these electrons have considerable energy from 578 eV (0°) to 71 eV (75°). It means that convoy electrons enable to knock out secondary electrons from the opposite electrode. These additional electrons influ- ence on charge balance between the electrodes and de- crease the conversion efficiency of SERICS. CONCLUSIONS In this paper the investigation of the forward and backward electron emission in Ti-Ti binary cell of the SERICS induced by alpha-particles have been carried out. It was shown that ratio of forward and a backward yield was close to the other materials. Isotropic emis- sion of alpha particles from the surface of radioisotope source led to distribution of the projectile’s energy in binary cell. As a result, the effective charges of projec- tile and convoy electron yield depend on incidence an- gle of alpha-particles. The influence of convoy electrons on total electron yield can be neglected. ACKNOWLEDGEMENTS We would like to appreciate the great contribution of Prof. V.I. Karas’ to the formulation of the problem and productive discussion of the experimental results. REFERENCES 1. E.J. Sternglass. Theory of secondary electron emis- sion by high-speed ions // Phys. Rev. 1957, v. 108. № 1, p. 1-12. 2. D. Нasselkamp, S. Hippler, A. Scharmann. Ion- induced secondary electron spectra from clean metal surfaces // Nucl. Instr. and Meth. B. 1987, v. 18, p. 561-565. 3. V.I. Karas', S. S. Moiseev, V.E. Novikov. Nonequi- librium stationary distributions of particles in a solid body plasma // Zh. Eksp. Teor. Fiz. 1976, v. 71, p. 1421-1433. 4. V.E. Zakharov, V.I Karas'. Nonequilibrium Kolmo- gorov-type particle distributions and their applica- tions // Physics - Uspekhi. 2013, v. 56, p. 49. 5. N.P. Kalashnikov, V.S. Remizovich, I. Ryazanov. Collisions of fast charged particles in solids. Мoscow: “Atomizdat”, 1980, 272 р. (in Russian). 6. D. Hasselkamp. Secondary emission of electrons by ion impact on surfaces // Comments At. Mol. Phys. 1988, v. 21, p. 241-255. 7. B.A. Brusilovskiy. Kinetic ion-electron emission. Moscow: “Atomizdat”, 1990, 184 р. (in Russian). 8. V.P. Kovalev. Secondary electrons. Moscow: “En- ergoatomizdat”. 1987, 175 р. (in Russian). 9. V.M. Balebanov et al. Secondary emission radioiso- tope current source // Atomnaya energiya. 1998, v. 84, №5, p. 398-403 (in Russian). ISSN 1562-6016. ВАНТ. 2015. №4(98) 334 10. V.M. Balebanov et al. Secondary emission radioiso- tope current source // Inventors certificate № 1737559 USSR, 1992. 11. V.M. Balebanov et al. Secondary emission radioiso- tope current source: Patent of Russian Federation. № 2050625. 1993. 12. V.P. Zhurenko, S. I. Kononenko, V.I. Karas’, et al. Dissipation of the energy of a fast charged particle in a solid-state plasma // Plasma Physics Reports. 2003, v. 29, № 2, p. 130-136. 13. L.C. Northcliffe. Energy loss and effective charge of heavy ions in aluminum // Physical Review. 1960, v. 120, № 5, p. 1744-1757. 14. J.F. Ziegler, J.P. Biersack, U. Littmark. Software SRIM2003. The Stopping and Ranges of Ions in Sol- ids. New York: “Pergamon Press”, 2003. 15. W. Brandt, R.H. Ritchie. Velocity spectra of convoy electrons emerging with swift ions from solids // Physics Letters. 1977, v. 62A, № 5, p. 374-376. 16. R. Laubert, I.A. Sellin, C.R. Vane, et al. Yield of convoy electrons from solids // Nuclear Instruments and Methods. 1980, v. 170, p. 557-560. 17. H.-P. Hülskötter, J. Burgdörfer, LA. Sellin. Exit charge state dependence of convoy electron produc- tion in heavy-ion-solid collisions // Nuclear Instru- ments and Methods in Physics Research. 1987, v. B24/25, p. 147-152. Article received 28.05.2015 ЭЛЕКТРОННАЯ ЭМИССИЯ ВПЕРЕД И НАЗАД В БИНАРНОЙ ЯЧЕЙКЕ РАДИОИЗОТОПНОГО ИСТОЧНИКА ТОКА С.И. Кононенко, В.П. Журенко, О.В. Калантарьян, А.А. Семеренский Показано, что отношение электронных выходов в прямом и обратном направлениях для Ti-Ti-бинарной ячейки SERICS близко к некоторым другим материалам. Изотропное испускание альфа-частиц с поверхно- сти радиоизотопного источника привело к зависимостям эффективных зарядов и выхода конвойных элек- тронов от угла взаимодействия. Влиянием конвойных электронов на общий выход электронов можно прене- бречь. ЕЛЕКТРОННА ЕМІСІЯ ВПЕРЕД І НАЗАД У БІНАРНІЙ КОМІРЦІ РАДІОІЗОТОПНОГО ДЖЕРЕЛА СТРУМУ С.І. Кононенко, В.П. Журенко, О.В. Калантар’ян, А.А. Семеренський Показано, що відношення електронних виходів у прямому і зворотному напрямках для Ti-Ti-бінарної комірки SERICS близьке до деяких інших матеріалів. Ізотропне випромінювання альфа-частинок з поверхні радіоізотопного джерела призвело до залежності ефективних зарядів і виходу конвойних електронів від кута взаємодії. Впливом конвойних електронів на загальний вихід електронів можна знехтувати. 1. INTRODUCTION 1.2. secondary emission radioisotope current source 3. The experimental results and discussion references