Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length

The dispersion equation, describing the instability development of vortex turbulence excitation in cylindrical plasma in crossed radial electric and axial magnetic fields with taking into account the longitudinal inhomogeneity and finite time of leaving of plasma electrons and ions from the system,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Maslov, V.I., Levchuk, I.P., Onishchenko, I.N., Yegorov, A.M., Yuferov, V.B.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112217
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length / V.I. Maslov, I.P. Levchuk, I.N. Onishchenko, A.M. Yegorov, V.B. Yuferov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 274-276. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112217
record_format dspace
spelling irk-123456789-1122172017-01-19T03:02:17Z Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length Maslov, V.I. Levchuk, I.P. Onishchenko, I.N. Yegorov, A.M. Yuferov, V.B. Нелинейные процессы в плазменных средах The dispersion equation, describing the instability development of vortex turbulence excitation in cylindrical plasma in crossed radial electric and axial magnetic fields with taking into account the longitudinal inhomogeneity and finite time of leaving of plasma electrons and ions from the system, has been derived. It is shown that the finite length of system time and finite time of system leaving of plasma electrons and ions leads to the appearance of the instability threshold and to decrease of growth rate of its development. Отримано дисперсійне рівняння, що описує розвиток нестійкості збудження вихрової турбулентності в циліндричній плазмі в схрещених радіальному електричному та поздовжньому магнітному полях з урахуванням поздовжньої неоднорідності і кінцевого часу залишання системи електронами та іонами плазми. Показано, що кінцева довжина системи і кінцевий час залишання системи електронами і іонами плазми призводять до появи порога нестійкості та зменшення інкремента її розвитку. Получено дисперсионное уравнение, описывающее развитие неустойчивости возбуждения вихревой турбулентности в цилиндрической плазме в скрещенных радиальном электрическом и продольном магнитном полях с учетом продольной неоднородности и конечного времени ухода электронов и ионов плазмы из системы. Показано, что конечная длина системы и конечное время покидания системы электронами и ионами плазмы приводят к появлению порога неустойчивости и уменьшению инкремента ее развития. 2015 Article Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length / V.I. Maslov, I.P. Levchuk, I.N. Onishchenko, A.M. Yegorov, V.B. Yuferov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 274-276. — Бібліогр.: 4 назв. — англ. 1562-6016 PACS: 29.17.+w; 41.75.Lx http://dspace.nbuv.gov.ua/handle/123456789/112217 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Нелинейные процессы в плазменных средах
Нелинейные процессы в плазменных средах
spellingShingle Нелинейные процессы в плазменных средах
Нелинейные процессы в плазменных средах
Maslov, V.I.
Levchuk, I.P.
Onishchenko, I.N.
Yegorov, A.M.
Yuferov, V.B.
Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length
Вопросы атомной науки и техники
description The dispersion equation, describing the instability development of vortex turbulence excitation in cylindrical plasma in crossed radial electric and axial magnetic fields with taking into account the longitudinal inhomogeneity and finite time of leaving of plasma electrons and ions from the system, has been derived. It is shown that the finite length of system time and finite time of system leaving of plasma electrons and ions leads to the appearance of the instability threshold and to decrease of growth rate of its development.
format Article
author Maslov, V.I.
Levchuk, I.P.
Onishchenko, I.N.
Yegorov, A.M.
Yuferov, V.B.
author_facet Maslov, V.I.
Levchuk, I.P.
Onishchenko, I.N.
Yegorov, A.M.
Yuferov, V.B.
author_sort Maslov, V.I.
title Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length
title_short Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length
title_full Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length
title_fullStr Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length
title_full_unstemmed Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length
title_sort suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Нелинейные процессы в плазменных средах
url http://dspace.nbuv.gov.ua/handle/123456789/112217
citation_txt Suppression of vortical turbulence in plasma in crossed electrical and magnetic fields due to finite lifetime of electrons and ions and due to finite system length / V.I. Maslov, I.P. Levchuk, I.N. Onishchenko, A.M. Yegorov, V.B. Yuferov // Вопросы атомной науки и техники. — 2015. — № 4. — С. 274-276. — Бібліогр.: 4 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT maslovvi suppressionofvorticalturbulenceinplasmaincrossedelectricalandmagneticfieldsduetofinitelifetimeofelectronsandionsandduetofinitesystemlength
AT levchukip suppressionofvorticalturbulenceinplasmaincrossedelectricalandmagneticfieldsduetofinitelifetimeofelectronsandionsandduetofinitesystemlength
AT onishchenkoin suppressionofvorticalturbulenceinplasmaincrossedelectricalandmagneticfieldsduetofinitelifetimeofelectronsandionsandduetofinitesystemlength
AT yegorovam suppressionofvorticalturbulenceinplasmaincrossedelectricalandmagneticfieldsduetofinitelifetimeofelectronsandionsandduetofinitesystemlength
AT yuferovvb suppressionofvorticalturbulenceinplasmaincrossedelectricalandmagneticfieldsduetofinitelifetimeofelectronsandionsandduetofinitesystemlength
first_indexed 2025-07-08T03:33:14Z
last_indexed 2025-07-08T03:33:14Z
_version_ 1837048104244740096
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 274 SUPPRESSION OF VORTICAL TURBULENCE IN PLASMA IN CROSSED ELECTRICAL AND MAGNETIC FIELDS DUE TO FINITE LIFETIME OF ELECTRONS AND IONS AND DUE TO FINITE SYSTEM LENGTH V.I. Maslov, I.P. Levchuk, I.N. Onishchenko, A.M. Yegorov, V.B. Yuferov National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine E-mail: vmaslov@kipt.kharkov.ua The dispersion equation, describing the instability development of vortex turbulence excitation in cylindrical plasma in crossed radial electric and axial magnetic fields with taking into account the longitudinal inhomogeneity and finite time of leaving of plasma electrons and ions from the system, has been derived. It is shown that the finite length of system time and finite time of system leaving of plasma electrons and ions leads to the appearance of the instability threshold and to decrease of growth rate of its development. PACS: 29.17.+w; 41.75.Lx INTRODUCTION In plasma [1-3] a turbulence has been excited in crossed radial electrical and longitudinal magnetic fields by gradient of external magnetic field. This turbulence is a distributed vorticity. In this paper the excitation and damping of similar vortical turbulence, excited in cylin- drical plasma in crossed radial electrical 0rE and longi- tudinal magnetic 0H fields [4], is investigated theoreti- cally. From the general nonlinear equation, presented in article [3], for vorticity the dispersion relation, which describes the instability development of vortex turbu- lence excitation, has been derived. It is shown that the finite length of system time and finite time of system leaving of plasma electrons and ions leads to the appear- ance of the instability threshold and to decrease of growth rate of its development. EXCITATION OF VORTICES Let us derive the dispersion relation. We take into account that the ions pass with velocity biV through system of length L during time, approximately equal i bi L V τ = . We also take into account that the electrons pass through system and are renovated in system also during finite time, eτ . Damping of perturbations of den- sities and velocities of electrons and ions at recovery of their unperturbed values we describe, using i i 1 ν ≡ τ , e e 1 ν ≡ τ . We use the electron hydrodynamic equations ( ) ( )e o 2 th He e e e V V V V V t Ve , V n m n θ ∂ + ν − + ∇ = ∂      = ∇φ+ ω − ∇                 , ( ) ( )e oee e e n nn n V 0 t −∂ + +∇ = ∂ τ   . (1) Also we use the ion hydrodynamic equations ( ) ( )i i i bi i i i V qV V V V t m  ∂ + ν − + ∇ = − ∇φ ∂         , ( ) ( )i oii i i i n nn n V 0 t −∂ + +∇ = ∂ τ  (2) and Poisson equation for the electrical potential, φ , ( )e i i4 en q n∆φ = π − . (3) Here V  , en are a velocity and density of electrons; thV is the electron thermal velocity; oVθ is the electron azi- muth drift velocity in crossed fields; iV  , in , iq , im are the velocity, density , charge and mass of ions. As it will be visible from the further, the dimensions of the vortical perturbations are much larger than the electron Debye radius, th de pe Vr ≡ ω , then the last term in (1) can be neglected. Here 1/22 oe pe e 4 n e m  π ω ≡     , oen is the unperturbed electron density. From equations (1) one can derive non-linear equa- tions ( ) ( )He He e t z z e e e d V n n n α−ω α−ω    αν = ∂ −        , (4) t z e z z e ed V V m   + ν = ∂ φ    describing both transversal and longitudinal electron dynamics. Here ( )t td V⊥ ⊥≡ ∂ + ∇  , z z ∂ ∂ ≡ ∂ , t t ∂ ∂ ≡ ∂ , (5) V⊥  , zV are the transversal and longitudinal electron velocities, α is the vorticity, the characteristic of elec- tron vortical motion, ze rotVα ≡   . Taking into account higher linear terms, from (1) one can obtain ( ) He z t e2 e He e e eV e , m m⊥ ⊥ ⊥     ≈ ∇ φ + ∂ + ν ∇ φ      ω ω       (6) From (6) we derive ISSN 1562-6016. ВАНТ. 2015. №4(98) 275 or or He r e He e He e He 2eE eE 1 e rm m m ⊥   α ≡ µω ≈ − − ∂ + ∆ ϕ+ ω ω ω  ( ) ( ) He r r t e z 2 e He e e 1 e 1e , m m ⊥ ⊥     + ∂ ϕ ∂ + ∂ + ν ∇ ∇ ϕ     ω ω         , orE .∇φ ≡ ∇ϕ−    (7) Here orE is the radial focusing electric field, ϕ is the electric potential of the vortical perturbation; 2 peor He e He He oe 2eE n rm n ω  ∆ − = ≡ ηω  ω ω    , i oe oi qn n n e ∆ ≡ − . From (7) 2 pe e He oe n n ω  δ α ≈   ω    approximately follows. Thus the vortical motion begins, as soon as the electron density perturbation, enδ , appears. We use that, as it will be shown below, the character- istic frequencies of perturbations approximately equal to ion plasma frequency, piω . As beam ions have large mass and propagate through system with velocity biV , we describe their dynamics in linear approximation. We derive ion density perturba- tion from eq.s (2) ( ) i i io 2 i z ib i qn n . m k V i   ∆φ δ = −   ω− + ν  (8) Here k , ω are wave number and frequency of perturba- tion, biV is the unperturbed longitudinal velocity of the ions. Substituting (8) in Poisson equation (3), one can obtain en 4 e β∆φ = δ π , ( ) 2 pi 2 z ib i 1 k V i ω β = − ω− + ν , e oe en n n= + δ . (9) Let us consider instability development in linear ap- proximation. Then we search the dependence of the per- turbation on z , θ in the form ( )e zn exp ik z i θδ ∝ + θ . Then from (4) we derive ( ) 2 He e He z t e e e oe o e e ikd n n m n iθ θ    ω ν ω φ = α −    ω− ω + ν     , o o V r θ θω ≡ . (10) From (5), (6), (9), (10) we obtain, using the radial gradient of the short coil magnetic field, the following linear dispersion relation, describing the instability de- velopment ( ) ( ) ( ) ( ) ( ) 2 2 pi pe r He 2 2 o ez bi i 2 2 pe z 2 2 o e r 1 1 i kk V i k 0. ki θ θ θ θ θ ω ω ∂ ω − − − ω− ω + τω− + τ ω − = ω− ω + τ    (11) From (11) for quick oph VV θ≈ vortical perturba- tions we obtain 0kz = , ( ) δω+ω=ω o , ( ) ,oδω ω<< ( ) opi o θθω=ω=ω  ,       ∆         ω ω =ωθ oe 2 o n n 2 He pe , e nqnn oii oe −≡∆ , qiγ=δω ,       τ + τ −      ω ∂            ω       ω ≈γ θ ieHe r pipe q 11 2 11 r2k  . (12) From (11) for slow oph VV θ<< vortical perturba- tions we obtain       τ + τ −γ=γ ie 0ss 21 3 1 , [ ] 3/1 o 2 pi3/40s 2 3 θθωω        ≈γ  3 Re,1 V 1k 0s s He r 2 pe o 2 γ =ω      ω ∂ω      −= θ . (13) One can see that eτ and iτ decrease growth rates and lead to appearance of thresholds of instability de- velopment. Let us consider now, how finite zk 0≠ influences on growth rate of the instability development. From (11) we obtain the growth rate of the excitation of slow homoge- neous turbulence with taking into account zk . ( ) ( ) 1/32/3 s pi o z bi4/3 1/3 2 z 2 z o z bi r He 3 k V 2 k1 . 12k k V r θ θ θ θ θ   γ ≈ ω ω − ×           × −      + ω − ∂    ω         (14) From (14) one can see that both the taking into ac- count the longitudinal dynamics of ions and electrons results in reduction of the growth rate. The perturbations with least zk L π ≈    have maximum growth rate, that is with the largest longitudinal dimensions, close to system length. CONCLUSIONS The dispersion equation, describing the instability development of vortex turbulence excitation in cylindri- cal plasma in crossed radial electric and axial magnetic fields with taking into account the longitudinal inhomo- geneity and finite time of leaving of plasma electrons and ions from the system, has been derived. It is shown that the finite length of system time and finite time of system leaving of plasma electrons and ions leads to the appearance of the instability threshold and to decrease of growth rate of its development. REFERENCES 1. A. Goncharov, A. Dobrovolsky, A. Kotsarenko, A. Morozov, I. Protsenko // Physica Plasmy. 1994, v. 20, p. 499. 2. A. Goncharov, I. Litovko. Electron Vortexes in High-Current Plasma Lens // IEEE Trans. Plasma Sci. 1999, v. 27, p. 1073. ISSN 1562-6016. ВАНТ. 2015. №4(98) 276 3. V.I. Maslov, A.A. Goncharov, I.N. Onishchenko. Self-Organization of Non-Linear Vortexes in Plas- ma Lens for Ion-Beam-Focusing in Crossed Radial Electrical and Longitudinal Magnetic Fields // Proc. of the Intern. Workshop "Collective phenomena in macroscopic systems". World Scientific, Singapore, 2007, p. 20-25. 4. V.B. Yuferov, A.S. Svichkar, S.V. Shariy, T.I. Tkachova, V.О. Ilichova, V.V. Katrechko, A.I. Shapoval, S.N. Khizhnyak. About Redistribu- tion of Ion Streams in Imitation Experiments on Plasma Separation // Problems of Atomic Science and Technology. Series “Physics of Radiation Damage and Radiation Material”. 2013, №5 (87), p. 100-103. Article received 25.05.2015 ПОДАВЛЕНИЕ ВИХРЕВОЙ ТУРБУЛЕНТНОСТИ В ПЛАЗМЕ В СКРЕЩЕННЫХ ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ ЗА СЧЕТ КОНЕЧНОГО ВРЕМЕНИ УХОДА ЭЛЕКТРОНОВ И ИОНОВ И КОНЕЧНОЙ ДЛИНЫ СИСТЕМЫ В.И. Маслов, И.П. Левчук, И.Н. Онищенко, А.М. Егоров, В.Б. Юферов Получено дисперсионное уравнение, описывающее развитие неустойчивости возбуждения вихревой турбулентности в цилиндрической плазме в скрещенных радиальном электрическом и продольном маг- нитном полях с учетом продольной неоднородности и конечного времени ухода электронов и ионов плазмы из системы. Показано, что конечная длина системы и конечное время покидания системы элек- тронами и ионами плазмы приводят к появлению порога неустойчивости и уменьшению инкремента ее развития. ПОДАВЛЕННЯ ВИХРОВОЇ ТУРБУЛЕНТНОСТІ В ПЛАЗМІ В СХРЕЩЕНИХ ЕЛЕКТРИЧНОМУ І МАГНІТНОМУ ПОЛЯХ ЗАВДЯКИ КІНЦЕВОМУ ЧАСУ ВИХОДУ ЕЛЕКТРОНІВ ТА ІОНІВ І КІНЦЕВІЙ ДОВЖИНІ СИСТЕМИ В.І. Маслов, І.П. Левчук, І.М. Онищенко, О.М. Єгоров, В.Б. Юферов Отримано дисперсійне рівняння, що описує розвиток нестійкості збудження вихрової турбулентності в циліндричній плазмі в схрещених радіальному електричному та поздовжньому магнітному полях з ура- хуванням поздовжньої неоднорідності і кінцевого часу залишання системи електронами та іонами плаз- ми. Показано, що кінцева довжина системи і кінцевий час залишання системи електронами і іонами пла- зми призводять до появи порога нестійкості та зменшення інкремента її розвитку. INTRODUCTION EXCITATION OF VORTICES