On the nature of sources of pulsating radiation in weakly inverted media

The conditions for the occurrence of a periodic sequence of pulses of coherent radiation in a weakly inverted two-level medium are investigated. It is studied the dependence of the pulse period and amplitude on the inversion pumping levelandradiation losses. It is shown that an increase in the size...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Kirichok, A.V., Kuklin, V.M., Zagorodny, A.G.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112245
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the nature of sources of pulsating radiation in weakly inverted media / A.V. Kirichok, V.M. Kuklin, A.G. Zagorodny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 9-11. — Бібліогр.: 7 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112245
record_format dspace
spelling irk-123456789-1122452017-01-19T03:03:02Z On the nature of sources of pulsating radiation in weakly inverted media Kirichok, A.V. Kuklin, V.M. Zagorodny, A.G. Теоретические проблемы физики плазмы The conditions for the occurrence of a periodic sequence of pulses of coherent radiation in a weakly inverted two-level medium are investigated. It is studied the dependence of the pulse period and amplitude on the inversion pumping levelandradiation losses. It is shown that an increase in the size of the radiating system leads to the growth of the total radiation intensity and the pulse repetition period. This dependence is consistent qualitatively with the observedcharacteristics of the cosmic sources of pulsed radiation. Розглянуто умови виникнення періодичної послідовності імпульсів когерентного випромінювання в слабоінвертованому дворівневому середовищі. Досліджено залежність періоду і амплітуди виникаючих імпульсів від рівня накачки інверсії та радіаційних витрат. Показано, що зі збільшенням розмірів випромінюючої системи зростає інтегральна інтенсивність випромінювання і збільшується період генерації імпульсів. Така залежність якісно збігається з характеристиками космічних джерел пульсуючого випромінювання. Рассмотрены условия возникновения периодической последовательности импульсов когерентного излучения в слабоинвертированной двухуровневой среде. Изучена зависимость периода и амплитуды возникающих импульсов от уровня накачки инверсии и радиационных потерь. Показано, что с увеличением размеров излучающей системы растет интегральная интенсивность излучения и увеличивается период генерации импульсов. Такая зависимость качественно совпадает с наблюдаемыми характеристиками космических источников пульсирующего излучения. 2015 Article On the nature of sources of pulsating radiation in weakly inverted media / A.V. Kirichok, V.M. Kuklin, A.G. Zagorodny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 9-11. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 98.65.Fz; 98.80.Bp http://dspace.nbuv.gov.ua/handle/123456789/112245 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Теоретические проблемы физики плазмы
Теоретические проблемы физики плазмы
spellingShingle Теоретические проблемы физики плазмы
Теоретические проблемы физики плазмы
Kirichok, A.V.
Kuklin, V.M.
Zagorodny, A.G.
On the nature of sources of pulsating radiation in weakly inverted media
Вопросы атомной науки и техники
description The conditions for the occurrence of a periodic sequence of pulses of coherent radiation in a weakly inverted two-level medium are investigated. It is studied the dependence of the pulse period and amplitude on the inversion pumping levelandradiation losses. It is shown that an increase in the size of the radiating system leads to the growth of the total radiation intensity and the pulse repetition period. This dependence is consistent qualitatively with the observedcharacteristics of the cosmic sources of pulsed radiation.
format Article
author Kirichok, A.V.
Kuklin, V.M.
Zagorodny, A.G.
author_facet Kirichok, A.V.
Kuklin, V.M.
Zagorodny, A.G.
author_sort Kirichok, A.V.
title On the nature of sources of pulsating radiation in weakly inverted media
title_short On the nature of sources of pulsating radiation in weakly inverted media
title_full On the nature of sources of pulsating radiation in weakly inverted media
title_fullStr On the nature of sources of pulsating radiation in weakly inverted media
title_full_unstemmed On the nature of sources of pulsating radiation in weakly inverted media
title_sort on the nature of sources of pulsating radiation in weakly inverted media
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Теоретические проблемы физики плазмы
url http://dspace.nbuv.gov.ua/handle/123456789/112245
citation_txt On the nature of sources of pulsating radiation in weakly inverted media / A.V. Kirichok, V.M. Kuklin, A.G. Zagorodny // Вопросы атомной науки и техники. — 2015. — № 4. — С. 9-11. — Бібліогр.: 7 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kirichokav onthenatureofsourcesofpulsatingradiationinweaklyinvertedmedia
AT kuklinvm onthenatureofsourcesofpulsatingradiationinweaklyinvertedmedia
AT zagorodnyag onthenatureofsourcesofpulsatingradiationinweaklyinvertedmedia
first_indexed 2025-07-08T03:35:30Z
last_indexed 2025-07-08T03:35:30Z
_version_ 1837048247305109504
fulltext ISSN 1562-6016. ВАНТ. 2015. №4(98) 9 ON THE NATURE OF SOURCES OF PULSATING RADIATION IN WEAKLY INVERTED MEDIA A.V. Kirichok*, V.M. Kuklin*, A.G. Zagorodny** *V.N. Karazin Kharkiv National University, Institute for High Technologies, Kharkov, Ukraine; **Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine E-mail: kuklinvm1@google.com The conditions for the occurrence of a periodic sequence of pulses of coherent radiation in a weakly inverted two-level medium are investigated. It is studied the dependence of the pulse period and amplitude on the inversion pumping levelandradiation losses. It is shown that an increase in the size of the radiating system leads to the growth of the total radiation intensity and the pulse repetition period. This dependence is consistent qualitatively with the observedcharacteristics of the cosmic sources of pulsed radiation. PACS: 98.65.Fz; 98.80.Bp INTRODUCTION As known, a two-level system demonstrates the pos- sibility of generation of both spontaneous and induced (stimulated) emission when the initial population inver- sion is sufficiently large [1]. Usually, the term sponta- neous emission denotes the emission of oscillator (or other emitter) which not forced by external field of the same frequency. By induced or simulated emission is usually meant the emission produced because of an ex- ternal field action on the emitting source at the radiation frequency [2 - 4]. In the earlier paper [5], the authors have discovered a threshold of induced radiation at a certain critical val- ue of population inversion. The specific feature of this threshold is that it follows from the condition that the initial value of the population inversion is equal to the square root of the total number of states. Above this threshold, the number of photons begins to grow expo- nentially with time. It was shown that the threshold cor- responds to the case when the intensity of the spontane- ous and stimulated coherent radiation become equal. In further work [6], it was demonstrated that the pulse of stimulated radiation with a characteristic profile is formed when the initial population inversion slightly exceeds the threshold. The leading edge of the pulse is very sharp due to the exponential growth of the field, and the trailing edge is rather broadened. Further threshold overriding with growing of the population inversion leads to the growth of the ratio of the pulse trailing-edge time to the leading-edge time. If there is exist a recovery mechanism for the popu- lation inversion, the pulsating mode of stimulated emis- sion generation becomes possible. The integral radiation intensity at this may be increased several times. This approach can be used for analysis of the cosmic radia- tion that might help explain a great variety of pulsating radiation sources in space. In present work, we investi- gate the characteristics of the periodic pulse generation depending on the initial inversion, the pumping level and the absorption rate. 1. THE MODELS FOR DESCRIPTION OF A TWO-LEVEL SYSTEM A two-level system with transition frequency 2 1 12ε ε ω− =  can be described by following set of equations: 2 21 21 2 12 1/ ( )k kn t u w N n w N n∂ ∂ = − + ⋅ ⋅ + ⋅ ⋅ , (1) 1 12 1 21 21 2/ ( )k kn t w N n u w N n∂ ∂ = − ⋅ ⋅ + + ⋅ ⋅ , where the sum of level populations 1 2n n N+ = remains constant, 21 2u n is the rate of change in the number den- sity of atoms due to spontaneous emission. The rates of change in level population due to stimulated emission and absorption are 21 2kw N n and 12 1kw N n correspond- ingly. The number of quanta kN on the transition fre- quency kω is governed by the equation 21 21 2 12 1( ) ( )k k k N u w N n w N n t ∂ = + ⋅ ⋅ − ⋅ ⋅ ∂ . (2) The energy losses in active media are caused mainly by radiation outcome from a resonator. These radiative losses can be calculated by imposing the correct bound- ary conditions on the field. Thus, they can be estimated in rather common form with the following parameter: 2 2 1 [ ( , )] 4 1 (| | | | ) , 8 S V kE Hds k E H dv ω ωε ωδ π ω π ∂ ∂ = × × ∂∂ × + ∫∫ ∫∫∫         (3) i. e. as the ratio of the energy flow outside the system should be divided by the total field energy within the system. It is important, that the characteristic size of the system L should be much less than the characteristic time of field variation 2 2 1~| | | |( / )E E tτ −∂ ∂   multiplied by the group velocity of oscillations | / |kω∂ ∂  . In this case, the radiative losses can be replaces by distributed losses within the volume. The threshold of instability leading to exponential growth of the stimulated emis- sion in this case is defined by condition 0 1THµ µ> (see, for example [6], where 1 21/TH wµ δ= . (4) Equations (1)-(2) can be rewritten with considera- tion of the energy losses δ and steady pumping rate I , caused for example by permanent heating of the system: 2 2/ kn n N Iτ µ∂ ∂ = − − ⋅ + , (5) 2/ 2 2 kn N Iµ τ µ∂ ∂ = − − ⋅ + , (6) 2/ ,k k kN n N Nτ µ δ∂ ∂ = + ⋅ − ⋅ (7) where 21w tτ = ⋅ , 21 21 12u w w= = . mailto:kuklinvm1@google.com ISSN 1562-6016. ВАНТ. 2015. №4(98) 10 It can be assumed, at least qualitatively, that the terms in r.h.s. of Eq. (1)-(2)proportional to Nk corre- spond to the coherent processes, as well as the photons, which number Nk is incorporated in these terms, will be assumed coherent. With these general principles in mind, we expand the total number of photons into two components ( ) ( )incoh coh k k kN N N= + , where ( )incoh kN is the number of quanta, corresponding to the spontaneous emission, and ( )coh kN is the number of quanta, corre- sponding to the stimulated emission. Then Eqs. (1)-(2) can be rewritten as follows [6]: ( ) 2 2/ ,coh kn n N Iτ µ∂ ∂ = − − ⋅ + (8) ( ) 2/ 2 2 2 ,coh kn N Iµ τ µ∂ ∂ = − − ⋅ + (9) ( ) ( ) 2/ ,incoh incoh k kN n Nτ δ∂ ∂ = − ⋅ (10) ( ) ( ) ( )/ ,coh coh coh k k kN N Nτ µ δ∂ ∂ = ⋅ − ⋅ (11) where 1 2N n n= + is a total number of emitters and 2 ( ) / 2n N µ= + . It was shown in the paper [5] that the scenario of the process changes, if the initial value of the inversion µ0 is more or less than the threshold value: 1/2 2 2TH Nµ = . (12) The suppression of the exponential growth of the photon number, when 1/2 0 2 2TH Nµ µ< = demonstrates not only the changes in scenario of the process, but suggests that the stimulated emission is suppressed by preferential growth of the spontaneous emission. Let discuss the reasons why it makes sense to use a qualitative system of equations (8)-(11) near the thresh- old (12). Within the framework of the classical description, the total intensity of the spontaneous emission of an ensemble of particles-oscillators, whose phases are dis- tributed randomly and uniformly, can be found as a sum of individual intensities produced by each particle- oscillator being in an excited state. As for the stimulated emission, the radiation field strength is so great that synchronizes the phase both of the emitting and absorb- ing oscillators. Thus the sign of the population inversion 2 1n nµ = − determines is the stimulated field will in- crease or decrease. Note, that the characteristic time of this process is inversely proportional to µ. However, if the coherent field is absent, the oscillators in the excited state will emit only spontaneously, because their phases are not synchronized. The absorption of the spontaneous field by the unexcited particles-oscillators can be ig- nored since they are placed in a random rapidly alternat- ing field, which averaged effect is negligible. In the quantum case, the traditional model (5)-(7) in- cludes the term kNµ ⋅ which is responsible for the stimulated processes of excitation and absorption. But it has no physical meaning below the threshold (12), since in this case there is no an intense stimulated field, which is able to synchronize the emission of many particles. In this case Eq. (9) takes the form / 2 .N Iµ τ µ∂ ∂ = − − + (13) In the steady state 2st THI Nµ µ= − < the intensity of the radiation source will be determined only by the spontaneous emission ( ) / 2incoh kN Nδ ⋅  . The term N in Eq. (13) determines the effect of the spontaneous emis- sion on the inversion. But when the threshold (12) is exceeded µ > 2THµ , the term kNµ ⋅ in r.h.s of Eqs. (5)- (7) and (8)-(11) plays an important role, providing an effect of the stimulated processes. Near the threshold (12), it is reasonable to use name- ly a qualitative system of equations (8)-(11).Then the steady state of the spontaneous emission is determined by the value ( ) 2incoh kN Nδ ⋅  , but the energy flow of the stimulated emission is equal to ( )incoh kNδ ⋅ . In order to describe the behavior of a two-level system in presence of the radiation losses and continuous external pumping and neglecting the small values of the order of 1 0µ − , Eqs. (9)-(11) can be rewritten in a convenient form: 0 0/ 2 2cT N I∂Μ ∂ = − − Μ ⋅Ν + , (14) 0/ / 2inc incT N θ∂Ν ∂ = − ⋅Ν , (15) /c c cT θ∂Ν ∂ = Μ ⋅Ν − ⋅Ν , (16) where ( ) 0/incoh inc kN µΝ = , ( ) 0/coh c kN µΝ = , 0/µ µΜ = , 0/µ µΜ = , 21 0 0T w tµ µ τ= ⋅ ⋅ = ⋅ , 2 0 0/I I µ= , and the only convenient for analysis free element is 2 0 0/N N µ= . Let specify the initial values as follows: ( 0) 1TΜ = = , 4 0 0( 0) / 3 10 /inc incT µ µΝ = = Ν = ⋅ ; 4 0 0( 0) / 3 10 /c cT µ µΝ = = Ν = ⋅ ; 4 1 0 0( 0) / 3 10 /kT µ µΝ = = Ν = ⋅ . The energy losses are taken into account by the pa- rameter 0/θ δ µ= , where δ is defined by Eq. (3). In the case, when 2THµ µ> and (0)M θ> , the re- laxation oscillations appear in the system resulting in a stationary state 0 0( ) / 2cst I N θΝ = − , stM θ= . The total radiation flow outside the system in assumed terms is equal to 0 0 0 0( ) / 2 / 2 / 2cst incst I N N Iθ θ⋅Ν + ⋅Ν = − + = . Note, that in presence of an external mechanism, which provides an exceedance of the inversion over its stationary value stM θ= , the Eq. (14) can be supple- mented by the driving term 0 0/ 2 2cT N I∂Μ ∂ = ΓΜ − − Μ ⋅Ν + . (17) The Eqs. (16), (17) are similar to so-called Statz- DeMars equations [7], which describe the relaxation oscillations in a two-level media in the presence of the pumpandenergy losses. The only difference in equation (17) is the first term in r.h.s. that provides the mainte- nance of the population inversion. Namely this term changes the characteristics of pulse generation from relaxation to periodic. The Eqs. (15)-(17) have a solution in a form of peri- odical sequence of coherent pulses (Figure) against a background of the mean radiation flow 0( ) / 2cst incst Iθ θ θ⋅Ν + ⋅Ν = Γ + . (18) Pulse repetition rate is θ ⋅Γ . The integral radiation intensity on the pulse peak can exceed the background value in several times. ISSN 1562-6016. ВАНТ. 2015. №4(98) 11 The repetition pulse train, resulting as a solution of Eqs. (16), (17) for 0.4Γ = and 0.3θ = It should be noted that the radiation losses of the field energy θ in open systems is defined as the ratio of the energy flux from the object to the energy in its vol- ume, and therefore this parameter decreases with in- crease of the radius of the system R as /c R , where c is the speed of light. This means that an increase in size R reduces the losses θ, which in turn, as shown in [6], provides a higher intensity of the stimulated emis- sion. That is, at the same parameters of the system, the larger objects should generate more intense pulses but with less repetition rate. REFERENCES 1. A. Einstein. Quantentheorie der Strahlung // Mittei- lungend. Phys. Ges. Zurich. 1916, № 18; Phys. Zs. 1917, № 18, р. 121. 2. C.Η. Τоwnes. Production of Coherent Radiation by Atoms and Molecules // IEEE Spectrum. 1965, iss. 2 (2), p. 30. 3. G. Birnbaum. Optical masers. New York and Lon- don: Academic Press, 1964. 4. N. Blotmbergen. Nonlinear Optics. A Lecture Note / W.A. Benjamin, Inc. New York-Amsterdam, 1965. 5. V.M. Kuklin, A.G. Zagorodny. To realization condi- tion of maser radiation // XIV Khariton's Topical Scientific Readings "High-Power Pulsed Electro- physics" March 12-16, 2012, Sarov, Russia. 6. A.V. Kirichok, V.M. Kuklin, A.V. Mischin, A.V. Pryjmak, A.G. Zagorodny. On the formation of pulses of coherent radiationin weakly inverted media // PACS. Series “Plasma Electronics and New Methods of Acceleration”. 2013, № 4 (86), iss. 8, p. 267-271. 7. C.L. Statz, G. DeMars // Quantum Electronics. N.Y.: Columbia Univ. Press, 1960, p. 530. Article received 12.05.2015 О ПРИРОДЕ ИСТОЧНИКОВ ПУЛЬСИРУЮЩЕГО ИЗЛУЧЕНИЯ В СЛАБОИНВЕРСНЫХ СРЕДАХ А.В. Киричок, В.М. Куклин, А.Г. Загородний Рассмотрены условия возникновения периодической последовательности импульсов когерентного излу- чения в слабоинвертированной двухуровневой среде. Изучена зависимость периода и амплитуды возника- ющих импульсов от уровня накачки инверсии и радиационных потерь. Показано, что с увеличением разме- ров излучающей системы растет интегральная интенсивность излучения и увеличивается период генерации импульсов. Такая зависимость качественно совпадает с наблюдаемыми характеристиками космических ис- точников пульсирующего излучения. ПРО ПРИРОДУ ДЖЕРЕЛ ПУЛЬСУЮЧОГО ВИПРОМІНЮВАННЯ В СЛАБОІНВЕРСНИХ СЕРЕДОВИЩАХ О.В. Киричок, В.М. Куклін, О.Г. Загородній Розглянуто умови виникнення періодичної послідовності імпульсів когерентного випромінювання в сла- боінвертованому дворівневому середовищі. Досліджено залежність періоду і амплітуди виникаючих імпульсів від рівня накачки інверсії та радіаційних витрат. Показано, що зі збільшенням розмірів випромі- нюючої системи зростає інтегральна інтенсивність випромінювання і збільшується період генерації імпуль- сів. Така залежність якісно збігається з характеристиками космічних джерел пульсуючого випромінювання. ON THE NATURE OF SOURCES OF PULSATING RADIATION IN WEAKLY INVERTED MEDIA О ПРИРОДЕ ИСТОЧНИКОВ ПУЛЬСИРУЮЩЕГО ИЗЛУЧЕНИЯ В СЛАБОИНВЕРСНЫХ СРЕДАХ Про ПРИРОДУ джерел ПУЛЬСУЮЧОГО випромінювання в СЛАБОІНВЕРСНИХ СЕРЕДОВИЩАХ