Electromagnetic wave scattering on a dielectric cylinder in Born approximation

The scattering of the plane electromagnetic wave on a spatially extended, fiber-lake target is considered. The fomula for the scattering cross section is obtained using the approximation analogous to Born one in quantum mechanics.

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Syshchenko, V.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112356
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Electromagnetic wave scattering on a dielectric cylinder in born approximation / V.V. Syshchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 65-67. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112356
record_format dspace
spelling irk-123456789-1123562017-01-21T03:02:50Z Electromagnetic wave scattering on a dielectric cylinder in Born approximation Syshchenko, V.V. Новые и нестандартные ускорительные технологии The scattering of the plane electromagnetic wave on a spatially extended, fiber-lake target is considered. The fomula for the scattering cross section is obtained using the approximation analogous to Born one in quantum mechanics. Розглянуто розсіяння плоскої електромагнітної хвилі на просторово протяжної ниткуватої мішені. Отримано вираз для перерізу розсіяння з використанням наближення, що аналогічно борнівському наближенню у квантовій механіці. Рассмотрено рассеяние плоской электромагнитной волны на пространственно протяженной нитевидной мишени. Получено выражение для сечения рассеяния с использованием приближения, аналогичного борновскому приближению в квантовой механике. 2015 Article Electromagnetic wave scattering on a dielectric cylinder in born approximation / V.V. Syshchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 65-67. — Бібліогр.: 5 назв. — англ. 1562-6016 PACS: 42.25.Bs, 42.25.Fx, 42.81.-i http://dspace.nbuv.gov.ua/handle/123456789/112356 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Новые и нестандартные ускорительные технологии
Новые и нестандартные ускорительные технологии
spellingShingle Новые и нестандартные ускорительные технологии
Новые и нестандартные ускорительные технологии
Syshchenko, V.V.
Electromagnetic wave scattering on a dielectric cylinder in Born approximation
Вопросы атомной науки и техники
description The scattering of the plane electromagnetic wave on a spatially extended, fiber-lake target is considered. The fomula for the scattering cross section is obtained using the approximation analogous to Born one in quantum mechanics.
format Article
author Syshchenko, V.V.
author_facet Syshchenko, V.V.
author_sort Syshchenko, V.V.
title Electromagnetic wave scattering on a dielectric cylinder in Born approximation
title_short Electromagnetic wave scattering on a dielectric cylinder in Born approximation
title_full Electromagnetic wave scattering on a dielectric cylinder in Born approximation
title_fullStr Electromagnetic wave scattering on a dielectric cylinder in Born approximation
title_full_unstemmed Electromagnetic wave scattering on a dielectric cylinder in Born approximation
title_sort electromagnetic wave scattering on a dielectric cylinder in born approximation
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Новые и нестандартные ускорительные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/112356
citation_txt Electromagnetic wave scattering on a dielectric cylinder in born approximation / V.V. Syshchenko // Вопросы атомной науки и техники. — 2015. — № 6. — С. 65-67. — Бібліогр.: 5 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT syshchenkovv electromagneticwavescatteringonadielectriccylinderinbornapproximation
first_indexed 2025-07-08T03:47:52Z
last_indexed 2025-07-08T03:47:52Z
_version_ 1837049025102086144
fulltext ISSN 1562-6016. ВАНТ. 2015. №6(100) 65 ELECTROMAGNETIC WAVE SCATTERING ON A DIELECTRIC CYLINDER IN BORN APPROXIMATION V.V. Syshchenko Belgorod National Research University, Belgorod, Russian Federation E-mail: syshch@yandex.ru The scattering of the plane electromagnetic wave on a spatially extended, fiber-lake target is considered. The fomula for the scattering cross section is obtained using the approximation analogous to Born one in quantum me- chanics. PACS: 42.25.Bs, 42.25.Fx, 42.81.-i INTRODUCTION The problem of multiple scattering of the electro- magnetic wave under oblique incidence on the system of parallel dielectric fibers was considered in [1]. The scattering on the single fiber had been described there in the limit of infinitely thin fiber. The wave scattering cross section in that case possesses the axial symmetry for small angle of incidence ψ<<1. The wave scattering cross section by the cylindric fiber of finite radius is calculated in the present article using Born approximation. The substantial axial anisot- ropy of the scattered radiation (especially for large ψ angles) is demonstrated. 1. BORN APPROXIMATION IN RADIATION SCATTERING THEORY The equations for the electric field of a monochro- matic wave E(r)e-iωt in non-uniform medium created in the target under passage of the particle satisfies the equations [2] (Δ + ε ω2/c2)E = grad div E, (1) div (εE) = 0. (2) (where Δ is the Laplasian operator and ε(r) is the dielec- tric permittivity of the medium for the given frequency ω) could be easily derived from Maxwell equations (see, e.g. [2, §68]). The solution of Eqs. (1), (2) for the case when our nonuniform medium has the structure of a spatially localized target in vacuum are convenient to find as the superposition E(r) = E(0)(r) + E(1)(r), (3) where E(0) is the electric field of the incident wave that satisfies the equation (Δ + ω2/c2)E(0)= 0. (4) Hence the field E(1) in (3) has to be treated as the field of the scattered radiation. Eq. (1) can be written using (2), (3) and (4) in the form 2 (1) 2 2 2 (1 ) grad div((1- ) ) . c c ω ω ε ε   ∆ + =    − + E E E (5) The last equation could be presented in the integral form,    +′′−′−= ∫ )())(1()()( 2 2 )1( rErrrrE εω c G [ ]} rd ′′′−+ 3)())(1(div grad rErε , (6) where G(r-r′) is the Green function for Eq. (5), ( ') 3 2 2 3( ') ( / ) 0 (2 ) ie dG c i κ ω κ π − − = − +∫ κ r r r r . The asymptotic of that function on large distances r from the domain where ε(r) is different from unit, '1( ') 4 f f ik r i r eG e rπ − →∞ − → − k rr r ' 4 1 rki ri e r e  −−→ ω π . where k f = (ω/c)r/r is the wave vector of the scattered wave, |k f|=|k i |, is needed to find the field of the scat- tered radiation. Substituting the last formula into (6) and integrating the second term by parts we obtain ( ) (1) 2 2 ( ) ( ) 1 ( ) , 4 f scattered r ik r f f e r c ω π →∞= =   = − − ⋅    E r E r I k k I (7) where 3(1 ( )) ( ) fie d rε −= −∫ k rI r E r . (8) We see that the integrand in (8) would be nonzero only in the domain where the dielectric permittivity is not equal to unit. That illustrates the origin of the scat- tered radiation from the motion of the electrons in the medium excited by the incident wave. To select the polarization of the scattered wave one have to project (7) to the chosen polarization vector e f ⊥ k f: IerEe ⋅=⋅ f rik scattered f cr e f 2 2 )( 4 1)( ω π . (9) The integral form (6) of the field equation (5) that leads to (7), (8) is useful for construction of various approximate solutions. The simplest case is |1 − ε| << 1, when the difference (1 − ε) in (8) could be treated as a small perturbation, hence the whole electric field in the target E(r) in (8) could be replaced by the field E(0) of the incident wave. This approximation is equivalent to Born approximation in the quantum theory of scattering (see, e.g., [3]). Substituting into (8) the field rkeE ii ie∝)0( of the incident plane wave (where ki is the incident wave vec- tor, ei is its polarization vector, and the wave amplitude has no matter for computation of the scattering cross section), calculating the average energy flux of the scat- tered wave (7) to the solid angle dΩ and dividing it by ISSN 1562-6016. ВАНТ. 2015. №6(100) 66 the average intensity of the incident wave we obtain the scattering cross section 2 2( ) 2 2(4 ) B f d d c σ ω π = × Ω k I , (10) where ( )( ) 3(1 ( )) i fiB i e d rε −= − =∫ k k rI e r 3(1 ( )) i i e d rε= −∫ qre r , (11) where q = ki-k f. The scattering cross section for the radiation with the polarization e f selected by the detector would be described by the formula 4 2( ) 2 4(4 ) B f d d c σ ω π = ⋅ Ω e I , (12) as it could be easy to see from (9). 2. THE SCATTERING ON THE DIELECTRIC CYLINDER The formulae (10) and (12) describe the radiation scattering by the target of arbitrary structure. Consider now the simplest case of uniform cylinder of the radius a and the length L → ∞ as the target (Figure), when the cylinder’s axis makes the angle ψ with the direction of the wave incidence ki . The integrals in (11) could be easily calculated after rotation of the coordinate axes to coincidence of the new axis z′ with the cylinder’s axis. Then the integration over z′ gives δ-function, and the in- tegration in the transverse plane gives Bessel function, so ( ) 2 1 || ( )(1 ) (2 ) ( )B cyl i J q aa q q a ε π δ ⊥ ⊥ = −I e , (13) where ||q and ⊥q are the components of q parallel and perpendicular to the cylinder’s axis. The presence of the δ-function expresses the equality of the components of ki and k f that parallel to the cylinder’s axis, that means the azimuthal character of the scattering: since the abso- lute values of the wave vectors ki and k f are also equal, the scattered radiation will be directed along the surface of the cone with the axis along the cylinder and the half- opening angle equal to the incidence angle ψ. The azimuthal character of the scattering permits clear interpretation as a manifestation of Cherenkov mechanism. Indeed, the incident wave produces a per- turbation in the medium that moves along the fiber with the phase velocity ν = ω/(ki)|| = c/cosψ > c. This super- luminal motion generates the radiation analogous to Cherenkov one. The half-opening angle of the Cheren- kov cone cosθ = c/v is just equal to ψ. Substitution of (13) into (10) gives (using the rule of δ-function squaring, [δ(q ||)]2 = δ(q ||)·L/2π) the cross sec- tion 2 2 2 2 4 2 1 || 2 ( ) (1 ) ( ) . f i d d c J q aLa q q a σ π ω ε δ ⊥ ⊥ = × × Ω   × −     k e (14) The cross section corresponding to the polarization e f is described by the formula 4 2 4 2 4 2 1 || 2 ( ) (1 ) ( ) . f i d d c J q aLa q q a σ π ω ε δ ⊥ ⊥ = ⋅ × Ω   × −     e e (15) In the limiting case of infinitely thin fiber, a → 0, Eq. (15) agrees with the corresponding result of [1] as well as the results of [4]. Direction diagrams for the radiation scattered by uniform cylinder; the incident radiation is directed along the z axis. Dashed curve represents the relative intensity of the scattered radiation according to (16), the solid curve gives the same in the limit of infinitely thin fiber when ( ) 211 →⊥′⊥′ aqaqJ , the cone represents the azimuthally symmetric scattering. The angle of incidence is ψ = 0.2 radian (upper row) and ψ = 0.4 radian (lower row); other parameters are aω/c = 1 (left column) and aω/c = 3 (right column) ISSN 1562-6016. ВАНТ. 2015. №6(100) 67 The scattering cross section for unpolarized radia- tion results from (14) after averaging over polarizations of the incident wave: 2 2 2 2 2 2 4 2 1 || ( ) 4 ( ) (1 ) ( ) . f z d k d c c J q aLa q q a σ π ω ω ε δ ⊥ ⊥   = + × Ω     × −     (16) The directional diagram of the scattered radiation is presented on Figure the relations | |2 sin sin , 2 q c ω φψ⊥ = | |( ) cos 2asin sin sin , 2f zk c ω φψ  =      (where the angle φ is measured from the direction ( )⊥ik ) had been used for plotting. The only source of azimuthal asymmetry in (16) in the limit a → 0 is the factor 2 2 2( ) /f zk cω+ that tends to 2ω2/c2 under ψ → 0. The account of the finite cylin- der radius leads to the increase of the azimuthal asym- metry via the factor ( ) aqaqJ ⊥⊥1 . The analogous be- havior had been demonstrated in [5] for the transition radiation by fast charged particles on the fiber-like tar- gets. CONCLUSIONS The scattering of the electromagnetic wave under its oblique incidence on the linear extended target is con- sidered. The formulae for the scattering cross section are obtained using Born approximation. The azimuthal character of the scattering is demonstrated as well as the axial asymmetry around the target axis for the finite angle of incidence and the finite target thickness. The results could be used for improving the kinetic theory of propagation of the radiation through the system of paral- lel fibers [1]. ACKNOWLEDGEMENTS This work was supported by the Russian Science Foundation Grant (project N 15-12-10019). REFERENCES 1. N.F. Shul’ga, V.V. Syshchenko // Problems of Atomic Science and Technology. Series “Nuclear Physics Investigations”. 2014, № 5, p. 115. 2. L.D. Landau and E.M. Lifshitz. Electrodynamics of Continuous Media. Pergamon Press, 1960. 3. L.D. Landau and E.M. Lifshitz. Quantum Mechan- ics: Non-Relativistic Theory. Pergamon Press, 1977. 4. M. Kerker, D.D. Cooke, J.M. Carlin // Journal of the Optical Society of America. 1970, v. 60, p. 1236. 5. N.F. Shul’ga, V.V. Syshchenko // Phys. Lett. 2003, A 313, p. 307. Article received 16.06.2015 РАССЕЯНИЕ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ НА ДИЭЛЕКТРИЧЕСКОМ ЦИЛИНДРЕ В БОРНОВСКОМ ПРИБЛИЖЕНИИ В.В. Сыщенко Рассмотрено рассеяние плоской электромагнитной волны на пространственно протяженной нитевидной мишени. Получено выражение для сечения рассеяния с использованием приближения, аналогичного бор- новскому приближению в квантовой механике. РОЗСІЯННЯ ЕЛЕКТРОМАГНІТНОЇ ХВИЛІ НА ДІЕЛЕКТРИЧНОМУ ЦИЛIНДРI У БОРНIВСЬКОМУ НАБЛИЖЕННІ В.В. Сищенко Розглянуто розсіяння плоскої електромагнітної хвилі на просторово протяжної ниткуватої мішені. Отри- мано вираз для перерізу розсіяння з використанням наближення, що аналогічно борнівському наближенню у квантовій механіці.