Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells

An array of short sections of plasma dielectric wakefield accelerator modules spaced by vacuum zones (without plasma) is proposed to avoid the “underdense” operating regime. A calculation of the dynamics of the accelerated particles in such an array of accelerating-drift sections is given. The param...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Kniaziev, R.R., Marshall, T.C., Sotnikov, G.V.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2015
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112360
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells / R.R. Kniaziev, T.C. Marshall, G.V. Sotnikov // Вопросы атомной науки и техники. — 2015. — № 6. — С. 42-46. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112360
record_format dspace
spelling irk-123456789-1123602017-01-21T03:02:42Z Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells Kniaziev, R.R. Marshall, T.C. Sotnikov, G.V. Новые и нестандартные ускорительные технологии An array of short sections of plasma dielectric wakefield accelerator modules spaced by vacuum zones (without plasma) is proposed to avoid the “underdense” operating regime. A calculation of the dynamics of the accelerated particles in such an array of accelerating-drift sections is given. The parameters of bunches which are available in SLAC are used for this calculation. A dielectric structure using fused silica provides an operating frequency ~ 350 GHz. Lengths of plasma and vacuum sections providing stable transportation of the accelerated bunch are found. The bunch size in the focal plane is determined. Пропонується використовувати масив відносно коротких секцій плазмово-діелектричних кільватерних прискорювальних (ПДКП) модулів, розділених вакуумними проміжками (без плазми, хоча вони можуть містити діелектричну структуру), з метою уникнути небажаного перефокусування згустку, що прискорюється. Проведено розрахунок динаміки частинок, що прискорюються, у такій решітці прискорювально-дрейфових секцій ПДКП. Для розрахунків використані параметри згустків, наявні в SLAC. Діелектрична структура на основі плавленого кварцу забезпечує робочу частоту ~ 350 ГГц. Знайдено довжини плазмової й вакуумної секцій, які забезпечують стійке транспортування згустку, що прискорюється. Визначені розміри згустку у фокальній площині. Предлагается использовать массив относительно коротких секций плазменно-диэлектрических кильватерных ускорительных (ПДКУ) модулей, разделенных вакуумными промежутками (без плазмы, хотя они могут содержать диэлектрическую структуру), с целью избежать нежелательной перефокусировки ускоряемого сгустка. Проведен расчет динамики ускоряемых частиц в такой решетке ускорительно-дрейфовых секций ПДКУ. Для расчета использованы параметры сгустков, имеющиеся в SLAC. Диэлектрическая структура на основе плавленого кварца обеспечивает рабочую частоту ~ 350 ГГц. Найдены длины плазменной и вакуумной секций, обеспечивающих устойчивую транспортировку ускоряемого сгустка. Определены размеры сгустка в фокальной плоскости. 2015 Article Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells / R.R. Kniaziev, T.C. Marshall, G.V. Sotnikov // Вопросы атомной науки и техники. — 2015. — № 6. — С. 42-46. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 41.75.Ht, 41.75.Lx, 41.75.Jv, 96.50.Pw, 533.9. http://dspace.nbuv.gov.ua/handle/123456789/112360 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Новые и нестандартные ускорительные технологии
Новые и нестандартные ускорительные технологии
spellingShingle Новые и нестандартные ускорительные технологии
Новые и нестандартные ускорительные технологии
Kniaziev, R.R.
Marshall, T.C.
Sotnikov, G.V.
Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells
Вопросы атомной науки и техники
description An array of short sections of plasma dielectric wakefield accelerator modules spaced by vacuum zones (without plasma) is proposed to avoid the “underdense” operating regime. A calculation of the dynamics of the accelerated particles in such an array of accelerating-drift sections is given. The parameters of bunches which are available in SLAC are used for this calculation. A dielectric structure using fused silica provides an operating frequency ~ 350 GHz. Lengths of plasma and vacuum sections providing stable transportation of the accelerated bunch are found. The bunch size in the focal plane is determined.
format Article
author Kniaziev, R.R.
Marshall, T.C.
Sotnikov, G.V.
author_facet Kniaziev, R.R.
Marshall, T.C.
Sotnikov, G.V.
author_sort Kniaziev, R.R.
title Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells
title_short Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells
title_full Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells
title_fullStr Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells
title_full_unstemmed Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells
title_sort transport of bunches in a dielectric wakefield accelerator using an array of plasma cells
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2015
topic_facet Новые и нестандартные ускорительные технологии
url http://dspace.nbuv.gov.ua/handle/123456789/112360
citation_txt Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells / R.R. Kniaziev, T.C. Marshall, G.V. Sotnikov // Вопросы атомной науки и техники. — 2015. — № 6. — С. 42-46. — Бібліогр.: 8 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT kniazievrr transportofbunchesinadielectricwakefieldacceleratorusinganarrayofplasmacells
AT marshalltc transportofbunchesinadielectricwakefieldacceleratorusinganarrayofplasmacells
AT sotnikovgv transportofbunchesinadielectricwakefieldacceleratorusinganarrayofplasmacells
first_indexed 2025-07-08T03:48:11Z
last_indexed 2025-07-08T03:48:11Z
_version_ 1837049046367207424
fulltext ISSN 1562-6016. ВАНТ. 2015. №6(100) 42 TRANSPORT OF BUNCHES IN A DIELECTRIC WAKEFIELD ACCELERATOR USING AN ARRAY OF PLASMA CELLS R.R. Kniaziev1, T.C. Marshall2, G.V. Sotnikov1 1National Science Center “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine; 2Columbia University, New York City, USA E-mail: sotnikov@kipt.kharkov.ua An array of short sections of plasma dielectric wakefield accelerator modules spaced by vacuum zones (without plasma) is proposed to avoid the “underdense” operating regime. A calculation of the dynamics of the accelerated particles in such an array of accelerating-drift sections is given. The parameters of bunches which are available in SLAC are used for this calculation. A dielectric structure using fused silica provides an operating frequency ~ 350 GHz. Lengths of plasma and vacuum sections providing stable transportation of the accelerated bunch are found. The bunch size in the focal plane is determined. PACS: 41.75.Ht, 41.75.Lx, 41.75.Jv, 96.50.Pw, 533.9. INTRODUCTION Recent interest in dielectric wakefield accelerator physics directed toward an advanced high-gradient accel- erator [1] has been rekindled by the finding that certain dielectrics can withstand very high fields (>1 GV/m) for the short times involved in the passage of charged bunch- es along a dielectric-lined channel [2]. A cylindrical, sin- gle-channel dielectric-lined structure has been shown to be an attractive and simple symmetric structure for high gradient acceleration of electron or positron bunches [3]. However, two problems have stood in the way of the implementation of this concept: first, the bunch mo- tion is afflicted with instabilities (see [4] and references therein), and second, the transformer ratio is only ~ 2 [5]. Stabilizing the instabilities using external focusing is challenging in a small structure as required for high gradient acceleration. Also, while a ramped-charge drive bunch or train of bunches has been shown to increase the transformer ratio [6], such a bunch train may suffer unstable motion. One cure that has been suggested for these difficulties is the coaxial DWA, where the intro- duction of an inner coaxial dielectric tube has been shown [7] to offer better stability and elevated trans- former ratio. Nevertheless, the complication of center- ing and suspending the inner tubing of the coax in a lengthy accelerator structure can be challenging. Recently we have proposed to revisit the single channel configuration through which both the collinear drive and witness bunches move, but now fill this single channel with plasma [8] – plasma-dielectric wakefield accelerator (PDWA). We have found that the plasma can provide an important radial focusing force on the wit- ness bunch; this might secure the advantage of higher transformer ratio using drive bunch ramping without the penalty of unstable bunch motion, in an axially- symmetric, smooth-bore, one-channel structure. Plasma filling the transport channel of DWA oper- ates similar to a plasma lens. In a lengthy unit this fo- cusing could lead eventually to over-compression of the bunch, in which case the bunch density will exceed the plasma density and the undesirable “blowout” regime obtains. Besides, it is very hard to create plasma and sustain this homogeneity on a long distance. Thus a PDWA will inevitably consist of plasma cells with gaps between them. Therefore, for a bunch transport, we pro- pose the use of a series of relatively short focusing PDWA units that are spaced by vacuum zones so that the ''focal point'' (minimum bunch radius) would lie in a vacuum space. Our requirement is only that these vac- uum spaces not be filled with plasma − they could still be accelerator units, e.g. vacuum dielectric wakefield accelerator sections, that maintain the acceleration gra- dient but do not supply a strong radial force. The results of a study of the dynamics of the accelerated particles in such an array of accelerating-drift sections are presented in this paper. STATEMENT OF THE PROBLEM The principal scheme of the proposed accelerator based on plasma-dielectric modules is given in Fig. 1 which presents two PDWA cells separated by a vacuum space. Each PDWA cell is a section of cylindrical di- electric waveguide filled with plasma [8]; the gap be- tween them (drift space) is the vacuum section of the same waveguide. The length of the first cell is 1pL , the length of the second cell is 2pL , the gap length is sL . Fig. 1. Schematic of a pair of PDWA units used as focusing elements to transport a bunch of test particles that are located at the witness bunch A drive bunch travelling through the accelerating sys- tem excites in each PDWA cell a wakefield [8] which accelerates the particles of a witness bunch. In the vac- uum gap any forces acting on the witness bunch parti- cles are absent. A dynamics of witness bunch particles are described by relativistic motion equations: ( , ) ( , ) ,z r z z du E r H r dz uq cmu φψ γ γ ψ⎡ ⎤ = +⎢ ⎥ ⎣ ⎦ ( , ) ( , ) ,r z r z du q E r H r u mudz c φ γ ψ ψ γ ⎡ ⎤ = −⎢ ⎥ ⎣ ⎦ ( )1/22 2, 1, 1d r z r z z u u u u u vdr d dz dz ψ γ γ = += − += , (1) ISSN 1562-6016. ВАНТ. 2015. №6(100) 43 where ( )dv t z zψ = − , q and m are the electron charge and mass, dv is the longitudinal velocity of the drive bunch. If a certain witness bunch electron (“test” parti- cle) is inside the drift space 1 2p pL z L< < then electro- magnetic field components acting on it is equal 0: 0,z rE E Hφ= = = (2) or else they can be presented in a sum of two items: , ,L d L d d z z z r r rE E E E E E H Hϕ ϕ= + = + = . (3) In eq. (3) ,L L z rE E are components of electric field of Langmuir wave, and , ,d d d rzE E Hϕ are components of the electric and magnetic fields of the dielectric wave. Explicit form of all components of the wakefield is giv- en in ref. [8]. DYNAMICS OF TEST PARTICLES For numerical calculation of the components of the wakefield (2), (3) which accelerates the witness bunch electrons we used parameters of electron bunches acces- sible at SLAC: the energy of drive bunch electrons was 3 GeV, the bunch charge was 3 nC, its length was 0.2bL = mm, the drive bunch radius was 0.45br = mm. The PDWA cell is a section of a cylin- drical dielectric waveguide with an outer radius of the quartz tube ( 3.75ε = ) of 0.6 mm, inner radius 0.5 mm. Isotropic plasma filled the drift channel entirely and its density was 14 0 4.41 10pn = ⋅ cm-3. For analysis of trajec- tories (1), we supposed that the initial energy of witness bunch electrons is equal to the energy of drive bunch electrons. Fig. 2. Axial profile of the longitudinal force (blue solid line) and axial profile of the transverse force (red line) at the distance 0.45 mm from the wave- guide axis. Drive bunch (the yellow rectangle) moves from right to left. The cyan rectangle shows the location of the electron witness bunch In Fig. 2 are shown the axial profiles of longitudinal and transverse forces that can act upon witness bunch electrons. For the computation of the trajectories, the initial location of the test electrons will be taken around the third maximum of accelerating field 2.21z = mm (see cyan rectangle in Fig. 2). One can see that this loca- tion of test particles provides both acceleration and fo- cusing simultaneously. Fig. 3. Location of test witness bunch electrons in the plane (x, z) accelerated by the wakefield of a drive bunch. Initially the center of witness bunch is located at a distance 2.21 mm behind the center of the drive bunch. At the same radius are located 3 witness elec- trons (at the head z=2.21-Lb/2, at the center z=2.21 an at the tail z=2.21+Lb/2. Zero initial transverse velocity of test electron was used in this computation In Fig. 3 is presented the trajectories of test electrons in the plane (y=0). At a travel distance of 8 cm a trans- verse focusing deflection ~ 0.15 mm of the 0.45 mm radius witness bunch is found. If we use a longer unit, the minimal radius of the witness bunch can be reached at z~14.8 cm where it is 0.07 mm. The aberration visible in the “focal plane” z~14.8 cm is due to the deflection of the focusing force from its linear dependence. In Fig. 3, the trajectories of witness bunch electrons are computed when the initial transverse velocity is ze- ro. Similar trajectories of test particles for different transverse initial velocities are shown in Fig. 4. ISSN 1562-6016. ВАНТ. 2015. №6(100) 44 Fig. 4. The same as Fig. 3 except for different ratios of initial radial to axial velocities: r z= v / v /r zu uθ = : a) 0.001θ = ; b) 20.00θ = ; c) 20.00 5θ = We find that the initial transverse velocity does not cause a considerable shift of “focal plane”. The width of the witness bunch changes modestly there too. Further- more, if the initial transverse velocity is greater than a certain value (for our parameters this is 0.0025), some of the test particle will deposit on the dielectric surface (see Fig. 4,c). Fig. 5. Radius of test electrons accelerated in the wakefield of drive bunch. Initial velocities of test elec- trons are max/ /r z bu u r rθ θ= = ⋅ , 3 max 2 10θ −= ⋅ . The remaining parameters are the same as in Fig. 3 A more realistic situation of the transport of a wit- ness bunch having initial energy spread when the initial velocity of a test particle depends on its distance from the axis is shown in Fig. 5. Minimal width of the wit- ness bunch at the “focal plane” is ~0.06 mm, i.e. it is about the same for all previously considered cases. From this, one can see that the focusing of the wit- ness bunch by the transverse field is strong and we can’t avoid the over-compression of the accelerated bunch. The only way remaining is to shorten the length of the PDWA section so that the “focal plane” is located in a vacuum portion of the waveguide. One possibility to choose the lengths of the PDWA cells and vacuum gap is: let the first PDWA cell be 7.5 cm, the length of the second PDWA cell be 6.5 cm, and the vacuum gap length be 11 cm. For this case, Fig. 6 shows the characteristics of the test particles dur- ing the transport through the PDWA. In this example the test electrons entering into the first PDWA cell do not have a radial velocity. Fig. 6. Transverse coordinate (a), energy gain (b), shift from initial axial position (c) of test witness bunch electrons accelerated by the wakefield of a drive bunch travelling through two PDWA cells sep- arated by a vacuum space. Initially the test electrons are located at a distance 2.21 mm behind the center of the drive bunch. Composite plot (d) shows energy gain of test electrons in the plane z-32.7 cm versus their axial shift from initial location. Yellow rectan- gles mark the axial location of the PDWA cells ISSN 1562-6016. ВАНТ. 2015. №6(100) 45 One can see that after passing the second PDWA cell the motion of the test witness bunch particles is nearly laminar. Their energy spread at the output of the second PDWA cell is ±0.7 MeV (~2%) and the maximal dis- placement of test particles from the resonance wave phase is 2 microns. We note that the least displacement and the largest energy gain has occurred for the on-axis particles. Fig. 7. The same in Figs. 6,a,b for the plasma density increased by 5%, 01.05p pn n= In Figs. 7 and 8 is demonstrated a change of charac- teristics of the witness bunch upon varying the plasma density from that used in the previous figures. One can see that a 5% variation of the plasma density is not harmful for the stable transport of the witness bunch through the accelerator unit. When increasing the plas- ma density there is a small divergence of the witness bunch at the output of the second PDWA cell. Very likely, it is connected with the change of the wavelength of the total wakefield so that the test particles are dis- placed from the optimal location (maximum of acceler- ated and focusing field). More accurate placing of the witness bunch could decrease the observed divergence. CONCLUSIONS One can avoid over-compression of the bunch radius of an accelerated bunch inside the plasma cell by using an array of plasma cells separated by vacuum spaces. At the output of the second cell it is possible to ob- tain laminar straight-line flow of the witness bunch. A small variation of plasma density (tolerance) is not significant for the proposed scheme of transporting the accelerated bunch. Fig. 8. The same in Figs. 6,a,b for the plasma density reduced by 5%, 00.95p pn n= ACKNOWLEDGMENTS Work supported in part by NAS of the Ukraine pro- gram "Perspective investigations on plasma physics, controlled thermonuclear fusion and plasma technolo- gies", Project P-1/63-2015 "Development of physical principles of plasma-dielectric wakefield accelerator". REFERENCES 1. V.D. Schiltzev. High-energy particle colliders: past 20 years, next 20 years, and beyond // Phys.-Usp. 2015, v. 58, № 1, p. 81-88. 2. M.C. Thompson, H. Badakov, A.M. Cook, et al. Breakdown limits on gigavolt-per-meter electron- beam-driven wakefields in dielectric structures // Phys. Rev. Lett. 2008, v. 100, 214801(4). 3. W. Gai, P. Schoessow, R. Konecny, et al. Experi- mental demonstration of wake-field effects in dielec- tric structures // Phys. Rev. Lett. 1988, v. 61, 2756- 2759; also, E. Chojnacki, W. Gai, P. Schoessow, and J. Simpson. Accelerating field step-up transformer in wake-field accelerators // Proc. PAC 1991; IEEE. 1991, p. 2557-2759. 4. Eric Esarey, Phillip Sprangle, Jonathan Krall, and Antonio Tang. Overview of plasma-based accelera- tor concepts // IEEE Trans. Nucl. Sci. 1996, v. 24, p. 252-288. ISSN 1562-6016. ВАНТ. 2015. №6(100) 46 5. K.L. Bane, P. Chen, and P.B. Wilson. On collinear wake field acceleration // IEEE Trans. Nucl. Sci. 1985, v. NS-32, 3524-3526. 6. C. Jing, A. Kanareykin, J.G. Power, et al. Observa- tion of enhanced transformer ratio in collinear wake- field acceleration // Phys. Rev. Lett. 2007, v. 98, 144801(4). 7. G.V. Sotnikov, T.C. Marshall, and J.L. Hirshfield. Coaxial two-channel high-gradient dielectric wake- field accelerator // Phys. Rev. S T Accel. Beams. 2008, v. 12, 061302(18). 8. G.V. Sotnikov, R.R Kniaziev, O.V. Manuilenko, et al. Analytical and numerical studies of under dense and over dense regimes in plasma-dielectric wakefield accelerators // Nucl. Instr. and Meth. in Phys. Res. 2014, v. A740, p. 124-129. Article received 05.10.2015 ТРАНСПОРТИРОВКА СГУСТКОВ В ДИЭЛЕКТРИЧЕСКОМ КИЛЬВАТЕРНОМ УСКОРИТЕЛЕ С ПОМОЩЬЮ МАССИВА ПЛАЗМЕННЫХ ЯЧЕЕК Р.Р. Князев, Т.К. Маршал, Г.В. Сотников Предлагается использовать массив относительно коротких секций плазменно-диэлектрических кильва- терных ускорительных (ПДКУ) модулей, разделенных вакуумными промежутками (без плазмы, хотя они могут содержать диэлектрическую структуру), с цель избежать нежелательной перефокусировки ускоряемо- го сгустка. Проведен расчет динамики ускоряемых частиц в такой решетке ускорительно-дрейфовых секций ПДКУ. Для расчета использованы параметры сгустков, имеющиеся в SLAC. Диэлектрическая структура на основе плавленого кварца обеспечивает рабочую частоту ~ 350 ГГц. Найдены длины плазменной и вакуум- ной секций, обеспечивающих устойчивую транспортировку ускоряемого сгустка. Определены размеры сгу- стка в фокальной плоскости. ТРАНСПОРТУВАННЯ ЗГУСТКІВ У ДІЕЛЕКТРИЧНОМУ КІЛЬВАТЕРНОМУ ПРИСКОРЮВАЧІ ЗА ДОПОМОГОЮ МАСИВУ ПЛАЗМОВИХ СЕКЦІЙ Р.Р. Князєв, Т.К. Маршал, Г.В. Сотніков Пропонується використовувати масив відносно коротких секцій плазмово-діелектричних кільватерних прискорювальних (ПДКП) модулів, розділених вакуумними проміжками (без плазми, хоча вони можуть міс- тити діелектричну структуру), з метою уникнути небажаного перефокусування згустку, що прискорюється. Проведено розрахунок динаміки частинок, що прискорюються, у такій решітці прискорювально-дрейфових секцій ПДКП. Для розрахунків використані параметри згустків, наявні в SLAC. Діелектрична структура на основі плавленого кварцу забезпечує робочу частоту ~ 350 ГГц. Знайдено довжини плазмової й вакуумної секцій, які забезпечують стійке транспортування згустку, що прискорюється. Визначені розміри згустку у фокальній площині.