Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability

A quantitative approach to the determination of the ratio between binary and ternary intermetallic phases in the Al—Mg(Cu)—Li alloys is developed on the basis of the balance equations of the chemical and phase compositions as well as the experimentally measured lattice parameter of the α-solid solut...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Betsofen, S., Grushin, I., Knyazev, M., Dolgova, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут металофізики ім. Г.В. Курдюмова НАН України 2015
Назва видання:Металлофизика и новейшие технологии
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112444
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability / S. Betsofen, I. Grushin, M. Knyazev, M. Dolgova // Металлофизика и новейшие технологии. — 2015. — Т. 37, № 11. — С. 1549-1565. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112444
record_format dspace
spelling irk-123456789-1124442017-01-22T03:02:56Z Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability Betsofen, S. Grushin, I. Knyazev, M. Dolgova, M. Дефекты кристаллической решётки A quantitative approach to the determination of the ratio between binary and ternary intermetallic phases in the Al—Mg(Cu)—Li alloys is developed on the basis of the balance equations of the chemical and phase compositions as well as the experimentally measured lattice parameter of the α-solid solution. As shown, for the Al—Mg(Cu)—Li alloys, the ratio between the fractions of the δ′ (Al₃Li) and S₁ (T₁) phases is determined by the ratio between the molar fractions of Li and Mg (Cu). The equations for the calculation of the contents of the S₁ (Al₂MgLi), T₁ (Al₂CuLi) and δ′ (Al₃Li) phases in the 1420, 1424, 5090 alloys (Al—Mg—Li alloys) and in the 1440, 1460, 1461, 1441, 1469, 2090, 2094, 2095, 8090, Weldalite 049 alloys (Al—Cu—Li alloys) used in Russia and other countries are given. The possibilities of the method application for the study and prediction of the phase stability and anisotropy of the elastic and strength properties are considered. Розроблено кількісний підхід для визначення співвідношення бінарних і трикомпонентних інтерметалевих фаз у стопах Al—Mg(Cu)—Li, заснований на рівняннях рівноваги хемічних і фазових складів, а також експериментально виміряній сталій кристалічної ґратниці α-твердого розчину. Показано, що для стопів Al—Mg(Cu)—Li співвідношення між фракціями фаз δ′ (Al₃Li) і S₁ (T₁) визначаються співвідношенням між мольними частками Li і Mg (Cu). Наведено рівняння для розрахунку вмісту фаз S₁ (Al₂MgLi), T₁ (Al₂CuLi) і δ′ (Al₃Li) у стопах 1420, 1424, 5090 (стопи Al—Mg—Li) та у стопах 1440, 1460, 1461, 1441, 1469, 2090, 2094, 2095, 8090, Weldalite 049 (стопи Al—Cu—Li). Розглянуто можливості застосування цієї методи для вивчення та передбачення фазової стабільности й анізотропії пружніх і міцнісних властивостей. Разработан количественный подход для определения соотношения бинарных и трёхкомпонентных интерметаллических фаз в сплавах Al—Mg(Cu)—Li, основанный на уравнениях равновесия химических и фазовых составов, а также экспериментально измеренной постоянной кристаллической решётки α-твёрдого раствора. Показано, что для сплавов Al—Mg(Cu)—Li соотношение между фракциями фаз δ′ (Al₃Li) и S₁ (T₁) определяется соотношением между мольными долями Li и Mg (Cu). Приведены уравнения для расчёта содержания фаз S₁ (Al₂MgLi), T₁ (Al₂CuLi) и δ′ (Al₃Li) в сплавах 1420, 1424, 5090 (сплавы Al—Mg—Li) и в сплавах 1440, 1460, 1461, 1441, 1469, 2090, 2094, 2095, 8090, Weldalite 049 (сплавы Al—Cu—Li). Рассмотрены возможности применения данного метода для изучения и предсказания фазовой стабильности и анизотропии упругих и прочностных свойств. 2015 Article Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability / S. Betsofen, I. Grushin, M. Knyazev, M. Dolgova // Металлофизика и новейшие технологии. — 2015. — Т. 37, № 11. — С. 1549-1565. — Бібліогр.: 14 назв. — англ. 1024-1809 PACS: 61.05.cp, 61.66.Dk, 62.20.de, 64.70.kd, 64.75.Bc, 81.30.Bx http://dspace.nbuv.gov.ua/handle/123456789/112444 en Металлофизика и новейшие технологии Інститут металофізики ім. Г.В. Курдюмова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Дефекты кристаллической решётки
Дефекты кристаллической решётки
spellingShingle Дефекты кристаллической решётки
Дефекты кристаллической решётки
Betsofen, S.
Grushin, I.
Knyazev, M.
Dolgova, M.
Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability
Металлофизика и новейшие технологии
description A quantitative approach to the determination of the ratio between binary and ternary intermetallic phases in the Al—Mg(Cu)—Li alloys is developed on the basis of the balance equations of the chemical and phase compositions as well as the experimentally measured lattice parameter of the α-solid solution. As shown, for the Al—Mg(Cu)—Li alloys, the ratio between the fractions of the δ′ (Al₃Li) and S₁ (T₁) phases is determined by the ratio between the molar fractions of Li and Mg (Cu). The equations for the calculation of the contents of the S₁ (Al₂MgLi), T₁ (Al₂CuLi) and δ′ (Al₃Li) phases in the 1420, 1424, 5090 alloys (Al—Mg—Li alloys) and in the 1440, 1460, 1461, 1441, 1469, 2090, 2094, 2095, 8090, Weldalite 049 alloys (Al—Cu—Li alloys) used in Russia and other countries are given. The possibilities of the method application for the study and prediction of the phase stability and anisotropy of the elastic and strength properties are considered.
format Article
author Betsofen, S.
Grushin, I.
Knyazev, M.
Dolgova, M.
author_facet Betsofen, S.
Grushin, I.
Knyazev, M.
Dolgova, M.
author_sort Betsofen, S.
title Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability
title_short Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability
title_full Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability
title_fullStr Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability
title_full_unstemmed Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability
title_sort quantitative methods for the study of al—li alloys: phase composition, anisotropy of properties, and phase stability
publisher Інститут металофізики ім. Г.В. Курдюмова НАН України
publishDate 2015
topic_facet Дефекты кристаллической решётки
url http://dspace.nbuv.gov.ua/handle/123456789/112444
citation_txt Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability / S. Betsofen, I. Grushin, M. Knyazev, M. Dolgova // Металлофизика и новейшие технологии. — 2015. — Т. 37, № 11. — С. 1549-1565. — Бібліогр.: 14 назв. — англ.
series Металлофизика и новейшие технологии
work_keys_str_mv AT betsofens quantitativemethodsforthestudyofallialloysphasecompositionanisotropyofpropertiesandphasestability
AT grushini quantitativemethodsforthestudyofallialloysphasecompositionanisotropyofpropertiesandphasestability
AT knyazevm quantitativemethodsforthestudyofallialloysphasecompositionanisotropyofpropertiesandphasestability
AT dolgovam quantitativemethodsforthestudyofallialloysphasecompositionanisotropyofpropertiesandphasestability
first_indexed 2025-07-08T03:57:16Z
last_indexed 2025-07-08T03:57:16Z
_version_ 1837049617865244672
fulltext 1549 ДЕФЕКТЫ КРИСТАЛЛИЧЕСКОЙ РЕШЁТКИ PACS numbers: 61.05.cp, 61.66.Dk, 62.20.de, 64.70.kd, 64.75.Bc, 81.30.Bx Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability S. Betsofen, I. Grushin, M. Knyazev, and M. Dolgova  MATI–Russian State Technological University Named After K. E. Tsiolkovsky, 3 Orshanskaya Str., 121552 Moscow, Russian Federation A quantitative approach to the determination of the ratio between binary and ternary intermetallic phases in the Al—Mg(Cu)—Li alloys is developed on the basis of the balance equations of the chemical and phase compositions as well as the experimentally measured lattice parameter of the -solid solution. As shown, for the Al—Mg(Cu)—Li alloys, the ratio between the fractions of the  (Al3Li) and S1 (T1) phases is determined by the ratio between the molar frac- tions of Li and Mg (Cu). The equations for the calculation of the contents of the S1 (Al2MgLi), T1 (Al2CuLi) and  (Al3Li) phases in the 1420, 1424, 5090 alloys (Al—Mg—Li alloys) and in the 1440, 1460, 1461, 1441, 1469, 2090, 2094, 2095, 8090, Weldalite 049 alloys (Al—Cu—Li alloys) used in Russia and other countries are given. The possibilities of the method application for the study and prediction of the phase stability and anisotropy of the elastic and strength properties are considered. Key words: Al—Mg—Li and Al—Cu—Li alloys, intermetallic compounds, lattice parameter, quantitative phase analysis, anisotropy, phase stability. Розроблено кількісний підхід для визначення співвідношення бінарних і трикомпонентних інтерметалевих фаз у стопах Al—Mg(Cu)—Li, заснова- ний на рівняннях рівноваги хемічних і фазових складів, а також експе- риментально виміряній сталій кристалічної ґратниці -твердого розчину. Показано, що для стопів Al—Mg(Cu)—Li співвідношення між фракціями фаз  (Al3Li) і S1 (T1) визначаються співвідношенням між мольними част- ками Li і Mg (Cu). Наведено рівняння для розрахунку вмісту фаз S1 Correspondence author: Sergej Yakovlevich Betsofen E-mail: s.betsofen@gmail.com S. Betsofen, I. Grushin, M. Knyazev, and M. Dolgova, Quantitative Methods for the Study of Al—Li Alloys: Phase Composition, Anisotropy of Properties, and Phase Stability, Metallofiz. Noveishie Tekhnol., 37, No. 11: 1549— 1565 (2015). Металлофиз. новейшие технол. / Metallofiz. Noveishie Tekhnol. 2015, т. 37, № 11, сс. 1549—1565 Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2015 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине. 1550 S. BETSOFEN, I. GRUSHIN, M. KNYAZEV, and M. DOLGOVA (Al2MgLi), T1 (Al2CuLi) і  (Al3Li) у стопах 1420, 1424, 5090 (стопи Al—Mg— Li) та у стопах 1440, 1460, 1461, 1441, 1469, 2090, 2094, 2095, 8090, Weldalite 049 (стопи Al—Cu—Li). Розглянуто можливості застосування цієї методи для вивчення та передбачення фазової стабільности й анізотропії пружніх і міцнісних властивостей. Ключові слова: стопи Al—Mg—Li і Al—Cu—Li, інтерметалічні з’єднання, параметр ґратниці, кількісний фазовий аналіз, анізотропія, фазова стабі- льність. Разработан количественный подход для определения соотношения би- нарных и трёхкомпонентных интерметаллических фаз в сплавах Al— Mg(Cu)—Li, основанный на уравнениях равновесия химических и фазо- вых составов, а также экспериментально измеренной постоянной кри- сталлической решётки -твёрдого раствора. Показано, что для сплавов Al—Mg(Cu)—Li соотношение между фракциями фаз  (Al3Li) и S1 (T1) опре- деляется соотношением между мольными долями Li и Mg (Cu). Приведе- ны уравнения для расчёта содержания фаз S1 (Al2MgLi), T1 (Al2CuLi) и  (Al3Li) в сплавах 1420, 1424, 5090 (сплавы Al—Mg—Li) и в сплавах 1440, 1460, 1461, 1441, 1469, 2090, 2094, 2095, 8090, Weldalite 049 (сплавы Al— Cu—Li). Рассмотрены возможности применения данного метода для изу- чения и предсказания фазовой стабильности и анизотропии упругих и прочностных свойств. Ключевые слова: сплавы Al—Mg—Li и Al—Cu—Li, интерметаллические со- единения, параметр решётки, количественный фазовый анализ, анизо- тропия, фазовая стабильность. (Received October 7, 2015) 1. INTRODUCTION Significant progress in the use of new materials in aviation industry is associated with composite materials such as Glass Laminate Alumini- um Reinforced Epoxy (GLARE). In contrast to one-layer sheets of alu- minium alloys, such composite materials are characterized by de- creased density (by 10—15%), high strength, low fatigue crack propa- gation rate, and fire resistance. The application of GLARE for the fu- selage skin of the A-380 Airbus results in a weight saving of more than 500 kg. A new research work aimed at the development of a new gener- ation of GLARE -based Al—Cu—Li alloys in VIAM would increase the modulus of elasticity by 8—10% and reduce the density by 5—7% [1, 2]. Despite all these advantages, the Al—Li alloys are not used widely enough, mainly because of their low thermal stability, which manifests itself in a reduction in ductility and fracture toughness upon long- term low-temperature heating (LLH), low deformability (small reduc- tions per unit pass upon cold rolling), and severe anisotropy of mechan- ical properties [3]. QUANTITATIVE METHODS FOR THE STUDY OF Al—Li ALLOYS 1551 It has been established that the problem of LLH is caused by the pre- cipitation of the -phase and by the resulting structure defects [4]. A decrease in lithium concentration in the alloy reduces the severity of the problem but does not solve it entirely, because the -phase precipi- tation process is tightly connected with the other phases in the alloy (T1, ) and, therefore, with the copper content in the alloy. In addition, a decrease in the lithium content would reduce the elastic and strength properties. It is also known that the anisotropy of mechanical proper- ties in aluminium alloys is definitely related to the crystallographic texture [5, 6]. However, it is not clear, why this problem is significant- ly more pronounced in the lithium-containing alloys, which do not dif- fer from other aluminium alloys in texture. This can be explained only by the fact that the alloys with lithium are characterized by a high con- tent of intermetallic phase, which differs from the aluminium matrix in the anisotropy of properties. In general, the aim of optimizing the composition and production technology of semi-finished sheets and their heat treatment comes to establishing the quantitative correlations of main alloying elements in the alloy and heat treatment with the quantitative ratio between the major strengthening intermetallic phases. This task is addressed in the work. 2. MATERIALS AND EXPERIMENTAL METHODS To design a quantitative X-ray diffraction analysis technique, we used commercial Al—Mg—Li alloy grade 1420 (5.6 Mg, 2.0 Li, 0.3 Mn, 0.1Zr, Al for balance) and Al—Cu—Li alloy grade V-1461 (Al—2.8Cu—1.7Li— 0.5Mg—0.5Zn—0.1Zr—0.06Sc). X-ray diffraction analysis was per- formed on a DRON-4.0 diffractometer using filtered CuK-radiation and (333)/(511) reflections of the  solid solution which have a Bragg angle approaching 80 in order to obtain a high accuracy in lattice pa- rameter measurement. The basic equations for calculating the changes in volume and linear dimensions of the aluminium alloys are given in [7—9]. The lattice pa- rameters of the solid solution (a) for binary aluminium alloys, in ac- cordance with Végard’s law, is linearly related to the content of the i-th alloying element (Xi): Al ,i i a a a X X         (1) where i a X      is the change in the lattice parameter per 1 weight per- cent of the alloying element, Å/wt.%. 1552 S. BETSOFEN, I. GRUSHIN, M. KNYAZEV, and M. DOLGOVA Table 1 shows the data on , i a X      compositions, and specific vol- umes of intermetallic phases in the Al—Mg, Al—Cu, Al—Mg—Li, and Al— Cu—Li alloys. The information on the quantitative relationships of phases in the alloys can reliably control the state of the alloys after deformation and heat treatment. Furthermore, knowing the phase composition, one can calculate the volume and linear dimensional changes accompanying heat treatment. The specific volume of the mixture can be calculated using the spe- cific volumes of the phases and their weight percentages by the rule of mixtures: A A B B , 100 m W V W V V   (2) where WA is the weight percentage of the A phase; VA is the specific volume of the A phase; WB is the weight percentage of the B phase; and VB is the specific volume of the B phase, etc. Substituting the weight percentages of phases into Eq. (2), we ob- tain the volume effects for phase precipitation in binary alloys. The necessary data on the precipitate density or specific volume can be cal- culated on the basis of the composition and crystal structure of such phases. The data for the determination of the phase composition of the Al—Mg—Li alloys are given in [8]. The same approach can be used for the Al—Cu—Li alloys [9]: TABLE 1. Data for the calculation of the phase compositions of the Al—Mg, Al—Cu, Al—Mg—Li, and Al—Cu—Li alloys (aAl  4.049310-8 cm, AAl  26.98 g/mole, VAl  1/l  0.3705 cm 3/g, and Y is the content of alloying element in at.%). Element 310 i a X      310 i a Y      Phase Concentration of alloying elements X Specific volume VB Å/wt.% Å/at.% wt.% cm3/g Al (balance) — — — — 0.3705 Mg 5.18 4.62  (Al3Mg2) 37.6 0.448  (Al2Cu) 54.2 0.2472 Li — — AlLi 20.5 0.5744 Al3Li 7.9 0.4583 Cu  Li — — T1 (Al2CuLi) 5.5Li—51.1Cu 0.3223 Mg  Li — — S1 (Al2MgLi) 8.1Li—28.5Mg 0.5602 QUANTITATIVE METHODS FOR THE STUDY OF Al—Li ALLOYS 1553 1 1 1 1 1 1 1 1 1 1 1 1 TT T T T0 0 0 Li Li Al Cu Al Cu Al Cu Li Li T T T T T T T Li Li Cu Cu Cu Cu Li Al Cu Al Cu Li Li ( )( ) ( ) 100, ( )(100 ) ( ) X X X X X X X X X X W X X X X X X X X X X X X X                     WT1  1 0 Cu Cu T Cu 100 , X X W X   (3) W  100  W  WT1 , where 0 Al ,X 0 Cu X , and 0 Li X are the Al, Cu, and Li concentrations in the alloy, respectively (wt.%), W, WT1 , and W are the weight percentages of the , T1, and  phases, respectively, and Al X , Cu X , Li ,X 1 Al TX , 1T Li ,X 1T Cu X , Al ,X  and Li X  are the Al, Cu, and Li concentrations in the -, T1-, and -phases, respectively. The 1S Al ,X Al ,X  1T Al ,X 1T Li ,X and Li X  parame- ters are calculated from the stoichiometry of the T1 (Al2CuLi) and  (Al3Li) phases. These data are given in Table 1. The Cu X parameter is determined from the lattice parameter of the solid solution (a). Eq. (3) allows one to determine the ratio between the -, T1- and -phases for each lithium content in the -phase ( Li X ). 3. RESULTS AND DISCUSSION 3.1. Quantitative Phase Analysis (QPA) of the Al—Li Alloys Figures 1 and 2 show the contents of intermetallic phases for the 1420 and V-1461 alloys. In the calculations, the lithium concentration in the solid solution was taken to be 0.5%, which corresponds to the -phase content realized after long-term natural aging for the alloys. Figure 1 shows that, for the Al—Cu—Li alloys, the -phase content is much high- er than the T1-phase content. In this case, the ratio between them is de- termined by the ratio between the lithium and copper concentrations in the alloy. Indeed, the maximum T1-phase content corresponds to the absence of copper in the solid solution and, in this case, is determined by the molar concentration of copper in the alloy. The maximum - phase content corresponds to the absence of lithium in the solid solu- tion and is also determined by the difference between the lithium and copper molar concentrations, since the composition of the ternary phase is Al2CuLi, and, in the case where the solid solution contains nei- ther copper nor lithium, these elements are forced to be distributed be- tween these intermetallics. By the way, the formation of certain amounts of the  (, ) phases only decreases the T1-phase content at the expense of the binary phase precipitation. Since copper is con- tained only in the ternary phase, in which each copper atom falls on a lithium atom, the difference in the molar concentrations of copper and lithium regulates the maximum -phase content in the alloy. 1554 S. BETSOFEN, I. GRUSHIN, M. KNYAZEV, and M. DOLGOVA If we compare the phase relationships between the -phase and the ternary phases in the Al—Cu—Li (Fig. 1) and Al—Mg—Li (Fig. 2) alloys, we clearly see that their contents in the alloys with magnesium are about the same, while the -phase content in the Al—Cu—Li alloys sub- stantially exceeds the content of the ternary phase. As was mentioned above, the ratio between the contents of the  (Al3Li) and S1 (T1) phases is determined by the ratio between the molar concentrations of Li and Mg (Cu). In the Al—Mg—Li alloys, the ratio between the Li and Mg mo- lar fractions is 1.0—1.5, and therefore, the contents of the - and S1- phases are approximately the same, while, in the Al—Cu—Li alloys, the Fig. 1. Ratio between the  (solid line) and Т1 (dashed line) intermetallic phas- es in the V-1461 as a function of the lattice parameter of the solid solution (a) for lithium contents in the solid solution ( Li X ) of 0.5%. Fig. 2. Ratio between the  (solid line) and S1 (dashed line) intermetallic phas- es in the 1420 alloy as a function of the lattice parameter of the solid solution (a) for lithium contents in the solid solution ( Li X ) of 0.5%. QUANTITATIVE METHODS FOR THE STUDY OF Al—Li ALLOYS 1555 ratio between the Li and Cu molar fractions ranges from 2 to 19, and therefore the -phase dominates. 3.2. Anisotropy of Mechanical Properties Many intermetallic phases, especially -phase in the lithium- containing alloys, are responsible for the unusual strength anisotropy, which in the textured sheets from these alloys [5, 6] substantially ex- ceeds the anisotropy of the properties of other aluminium alloys with virtually similar textures. This anisotropy can be due to the precipita- tion of the textured -phase upon rolling. To explain this effect, one should analyse the effect of the L12 type ordered -phase on the anisotropy of mechanical properties in the lith- ium-containing alloys. This phase is characterized by a texture, which is similar to the texture of the solid solution [6], but, at the same time, has a specific deformation mechanism caused by the long-range order- ing. The L12-type ordered -phase radically differs from the solid solu- tion in the character of the orientation dependence of shear stress. For example, the maximum and minimum strength of the solid solution corresponds to the <111> and <100> directions, respectively. By contrast, the maximum strength of the L12-ordered structures corresponds to the <100> direction as for the single crystals of nickel superalloys, since, for this direction, the Schmid factor for slip over the {001}<110> system is zero. For the L12-type ordered structures, slip in the cube planes at high stacking fault energy (SFE) may be more favourable than in the close-packed planes, because the slip in the for- mer case is less out of order. Considering this, the authors of [6] pro- posed a simple calculation procedure for evaluating the yield strength anisotropy in the Al—Li alloys containing the ordered phase with the L12 lattice in addition to the FCC solid solution. The yield stress ani- sotropy in the sheet directions (RD, TD, and 45 to RD) was proposed to be estimated by the ratio between the Zacks factors, M, calculated on the basis of the texture data. In this case, the calculation relationships allow for the difference in the critical resolved shear stress for the - and -phases: 0.2 RD/0.2 45  Malloy RD/Malloy 45, 0.2 TD/0.2 45  Malloy TD/Malloy 45 Malloy (RD, 45, TD)  M (RD, 45, TD)V  (1  V)M (RD, 45, TD), where   {001}<110>/{111}<110> is ratio between the critical resolved shear stress for slip over the {001}<110> system of the -phase and slip over the {111}<110> system of the -phase, M (RD,45,TD)  [(1 {111}<110>P)hkl  ( {001}<110>P)hkl] 1, 1556 S. BETSOFEN, I. GRUSHIN, M. KNYAZEV, and M. DOLGOVA M (RD,45,TD)  [( {111}<110>P)hkl] 1,   {111}<110>/{001}<110> is the ratio between the critical resolved shear stress for slip over the {111}<110> and {001}<110> systems of the - phase, and V is the volume fraction of the -phase. The results of the calculation of the yield strength anisotropy show that, varying the  and  parameters, one can widely change the calcu- lated anisotropy at the same phase ratios and texture. The agreement between the calculated and experimental anisotropy parameters is achieved at   2.8 and   6. Thus, the anisotropy of the mechanical properties of the lithium-containing alloys substantially depends on the -phase content and orientation. This explains the well-known fact that heat treatment radically changes the anisotropy, but retains the texture of the solid solution virtually unchanged [5] because, in this case, the -phase of deformation origin is dissolved, and the -phase precipitating upon cooling has a different texture even if its nuclea- tion is oriented due to the realization of various transformation ver- sions. 3.3. Elastic Properties In addition to significant advantage in weight characteristics, the ap- plication of the Al—Li alloys for components of GLARE is based on the fact that Young’s modulus of the lithium-containing alloys is substan- tially higher than that of other aluminium alloys. It was shown [12] that an increase in GLARE Young’s modulus at the expense of the metal component is much more effective than increased Young’s mod- ulus of prepreg. There are two ways to increase the elastic modulus of metal alloys. The first method is based on the anisotropy of Young’s modulus and the possibility to use the favourable texture of the sheet to increase the Young’s modulus in its plane. The second method of increase in the elastic modulus is the formation of intermetallic phase particles, which in the alloy typically have higher elastic properties than the ma- trix. As was shown in [13], the highest Young’s modulus (82.6 GPa) of the 8090 alloy (Al—2.4Li—1.14Cu—0.67Mg) was exhibited by the sam- ple with a high -phase content. The magnitude of the elastic moduli of crystals with cubic lattice is calculated by the following formula: 1/Ehkl  S11  2J, where J  S11  S12  0,5S44 (J  0 is the positive anisotropy, J  0 is the negative anisotropy), and   (h 2k2  h 2l2  k 2l2)/(h2  k 2  l 2l2)2 is the ori- entation factor. QUANTITATIVE METHODS FOR THE STUDY OF Al—Li ALLOYS 1557 Table 2 shows Young’s moduli for different crystallographic direc- tions in Al and Cu. The anisotropy of the elastic properties of alumini- um is small; the difference between the maximum (<111>) and mini- mum (<100>) Young’s moduli does not exceed 20%. This value is very small, with allowance for the fact that Table 2 shows the moduli for single-crystal orientations. In the case of even highly textured poly- crystalline metal, this difference will decrease at least by a factor of two. To demonstrate that small anisotropy is not characteristic of all metals with cubic lattice, Table 2 represents Young’s moduli for dif- ferent orientations of copper, for which this difference is almost three- fold. Table 3 shows Young’s moduli for different directions in aluminium sheets for the texture components typical of aluminium. It is seen that the anisotropy of the elastic moduli for aluminium is not a sufficiently effective way to increase the elastic properties since the maximum modulus in the <111> direction is only 76 GPa. Therefore, increased Young’s modulus in the lithium containing alloys can be explained on- ly by a substantial content of the ordered -phase. To obtain Young’s modulus of 80—82 GPa characteristic of the lithium-containing alloys, it is sufficient to have  20% -phase with a Young's modulus of 115— TABLE 2. Young’s moduli for various directions in Al and Cu. uvw E, GPa Al Cu 111 76.1 191.6 110 72.6 130.5 112 72.6 130.5 113 69.0 96.3 100 63.7 66.8 Average 70.7 121.8 TABLE 3. Anisotropy of Young’s moduli for various texture components of Al sheets. Texture ND RD TD [uvw] E, GPa [uvw] E, GPa [uvw] E, GPa {112}<111 > ‘TCu’ 112 72.6 11 1 76.1 112 72.6 {011}<211 > ‘TBr’ 011 72.6 211 72.6 1 1 1 76.1 {001}<110> ‘TC’ 001 63.7 110 72.6 1 10 72.6 {110}<001> (ТG) 110 72.6 001 63.7 1 10 72.6 1558 S. BETSOFEN, I. GRUSHIN, M. KNYAZEV, and M. DOLGOVA 120 GPa, which is realistic. 3.4. Thermal Stability The determination of the quantitative phase composition of the Al— Mg(Cu)—Li alloys allows one to predict their important properties such as thermal stability and elastic moduli. Figure 3 shows the scheme for the calculation of such parameters as a function of the alloy composi- tion. The parameter of thermal stability can be taken as maxW  , which is the difference between the maximum and minimum -phase contents at two fixed lithium contents in the  solid solution. This parameter shows the quantity of the -phase, which can precipitate from the solid solution maximally supersaturated with lithium (maximum lithium concentration) until its complete withdrawal from the solid solution (zero concentration). Since we need the value of this parameter, which allows us to compare alloys with different contents of alloying ele- ments, we can take an arbitrary value close to the maximum solubility of lithium in solid solution. Figure 3 shows the scheme for a lithium content of 0.5%, but with the same success, we can take 0.7 or 0.9%. This is no matter for comparative evaluation of the thermal stability of the alloys. The level of elastic properties depends on the -phase content in the alloy, so the maximum content ( maxW  ), which can be calculated for a given Al—Mg(Cu)—Li alloy composition (Fig. 3), is a quantitative char- acteristic of its Young's modulus. The 8090 alloy (Fig. 3, a) is charac- terized by low maxW  , which indicates a high phase stability of this al- loy since, at all thermomechanical actions, no more than 6.3% - phase, which is about 20% of its maximum quantity, can precipitate from the solid solution. At the same time, maxW  of the Weldalite 049 alloy (Fig. 3, b) is almost three times higher (15.9%), which indicates, on the one hand, its phase instability, and, on the other hand, the pos- sibility to vary its structural and phase state in a wide range. This gives a great opportunity to correct the complex of the properties of welded joints, for which this alloy is used successfully. The 8090 alloy should have high elastic properties, since the -phase content in it can reach 30% (Fig. 3, a). This substantially differentiates the 8090 alloy from the Weldalite 049 alloy with much smaller -phase content (Fig. 5, b). Figures 4 and 5 shows the corresponding quantitative parame- ters, on the basis of which one can search for alloys, depending on the necessary combinations of service properties. It is seen that the Al—Mg—Li alloys substantially differ from the Al— Cu—Li alloys in the combination of the characteristics including the parameters of phase stability and elastic properties. The Al—Mg—Li al- loys (Fig. 4, a) are characterized by high phase instability, even in comparison with the most instable alloys of the Al—Cu—Li system (the QUANTITATIVE METHODS FOR THE STUDY OF Al—Li ALLOYS 1559 American Weldalite 049 alloy and the Russian 1460-3 alloy; see. Fig. 5, b). The most thermally stable alloys of the Al—Cu—Li system (Fig. 4, b) considerably surpass the Al—Mg—Li alloys (Fig. 4, a) in this parame- ter. The data on the quantities of intermetallic phases precipitating from the solid solution upon heat treatment and deformation of the Al—Mg—Li alloys can be used for the estimation of the volume changes Fig. 3. Scheme of the determination of the Al—Li—Cu alloy thermal instability parameter, which characterizes the resistance to instability upon long-term low-temperature heatings: the 8090 (Al—1.1Cu—2.4Li) (a) and Weldalite 049 (Al—6.3Cu—1.3Li) alloys: maxW  is the maximum -phase content in the al- loy; maxW  is the thermal instability parameter equal to the maximum possi- ble quantity of the -phase, which can be precipitated from the solid solution (b). 1560 S. BETSOFEN, I. GRUSHIN, M. KNYAZEV, and M. DOLGOVA upon the phase precipitation by Eqs. (2), (3). Figure 6 shows the vol- ume effects calculated for the precipitation of some intermetallic phases in aluminium alloys per one volume percent of the precipitated phase. Still higher volume effects are characteristic of the ternary phases (T1, S1), especially in the Al—Cu—Li alloys. The ternary phase (T1) pre- cipitation in these alloys is characterized by a very high positive vol- ume effect (Fig. 6), which can lead to considerable internal stresses and Fig. 4. Thermal instability parameter and -phase content for the commercial Al—Mg(Cu)—Li alloys: the Al—Mg—Li alloys with a high level of thermal insta- bility (high maxW  ) and a high -phase content (high maxW  ) (a) and the Al— Cu—Li alloys with a high thermal stability (low maxW  ), and a high -phase content (b). Fig. 5. Thermal instability parameter and -phase content for the commercial Al—Cu—Li alloys: the alloys with a moderate level of thermal instability and a moderate -phase content (a) and the alloys with a low thermal stability (high maxW  ) and a low -phase content (b). QUANTITATIVE METHODS FOR THE STUDY OF Al—Li ALLOYS 1561 related negative consequences for the manufacture of articles by edge cutting machining from thick semi-finished sections. In this case, a non-uniformity of the decomposition over the cross section can lead to the gradient of one-sign stresses from the centre of the plate to its pe- riphery. This stress gradient can be accumulated upon removal of the surface layers and lead to strong deformation of the articles. On the other hand, a significant volume effect in combination with the fact that the ternary phase fraction in the Al—Cu—Li alloys is significantly lower than that is in the Al—Mg—Li alloys (see. Figs. 1, 2) allows one to minimize the precipitation of ternary phase in the Al—Cu—Li alloys. This is possible only through careful control of the mechanism of solid solution decomposition. Therefore, the proposed method of phase analysis is of practical importance for the optimization of the entire set of technological operations used for the manufacture of such al- loys. 3.5. Effect of Lithium Solubility in Solid Solution ( Li X ) on the QPA Accuracy Lattice parameter varies within certain limits for each alloy composi- tion and lithium content in the solid solution. The lowest and highest lattice parameters correspond to the maximum possible S1-phase con- tent and the maximum -phase content, respectively. It should be em- phasized that the developed technique is based on a formal assessment of the quantity of intermetallic phase on the basis of the chemical com- position of the alloy and the lattice parameter of the solid solution and is not associated with the actual physical-chemical alloy characteris- tics defining, e.g., the concentration of lithium in solid solution after Fig. 6. Calculated volume effects of the aluminide precipitation from the solid solution per one percent of the precipitated phase (Wi is the amount of inter- metallic phase). 1562 S. BETSOFEN, I. GRUSHIN, M. KNYAZEV, and M. DOLGOVA various regimes of heat or thermomechanical treatment. Nevertheless, the estimation of the quantitative ratio between phases allows an ob- jective interpretation of the results of experimental metallographic studies and allows one to select the optimal regimes of these studies. As an example, we consider the change in the phase composition of the 1420 alloy upon cold rolling (Fig. 7). With increasing degree of re- duction of warm-rolled sheet, the lattice parameter of the solid solu- tion decreases from 4.075 Å to 4.061 Å (Fig. 7, a). Table 4 shows the phase compositions calculated for different lithium compositions in the solid solution after deformation of the alloy to different degrees. Various versions of changes in these parameters with increasing de- gree of reduction are considered with allowance for the fact that, upon cold rolling, the weight fraction of intermetallic phases cannot de- crease, and the lithium content cannot correspondingly increase, i.e., the phases only precipitate, but do not dissolve. This condition is quite realistic for cold rolling. The analysis of different ‘routes’ of the Fig. 7. Lattice parameter of the -solid solution (a), calculated lithium con- centration in the -phase (b), and calculated contents of S1- and -phases (с) as a function of degree of reduction upon cold rolling of the 1420 alloy: the con- tents of phases (W and WS1 ) and the lithium concentration ( Li X ) are given for the 1st and 2nd ‘routes’ identified in Table 4. QUANTITATIVE METHODS FOR THE STUDY OF Al—Li ALLOYS 1563 changes in the phase composition with increasing degree of reduction showed that they lie in fairly narrow intervals (Figs. 7, b and 7, c), es- pecially with regard to the S1-phase content (Fig. 7, c). One can clearly conclude that cold rolling of the 1420 alloy in a concrete structural- phase initial state is accompanied by the decomposition of the solid so- lution with the precipitation of mainly S1-phase. At the same time, Figure 2 shows that the variation of lithium con- tent in the solid solution can substantially affect the quantitative evaluation of the phase composition. This is especially important for the cases of heat treatment (quenching and aging), where both precipi- tation and dissolution of various intermetallic phases are possible along with the change of lithium content in the solid solution. In this case, it is important to know the lithium content in the solid solution of the Al—Cu(Mg)—Li alloys as a function of the alloy composition and the type of heat treatment. Such data can be obtained by comparing the calculations by the method proposed in this work and the experimental data on the lattice parameters of the solid solution for this alloy. TABLE 4. Phase composition (WS1 , Wδ′) calculated for different lithium con- centrations ( Li Xα ) in the solid solution of the cold-rolled 1420 alloy. Li Xα ε, % 0 8 30 50 70 Wδ′ WS1 Wδ′ WS1 Wδ′ WS1 Wδ′ WS1 Wδ′ WS1 0 20.9 5.4 20.9 5.4 20.4 5.9 18.9 7.4 13.8 12.4 0,1 20.1 5.3 20.1 5.3 19.6 5.8 18.1 7.3 13.0 12.3 0,2 19.3 5.1 19.3 5.1 18.8 5.6 17.3 7.1 12.1 12.2 0,4 17.7 4.7 17.7 4.7 17.1 5.3 15.5 6.8 10.2 12.1 0,5 16.8 4.6 16.8 4.6 16.3 5.1 14.7 6.7 9.2 12.0 0,6 15.9 4.4 15.9 4.4 15.4 4.9 13.7 6.5 8.2 11.9 0,7 15.0 4.2 15.0 4.2 14.5 4.7 12.8 6.4 7.2 11.8 0,8 14.1 4.0 14.1 4.0 13.5 4.5 11,8 6,2 6,2 11,7 0,9 13.1 3.8 13.1 3.8 12,5 4,3 10,8 6,0 5,1 11,6 1,0 12.1 3.6 12.1 3.6 11.5 4.1 9.8 5.8 4 11.6 1,1 11.1 3.4 11.1 3.4 10,5 3,9 8,7 5,7 2,8 11,5 1,2 10 3.1 10 3.1 9.4 3.7 7.6 5.5 1.6 11.4 1,3 9.0 2.9 9.0 2.9 8,3 3,5 6,5 5,3 0,4 11,2 ‘Route 1’: ε = 0%: Wδ′/WS1 / Li Xα = 12.1/3.6/1.0 → 8%: 13.1/3.8/0.9 → 30%: 13.5/4.5/0.8 → 50%: 13.7/6.5/0.6 → 70%:13.8/12.4/0.0. ‘Route 2’: ε = 0%: 9.0/2.9/1.3 → 8%: 11.1/3.4/1.1 → 30%: 11.5/4.1/1.0 → 50%: 12.8/6.4/0.7 → 70%:13.0/12.3/0.1. 1564 S. BETSOFEN, I. GRUSHIN, M. KNYAZEV, and M. DOLGOVA 4. CONCLUSION 1. The method for the calculation of the T1-, S1- and -phase contents in Al—Cu—Li and Al—Mg—Li alloys on the basis of the experimental measurement of the -solid solution lattice parameters is proposed, where the lithium content in the solid solution serves as a variable pa- rameter. 2. The phase relationships between the -phase and the ternary phases in the Al—Cu—Li and Al—Mg—Li alloys show that the contents in the al- loys with magnesium are about the same, while the -phase content in the Al—Cu—Li alloys substantially exceeds the content of the ternary phase. 3. It is shown that the developed method can be effectively used for quantitative interpretation of the research data on the effect of heat and thermomechanical treatments on the phase composition of the al- loys, as well as for the optimization of the Al—Mg(Cu)—Li—X alloy com- positions. 4. The unusual strength anisotropy, which in the textured sheets from lithium-containing alloys substantially exceeds the anisotropy of the properties of other aluminium alloys can be due to the precipitation of the textured -phase, which is similar to the texture of the solid solu- tion, but has a specific deformation mechanism caused by the long- range ordering. 5. It is shown that the information on the quantitative ratio between intermetallic phases allows the estimation of the volume and linear changes in the alloys upon heat treatment and plastic deformation. ACKNOWLEDGEMENTS This work was performed in the framework of state task 11.1978.2014/K of the Ministry of Education and Science of the Rus- sian Federation ‘Development of quantitative methods of estimating the structural phase and stressed states of Al—Cu—Li and Al—Mg—Li alloys for the feasibility and the designing of alloys and technologies providing high strength, elasticity, and phase stability characteristics of a base metal and a weld construction material’. REFERENCES 1. V. V. Antipov, N. I. Kolobnev, and L. B. Khokhlatova, Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9: 5 (2013) (in Russian). 2. V. V. Shestov, V. V. Antipov, O. G. Senatorova, and V. V. Sidel’nikov, Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9: 28 (2013) (in Russian). 3. I. N. Fridlyander, K. V. Chuistov, A. L. Berezina, and N. I. Kolobnev, QUANTITATIVE METHODS FOR THE STUDY OF Al—Li ALLOYS 1565 Aluminium—Lithium Alloys: Structure and Properties (Kiev: Naukova Dumka: 1992) (in Russian). 4. S. Katsikis, B. Noble, and S. J. Harris, Mater. Sci. Eng. A, 485: 613 (2008). 5. M. Trinca, A. Avalino, H. Garmestani, J. Foyos, E. W. Lee, and O. S. Es-Said, Mater. Sci. Forum, 331—337: 849 (2000). 6. A. A. Ilyin, V. V. Zakharov, M. S. Betsofen, O. E. Osintsev, and T. A. Rostova, Russian Metallurgy (Metally), No. 5: 406 (2008). 7. H. Y. Hunsicker, Trans. AIME, VII: 759 (1980). 8. S. Y. Betsofen, A. A. Ilyin, O. E. Osintsev, and M. S. Betsofen, Russian Metallurgy (Metally), No. 6: 506 (2008). 9. S. Y. Betsofen, V. V. Antipov, I. A. Grushin, M. I. Knyazev, L. B. Khokhlatova, and A. A. Alekseev, Russian Metallurgy (Metally), No. 1: 51 (2015). 10. W. B. Pearson, Handbook of Lattice Spacings and Structures of Metals and Alloys (New York: Pergamon Press: 1958). 11. Y. Ma, X. Zhou, G. E. Thompson, T. Hashimoto, P. Thomson, and M. Fowles, Materials Chemistry and Physics, 126: 46 (2011). 12. Sang Yoon Park, Won Jong Choi, Heung Soap Choi, and Hyuk Kwon, J. Mater. Process. Technol., 210: 1008 (2010). 13. Po-Yu Chang and Jenn-Ming Yang, Intern. J. Fatigue, 30: 2165 (2008). 14. E. P. George, D. P. Pope, C. L. Fu, and J. H. Schneibel, ISIJ Intern., 31: 1066 (1991). << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /None /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Error /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /CMYK /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments true /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /CreateJDFFile false /Description << /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E> /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e> /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e> /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E> /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.) /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e> /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e> /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e> /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e> /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e> /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e> /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /ConvertToCMYK /DestinationProfileName () /DestinationProfileSelector /DocumentCMYK /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice