Motion estimation from satellite image sequences: validation

This report concerns the validation of surface velocity estimated from satellite images. The estimation is obtained with a dynamic model based on shallow-water equations. We first compare the stationary assumption to the shallow-water heuristics to justify our choice. Second, we quantify the qual...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2011
Автори: Huot, E., Herlin, I., Mercier, N., Korotaev, G., Plotnikov, E.
Формат: Стаття
Мова:English
Опубліковано: Морський гідрофізичний інститут НАН України 2011
Назва видання:Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112618
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Motion estimation from satellite image sequences: validation / E. Huot, I. Herlin, N. Mercier, G. Korotaev, E. Plotnikov // Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу: Зб. наук. пр. — Севастополь, 2011. — Вип. 25, т. 2. — С. 79-90. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112618
record_format dspace
spelling irk-123456789-1126182017-01-25T03:02:24Z Motion estimation from satellite image sequences: validation Huot, E. Herlin, I. Mercier, N. Korotaev, G. Plotnikov, E. Моделирование процессов в Мировом океане This report concerns the validation of surface velocity estimated from satellite images. The estimation is obtained with a dynamic model based on shallow-water equations. We first compare the stationary assumption to the shallow-water heuristics to justify our choice. Second, we quantify the quality of the estimation by measuring the misfit between the model output and the altimetry measures. Experiments are achieved on Sea Surface Temperature data acquired by the NOAA/AVHRR satellites over the Black Sea. The altimetry measures are obtained by two radar sensors: Envisat and GFO. The good adequacy between the shallow-water output and the altimetry data validates our motion estimation approach. У статті описуються результати валідації полів швидкості поверхневих течій, розрахованих по серіях супутникових зображень. Розрахунок проводився за допомогою динамічної моделі, заснованої на рівняннях мілкої води. Спочатку демонструються переваги методу, що використовує рівняння дрібної води перед стаціонарним алгоритмом. Потім, оцінюється кількісне розбіжність між результатами моделювання і вимірювань, проведених за допомогою альтиметричніх даних. Експерименти засновані на картах температур акваторії Чорного моря, отриманих за допомогою сканера AVHRR NOAA. Альтиметричні дані отримані за допомогою сенсорів Envisat і GFO. Близькість результатів, розрахованих за цими джерелами даних, підтверджують високу якість моделювання. В статье описываются результаты валидации полей скорости поверхностных течений, рассчитанных по сериям спутниковых изображений. Расчет производился при помощи динамической модели, основанной на уравнениях мелкой воды. Сначала демонстрируются преимущества метода, использующего уравнения мелкой воды перед стационарным алгоритмом. Затем, оценивается количественное расхождение между результатами моделирования и измерений, произведенных при помощи альтиметрических данных. Эксперименты основаны на картах температур акватории Черного моря, полученных с помощью сканера AVHRR NOAA. Альтиметрические данные получены с помощью спутников Envisat и GFO. Близость результатов, рассчитанных по этим источникам данных, подтверждает высокое качество моделирования. 2011 Article Motion estimation from satellite image sequences: validation / E. Huot, I. Herlin, N. Mercier, G. Korotaev, E. Plotnikov // Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу: Зб. наук. пр. — Севастополь, 2011. — Вип. 25, т. 2. — С. 79-90. — Бібліогр.: 14 назв. — англ. 1726-9903 http://dspace.nbuv.gov.ua/handle/123456789/112618 551.46(262.5) en Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу Морський гідрофізичний інститут НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Моделирование процессов в Мировом океане
Моделирование процессов в Мировом океане
spellingShingle Моделирование процессов в Мировом океане
Моделирование процессов в Мировом океане
Huot, E.
Herlin, I.
Mercier, N.
Korotaev, G.
Plotnikov, E.
Motion estimation from satellite image sequences: validation
Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу
description This report concerns the validation of surface velocity estimated from satellite images. The estimation is obtained with a dynamic model based on shallow-water equations. We first compare the stationary assumption to the shallow-water heuristics to justify our choice. Second, we quantify the quality of the estimation by measuring the misfit between the model output and the altimetry measures. Experiments are achieved on Sea Surface Temperature data acquired by the NOAA/AVHRR satellites over the Black Sea. The altimetry measures are obtained by two radar sensors: Envisat and GFO. The good adequacy between the shallow-water output and the altimetry data validates our motion estimation approach.
format Article
author Huot, E.
Herlin, I.
Mercier, N.
Korotaev, G.
Plotnikov, E.
author_facet Huot, E.
Herlin, I.
Mercier, N.
Korotaev, G.
Plotnikov, E.
author_sort Huot, E.
title Motion estimation from satellite image sequences: validation
title_short Motion estimation from satellite image sequences: validation
title_full Motion estimation from satellite image sequences: validation
title_fullStr Motion estimation from satellite image sequences: validation
title_full_unstemmed Motion estimation from satellite image sequences: validation
title_sort motion estimation from satellite image sequences: validation
publisher Морський гідрофізичний інститут НАН України
publishDate 2011
topic_facet Моделирование процессов в Мировом океане
url http://dspace.nbuv.gov.ua/handle/123456789/112618
citation_txt Motion estimation from satellite image sequences: validation / E. Huot, I. Herlin, N. Mercier, G. Korotaev, E. Plotnikov // Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу: Зб. наук. пр. — Севастополь, 2011. — Вип. 25, т. 2. — С. 79-90. — Бібліогр.: 14 назв. — англ.
series Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу
work_keys_str_mv AT huote motionestimationfromsatelliteimagesequencesvalidation
AT herlini motionestimationfromsatelliteimagesequencesvalidation
AT merciern motionestimationfromsatelliteimagesequencesvalidation
AT korotaevg motionestimationfromsatelliteimagesequencesvalidation
AT plotnikove motionestimationfromsatelliteimagesequencesvalidation
first_indexed 2025-07-08T04:18:04Z
last_indexed 2025-07-08T04:18:04Z
_version_ 1837050926609727488
fulltext 79 © E. Huot, I. Herlin, N. Mercier, G. Korotaev and E. Plotnikov, 2011 УДК 551 .46(262 .5 ) Etienne Huot 1,2,3, Isabelle Herlin 1,2, Nicolas Mercier 1,2, Gennady Korotaev 4 and Evgeny Plotnikov 4 1 INRIA, Institut National de Recherche en Informatique et Automatique, France 2 CEREA, joint laboratory ENPC – EDF R&D, Université Paris-Est, France 3 Université de Versailles - Saint-Quentin-en-Yvelines, France 4 Marine Hydrophysical Institute, National Academy of Sciences, Sevastopol, Ukraine MOTION ESTIMATION FROM SATELLITE IMAGE SEQUENCES: VALIDATION This report concerns the validation of surface velocity estimated from satellite images. The estimation is obtained with a dynamic model based on shallow-water equations. We first compare the stationary assumption to the shallow-water heuristics to justify our choice. Second, we quantify the quality of the estimation by measuring the misfit between the model output and the altimetry measures. Experiments are achieved on Sea Surface Temperature data acquired by the NOAA/AVHRR satellites over the Black Sea. The altimetry measures are obtained by two radar sensors: Envisat and GFO. The good adequacy between the shallow-water output and the altimetry data validates our motion estimation approach. K EYWORDS: Data assimilation, Motion estimation, Shallow-water, image models, Validation, Altimetry. 1. Introduction The issue of surface velocity estimation from satellite images has been extensively studied in the literature [1 – 7]. Data Assimilation (DA) techniques have been applied in the last five years and gain importance in the scientific community [8 – 11]. The key points of the DA approach are: availability of heuristics on the dynamics of a satellite sequence, knowledge on links between velocity and image data. This paper proposes an analysis and a validation of the DA approach for motion estimation from ocean satellite images. Two Image Models were proposed in [12 – 14]. They express heuristics on the dynamics of the motion field. The comparison of the estimation using the two models allows us to analyze the impact of these heuristics. The main issue of the paper is then to validate the estimation approach by evaluating the quality of the result, compared to real data. The motion estimation is performed on NOAA/AVHRR Sea Surface Temperature (SST) data acquired over the Black Sea. The analysis is conducted by comparing the stationary and the shallow-water heuristics. The validation is obtained by quantifying the discrepancy of the water layer thickness, estimated with the shallow-water image model, and the one computed from altimetry data. The altimetry measures, used in this study, are acquired by the Envisat and GFO sensors. The paper is organized as follows. Section 2 summarizes the principles of variational data assimilation. The definition of the Stationary Image Model (SIM) and Shallow Water Image Model (SWIM) is given in Section 2. Section 2 describes the application of DA to perform motion estimation. Section 5 describes 80 the SST images (5.1), displays and analyzes the estimated motion results (5.2), describes the altimetry data (5.3), and validates the approach (5.4). 2. Variational Data Assimilation 2.1. Mathematical setting Let X being the state vector depending on the spatial coordinate x ( ),( yx=x for image data) and time t . X is defined on ],0[ τ×Ω=A , Ω being the bounded spatial domain and ],0[ τ the temporal domain. We assume X is evolving in time according to: 0),)((),( =+ ∂ ∂ tMt t xXx X (1) M , named the evolution model, is supposed differentiable. Observations ),( txY , for instance satellite image acquisitions, are available at location x and date t and linked to the state vector through an observation equation: 0),(),)((),( 0 =+= tEtHt xxXxY (2) In this paper, we assume that one component of X is a pseudo-image directly comparable to Y . Consequently, H reduces to a projection operator. The observation error 0E simultaneously represents the imperfection of the observation operator H and the measurement errors. We consider having some knowledge on the initial condition of the state vector at 0=t : )()()0,( xxXxX bb E+= (3) bX is named background value of the initial condition and bE the background error. bE and oE are assumed to be Gaussian and fully characterized by their covariance matrices B and R . 2.2. Variational formulation In order to solve the system (1), (2), (3) with respect to X having a maximal a posteriori probability given the observations, a functional )(XE is defined and minimized: +−−= − ∫ dtdtHtttHtE A T xxXxYxRxXxYX )]),)((),()[,()],)((),([)( 1 +−−+ − Ω ∫ dxb T b )]()0,()[()]()0,([ 1 xXxYxBxXxX Reg. In this formulation, we consider no correlation of the errors between two space-time positions. Reg is a regularization term used to obtain a convex function and allow the minimization process to converge to a global minimum. The minimization of )(XE is carried out with an iterative method based on the one described in [10] and summarized in the following. (4) 81 At each iteration k , the analysis k aX is obtained from the background kbX by computing the increment Xδ at 0=t . )()0,()0,( xXxXxX δ+= k b k a (5) 1. Initialization (a) 0=k (b) Compute ),(0 tb xX from the initial condition )(xXb of the state vector at 0=t in (3): )()0,(0 xXxX bb = (6) 0),)((),( 0 0 =+ ∂ ∂ tMt t b b xXx X , for 0=t to τ (7) (c) Initialize the analysis ),(0 ta xX : ],0[),(),( 00 τ∈∀= ttt ba xXxX (8) 2. Repeat (a) Compute the adjoint variable λ from τ=t to 0=t : 0),( =τλ x (9) ])([)()( 1 * k a T HtHt M t t XYR X −=      ∂ ∂+ ∂ ∂− −λλ , for τ=t to 0 (10) (b) Update the value of the background variable: k a k b XX =+1 (11) (c) Compute the incremental variable Xδ at 0=t : )0,()()( xxxX λδ B= (12) (d) Update the value of the analysis variable: )()0,()0,( 11 xXxXxX δ+= ++ k b k a (13) (e) Compute ),(1 tk a xX + from the initial condition: 0),)((),( 1 1 =+ ∂ ∂ + + tMt t k a k a xXx X , for 0=t to τ (14) (f) 1+= kk Until εδ ≤2 X Final result is k aX . Equation (10) makes use of the adjoint model *       ∂ ∂ X M . In our study, the discrete adjoint model is automatically obtained by the Tapenade software1. 1 See http://www-sop.inria.fr/tropics/ 82 3. Image models The two Image Models used in the paper are based on the assumption that a pixel value is a passive tracer transported by the surface velocity field. The state vector X includes the motion vector W and a pseudo-image q that is also transported by the motion vector and can be directly compared to the image observations. The evolution of q is given by the advection-diffusion equation: qvq t q q∆=∇⋅+ ∂ ∂ W (15) with qv standing for the diffusion coefficient. The Stationary Image Model (SIM) is based on the restrictive assumption that, at each space position, the velocity is constant over time. The underlying hypothesis is that the surface velocity field evolves much slower than the temperature field. This heuristic is acceptable for a large range of marine processes. If a vortex, whose spatial scale is more than 10 – 50 km, is transported with a velocity less than 0,1 to 0,5 m/s, then the temporal scale of that phenomenon will be more than one day. It means that the surface velocity field can be considered as stationary during one day. Defining Tqvu ),,(=X , with u and v the two components of the 2D motion vector ,W SIM is defined as: 0= ∂ ∂ t u ; 0= ∂ ∂ t v ; (16) qv y q v x q u t q q∆+ ∂ ∂− ∂ ∂−= ∂ ∂ ; However, the stationary hypothesis makes this image model only applicable on a short temporal window. The shallow-water equations, derived from the Navier-Stokes equations, link the 2D velocity ),( vu of the layer to its thickness h and take into account the gravity and Coriolis forces. The state vector X is Tqhvu ),,,( and the Shallow Water Image Model (SWIM) is defined as: uvfv x B t u ∆+++ ∂ ∂= ∂ ∂ )( ξ ; vvfv y B t v ∆+++ ∂ ∂= ∂ ∂ )( ξ ; y hv x hu t h ∂ ∂− ∂ ∂−= ∂ ∂ ; qv y q v x q u t q q∆+ ∂ ∂− ∂ ∂−= ∂ ∂ (17) ; 83 with )22( 2 1 vughB ++= , g the reduced gravity, f the Coriolis parameter (depending on the latitude), ξ the vorticity )( y u x v ∂ ∂− ∂ ∂=ξ . 4. Application of Data Assimilation Data Assimilation is applied to perform motion estimation. The sequence of SST images ),( tT x is assimilated in the two models SIM or SWIM, using the incremental method described in Section 2.2. As said in Section 1, the pixel value ),(tT x is directly comparable to the pseudo-image ),( tq x of the state vector. The observation operator H reduces to a projection operator, ),()),(( tqtH xxX = . The regularization term is based on the 2L -norm of the motion gradient (to obtain a smooth vector field) and on the motion divergency (incompressibility assumption). Its impact is analyzed in [14]. As we consider perfect models, the value of )(tX is obtained from the initial conditions )0(X by integrating in time. Hence, the cost function (4) only depends on the initial conditions and is rewritten as: +−−= − ∫ dtdqTtqTE A T xxRX ))(,()())0(( 1 +−−+ − Ω ∫ xxXXxBxXX db T b )]()0()[()]()0([ 1 (16) xx dvdivdvu 222 )( ∫∫ ΩΩ +∇+∇+ βα The choice of the covariance matrix R is crucial for the quality of results. As the satellite images are provided with meta-data information (see section 1), the quality of the acquisitions is approximately known. ),(1 txR− is then given a small value when the acquisition is noisy at ),(tx (because of cloud occlusion for instance). The choice of the initial background conditions has also a strong impact on the quality of the result. It has been discussed in [14] that the best results are obtained with the first observation as background for q , null value for W and a constant value mh forh , with mh being the thickness value at rest state. As the background value of q is reliable, qB is given a small value. 5. Results 5.1. Image data A huge amount of images are acquired over the ocean by space remote sensors. Those obtained by optical instruments, such as Sea Surface Temperature (SST) data, display a strong space-time coherence. The images, used in the paper, are acquired 84 on-board NOAA-AVHRR satellites. Their spatial resolution is 1.1 km2 at nadir and the temporal revisit is at best one day. However, several acquisitions over the same area are usually acquired on the same day by different satellites. Some of these data are contaminated by clouds or corrupted by noise. Fig. 1 displays a SST image acquired over the Black Sea in October 2005, with the flat grey color corresponding to clouds or noise. HRPT. SST map (°C). Date 2005.10.23. Time 10 (h) 19 (m) Fig. 1. Flat grey area corresponds to clouds or noise. 5.2. Analysis In this paper, motion estimation is tested on a sequence of four images, displayed on fig. 2. The flat grey areas, on the third and fourth frames, correspond to missing data. The two Image Models are used to estimate the surface velocity on these data. Fig. 3 compares the motion fields estimated with SIM and SWIM, at 0=t . The results obtained with SWIM visualize a cyclonic vortex on the western part of the Black Sea. SWIM, due to its physical assumptions on the dynamic, permits a more realistic motion estimation and characterizes structures occurring on the sea surface. In comparison, the potential of SIM highly depends on the size of the temporal window compared to the dynamics involved during that period. That makes SIM no more relevant for data such as those displayed in fig. 2. In conclusion, the DA approach for motion estimation permits to retrieve the major currents of the Black Sea basin. Moreover, the high resolution of NOAA/AVHRR images allows to better evaluate the size of some well known mesoscale structures [12]. 48° 47° 46° 45° 44° 43° 42° 41° 40° L a ti tu d e ( N o rt h ) 22 21 20 19 18 17 16 15 14 13 12 28° 30° 32° 34° 36° 38° 40° 42° Longitude (East) 85 Fig. 2. SST data acquired from October 23th to October 24th, 2005. Fig. 3. Motion estimation: a – SIM; b – SWIM. a) b) c) d) a) b) 86 5.3. Altimetry data Satellite altimeters provide an accurate measure of the Sea Level Anomaly (SLA) that corresponds to the sea surface deviation from its rest state (see the black curve on fig. 4). Fig 4 . Sea Level Anomaly. The altimeters are nadir-pointing instruments providing an along-track acquisition. The coverage of Envisat1 over the Black Sea is for instance displayed on fig. 5. In this paper, we use altimetry measures provided by Envisat2 with a 35 days cycle and by GFO 3 with a 17 days cycle. 5.4. Validation The outputs of SWIM are W , the surface velocity, and h the thickness of the surface layer. The thickness anomaly, denoted SWIMh , is estimated from h as its deviation from the value at rest. On another hand, the altimeters are 1-dimen- sional instruments measuring the Sea Level Anomaly, denoted alth , along their tracks. We then compare SWIMh and alth at the same positions. The physical formula linking these two quantities is: 2 See – http://envisat.esa.int; 3 See – http://ilrs.gsfc.nasa.gov/satellite_missions/list_of_satellites/gfo1_general.html S L S LA R a ng e O rb it R e fr e n ce e lli p so id Ocean Surface Ocean Bottom 87 SWIMalt hh ×∆=× ρρ (17) with ρ being the density of the upper layer, ρ∆ the difference of density between the upper and the lower layer, alth the sea level anomaly measured by the satellite, SWIMh the thickness anomaly estimated by SWIM. Fig. 5. 35 days cycle of Envisat-1. Fig. 6 displays the value of SWIMh , averaged in time. The two straight lines rep- resent altimeter tracks. The green line comes from Envisat and the pink one from GFO. The number of altimetry measures available on the same space-time period than the SST data is rather small. However, we apply the conversion given in (17) and perform a quantitative comparison of alth and SWIMh along a track. Fig. 7 displays these curves for the two tracks displayed on Fig. 6: on the left for Envisat and on the right for GFO. Black crosses locate the altimeter measures. The shapes and values of alth and SWIMh curves are very similar. There is no error in the slope directions. The extrema are well localized. It is almost perfect in the case of Envisat. As the velocity field is strongly related to the shape of the thickness 46° 45° 44° 43° 42° 41° L at itu d e (N o rt h ) 28° 30° 32° 34° 36° 38° 40° 42° Longitude (East) P ix el n u m b er 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160 180 200 Pixel number cm 60 50 40 30 20 10 0 Track1 Track2 altimeter asquisions + Fig. 6. Two altimeter tracks displayed over the average of hSWIM . + + + + + + + + + + + + + + 88 image, these promising results on thickness estimation validate the estimation of the motion. Fig. 8 illustrates the link between velocity and thickness: a bump correspond to an anticyclonic velocity field and a bowl to a cyclonic one. Fig. 7. Sea Level Anomaly, given by the altimeters, compared with the estimation with SWIM 6. Conclusion In this paper, we propose an analysis and validation of the data assimilation approach for motion estimation from satellite image sequences. We compared two dynamic assumptions, i.e. we assimilated the same data in two image models, SIM and SWIM, and analyzed motion results. Moreover, we used altimetry data to quantify the quality of the estimation. The comparison between the surface anomaly estimated by SWIM and measured by altimeters validates our approach. RE FERE NCES 1. Horn B.K.P. and Schunk B.G. Determining optical flow // Artificial Intelligence. – 1981, vol. 17. – P. 185-203. 2. Nagel H.-H. Displacement vectors derived from second-order intensity variations in image sequences // Computer Vision, Graphics, and Image Processing. – 1983, – vol. 21. – P. 85-117. 3. Cohen I. and Herlin I. Optical flow and phase portrait methods for environmental satellite image sequences / in Proceedings of European Conference on Computer Vision, Oxford, UK, April 1996. 4. Mémin E. and Pérez P. Optical flow estimation and object-based segmentation with robust techniques // IEEE Trans. on Image Processing. – 1998. – vol. 7, № 5 (May). – P. 703-719. 5. Béréziat D., Herlin I., Younes L. A generalized optical flow constraint and its physical interpretation / CVPR. – 2000. – P. 2487-2492. 6. Corpetti T., Mémin E., Pérez P. Dense estimation of fluid flows // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2002. – vol. 24, № 3 (March). – P. 365-380. 7. Isambert T., Berroir J.P. and Herlin I. A multiscale vector spline method for estimating the fluids motion on satellite images / Proceedings of European Conference on Computer Vision, Marseille, France, October 2008, Springer. 8. Herlin I., Huot E., Berroir J.-P., F.-X. Le Dimet F.-X. and Korotaev G. Estimation of a motion field on satellite images from a simplified ocean circulation model / Proceedings of International Conference on Image Processing, Atlanta, USA, October 2006. 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 0 20 40 60 80 100 40 60 80 100 120 140 Track point number N o rm al is e d se a le ve l a no m al y image altimeter mage altimeter mage image 89 Fig. 8. From left to right: 1 – 3D water layer thickness; 2 – Its 2D projection. The magenta line figures the track of an altimeter; 3 – SLA along this track; 4 – Velocity field. 1,0 0,8 0,6 0,4 0,2 0,0 80 60 40 20 0 0 20 40 60 80 t = 1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 0 10 20 30 40 50 60 70 t = 1 t = 1 1,0 0,8 0,6 0,4 0,2 0,0 80 60 40 20 0 0 20 40 60 80 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 t = 1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 0 10 20 30 40 50 60 70 t = 1 1 2 3 4 t = 1 10 20 30 40 50 60 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0,0 8 9 90 9. Papadakis N, Héas P. and Mémin E. Image assimilation for motion estimation of atmospheric layers with shallow-water model / Proceedings of Asian Conference on Computer Vision, Tokyo, Japan, November 2007. – P. 864-874. 10. Béréziat D. and Herlin I. Solving ill-posed Image Processing problems using Data Assimilation / Numerical Algorithms. – 2011. – vol. 56, № 2 (February). – P. 219-252. 11. Titaud O., Vidard A., Souopgui I. and Le Dimet F.-X. Assimilation of image sequences in numerical models // Tellus A. – 2010, vol. 62. – P. 30-47. 12. Korotaev G., Huot E., Le Dimet F.-X., Herlin I., Stanichny S.V., Solovyev D.M. and Wu L. Retrieving ocean surface current by 4-D variational assimilation of sea surface temperature images // Remote Sensing of Environment. – 2008. – vol. 112, № 4 (Apriel). – P. 1464-1475 (Special issue on data assimilation). 13. Huot E., Herlin I. and Gennady Korotaev G. Assimilation of SST Satellite Images for Estimation of Ocean Circulation Velocity / Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, Massachusetts, U.S.A., July 6-11. – 2008. – vol. 2. – P. 847-850. 14. Etienne Huot, Isabelle Herlin, Nicolas Mercier, and Evgeny Plotnikov. Estimating apparent motion on satellite acquisitions with a physical dynamic model // Proceedings of the International Conference on Pattern Recognition, Istanbul, Turkey, August 2010. – Springer Verlag, MoAT3.1. – P. 41-44. Rec eived 02 .11 .2011 ; Материал поступил в редакцию 02 .11 .2011 г . АНОТАЦ IЯ У статті описуються результати валідації полів швидкості поверхневих течій, розрахованих по серіях супутникових зображень. Розрахунок проводився за до- помогою динамічної моделі, заснованої на рівняннях мілкої води. Спочатку демонст- руються переваги методу, що використовує рівняння дрібної води перед стаціонарним алгоритмом. Потім, оцінюється кількісне розбіжність між результатами моделювання і вимірювань, проведених за допомогою альтиметричніх даних. Експерименти засновані на картах температур акваторії Чорного моря, отриманих за допомогою сканера AVHRR NOAA. Альтиметричні дані отримані за допомогою сенсорів Envisat і GFO. Близькість результатів, розрахованих за цими джерелами даних, підтверджують високу якість моделювання. АННОТАЦИЯ В статье описываются результаты валидации полей скорости поверхностных течений, рассчитанных по сериям спутниковых изображений. Расчет производился при помощи динамической модели, основанной на уравнениях мелкой воды. Сначала демонстрируются преимущества метода, использующего уравнения мелкой воды перед стационарным алгоритмом. Затем, оценивается количественное расхождение между результатами моделирования и измерений, произведенных при помощи альтиметрических данных. Эксперименты основаны на картах температур акватории Черного моря, полученных с помощью сканера AVHRR NOAA. Альтиметрические данные получены с помощью спутников Envisat и GFO. Близость результатов, рассчитанных по этим источникам данных, подтверждает высокое качество моделирования.