Learning reduced models for motion estimation on ocean satellite images

The paper describes a learning method on sliding windows for estimating apparent motion on long temporal satellite sequences acquired over oceans. A «full model», which is defined on the pixel grid, is chosen to describe the dynamics of motion fields and images, based on heuristics of divergence-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2011
Hauptverfasser: Herlin, I., Bereziat, D., Drifi, K., Zhuk, S.
Format: Artikel
Sprache:English
Veröffentlicht: Морський гідрофізичний інститут НАН України 2011
Schriftenreihe:Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112619
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Learning reduced models for motion estimation on ocean satellite images / I. Herlin, D. Béréziat, K. Drifi, S. Zhuk // Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу: Зб. наук. пр. — Севастополь, 2011. — Вип. 25, т. 2. — С. 66-78. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112619
record_format dspace
spelling irk-123456789-1126192017-01-25T03:02:21Z Learning reduced models for motion estimation on ocean satellite images Herlin, I. Bereziat, D. Drifi, K. Zhuk, S. Моделирование процессов в Мировом океане The paper describes a learning method on sliding windows for estimating apparent motion on long temporal satellite sequences acquired over oceans. A «full model», which is defined on the pixel grid, is chosen to describe the dynamics of motion fields and images, based on heuristics of divergence-free motion and advection of image brightness by the velocity. The image sequence is split into small temporal windows that half overlap in time. Image assimilation in the full model is applied on the first window to retrieve its motion field. This makes it possible to define subspaces of motion fields and images and a «reduced model» is defined by applying the Galerkin projection of the full model on these subspaces. Data assimilation in the reduced model is applied on this second window. The process is iterated for the next window until the end of the whole image sequence. Each reduced model is then learned from the previous one. The main advantage of the approach is the small computational requirements of the assimilation in the reduced models that make it feasible to process in quasi-real time image acquisitions. Twin experiments have been designed to quantify the full model and the learning method on sliding windows and demonstrate the quality of the motion fields estimated by the approach. У статті описується метод вкладених вікон, використовуваний для розрахунку параметрів руху при обробці зображень океану, отриманих за допомогою супутникових систем. «Повна модель», яка використовується для опису динаміки полів, заснована на рівнянні бездівергентного руху рідини і перенесення яскравості зображення швидкістю. Послідовність зображень розбивається на невеликі тимчасові вікна, з половинною перекриттям у часі. Асиміляція зображення в повній моделі проводиться для першого вікна. Це дозволяє визначити підпростори полів руху і зображень та побудувати «редуцiровану модель» проектуванням на ці підпростори методом Гальоркіна. Асиміляція даних в «скороченої моделі» застосовується для другого вікна. Цей процес повторюється для всієї послідовності вікон. Основною перевагою такого підходу є прискорення обробки, що дозволяє використовувати його при обробці зображень у темпі, близькому до реального часу. Переваги «скороченої моделі» продемонстровані чисельними експериментами використовуючи метод близнюків. В статье описывается метод вложенных окон, используемый для расчета параметров движения при обработке изображений океана, полученных с помощью спутниковых систем. «Полная модель», которая используется для описания динамики полей, основана на уравнении бездивергентного движения жидкости и переносе яркости изображения скоростью. Последовательность изображений разбивается на небольшие временные окна, с половинным перекрытием во времени. Ассимиляция изображения в полной модели проводится для первого окна. Это позволяет определить подпространства полей движения и изображений и построить «редуцированную модель» проектированием на эти подпространства методом Галеркина. Ассимиляция данных в «редуцированной модели» применяется для второго окна. Этот процесс повторяется для всей последовательности окон. Основным преимуществом такого подхода является ускорение обработки, что позволяет использовать его при обработке изображений в темпе, близком к реальному времени. Преимущества «редуцированной модели» продемонстрированы численными экспериментами используя метод близнецов. 2011 Article Learning reduced models for motion estimation on ocean satellite images / I. Herlin, D. Béréziat, K. Drifi, S. Zhuk // Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу: Зб. наук. пр. — Севастополь, 2011. — Вип. 25, т. 2. — С. 66-78. — Бібліогр.: 12 назв. — англ. 1726-9903 http://dspace.nbuv.gov.ua/handle/123456789/112619 551.465 en Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу Морський гідрофізичний інститут НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Моделирование процессов в Мировом океане
Моделирование процессов в Мировом океане
spellingShingle Моделирование процессов в Мировом океане
Моделирование процессов в Мировом океане
Herlin, I.
Bereziat, D.
Drifi, K.
Zhuk, S.
Learning reduced models for motion estimation on ocean satellite images
Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу
description The paper describes a learning method on sliding windows for estimating apparent motion on long temporal satellite sequences acquired over oceans. A «full model», which is defined on the pixel grid, is chosen to describe the dynamics of motion fields and images, based on heuristics of divergence-free motion and advection of image brightness by the velocity. The image sequence is split into small temporal windows that half overlap in time. Image assimilation in the full model is applied on the first window to retrieve its motion field. This makes it possible to define subspaces of motion fields and images and a «reduced model» is defined by applying the Galerkin projection of the full model on these subspaces. Data assimilation in the reduced model is applied on this second window. The process is iterated for the next window until the end of the whole image sequence. Each reduced model is then learned from the previous one. The main advantage of the approach is the small computational requirements of the assimilation in the reduced models that make it feasible to process in quasi-real time image acquisitions. Twin experiments have been designed to quantify the full model and the learning method on sliding windows and demonstrate the quality of the motion fields estimated by the approach.
format Article
author Herlin, I.
Bereziat, D.
Drifi, K.
Zhuk, S.
author_facet Herlin, I.
Bereziat, D.
Drifi, K.
Zhuk, S.
author_sort Herlin, I.
title Learning reduced models for motion estimation on ocean satellite images
title_short Learning reduced models for motion estimation on ocean satellite images
title_full Learning reduced models for motion estimation on ocean satellite images
title_fullStr Learning reduced models for motion estimation on ocean satellite images
title_full_unstemmed Learning reduced models for motion estimation on ocean satellite images
title_sort learning reduced models for motion estimation on ocean satellite images
publisher Морський гідрофізичний інститут НАН України
publishDate 2011
topic_facet Моделирование процессов в Мировом океане
url http://dspace.nbuv.gov.ua/handle/123456789/112619
citation_txt Learning reduced models for motion estimation on ocean satellite images / I. Herlin, D. Béréziat, K. Drifi, S. Zhuk // Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу: Зб. наук. пр. — Севастополь, 2011. — Вип. 25, т. 2. — С. 66-78. — Бібліогр.: 12 назв. — англ.
series Екологічна безпека прибережної та шельфової зон та комплексне використання ресурсів шельфу
work_keys_str_mv AT herlini learningreducedmodelsformotionestimationonoceansatelliteimages
AT bereziatd learningreducedmodelsformotionestimationonoceansatelliteimages
AT drifik learningreducedmodelsformotionestimationonoceansatelliteimages
AT zhuks learningreducedmodelsformotionestimationonoceansatelliteimages
first_indexed 2025-07-08T04:18:10Z
last_indexed 2025-07-08T04:18:10Z
_version_ 1837050933050081280
fulltext 66 © Isabelle Herlin, Dominique Béréziat, Karim Drifi, Sergiy Zhuk, 2011 УДК 551 .465 Isabelle Herlin 1,2, Dominique Béréziat 3, Karim Drifi 1,2, Sergiy Zhuk 4 1 INRIA – B.P. 105, 78153 Le Chesnay Cedex, France. 2 CEREA, joint laboratory ENPC – EDF R&D, Université Paris-Est – Cité Descartes, Champs-sur-Marne, 77455 Marne la Vallée, France. 3 Université Pierre et Marie Curie – 4 place Jussieu, 75005 Paris, France. 4 CWI – P.O. Box 94079, NL-1090 GB Amsterdam, Netherlands. LEARNING REDUCED MODELS FOR MOTION ESTIMATION ON OCEAN SATELLITE IMAGES The paper describes a learning method on sliding windows for estimating apparent motion on long temporal satellite sequences acquired over oceans. A «full model», which is defined on the pixel grid, is chosen to describe the dynamics of motion fields and images, based on heuristics of divergence-free motion and advection of image brightness by the velocity. The image sequence is split into small temporal windows that half overlap in time. Image assimilation in the full model is applied on the first window to retrieve its motion field. This makes it possible to define subspaces of motion fields and images and a «reduced model» is defined by applying the Galerkin projection of the full model on these subspaces. Data assimilation in the reduced model is applied on this second window. The process is iterated for the next window until the end of the whole image sequence. Each reduced model is then learned from the previous one. The main advantage of the approach is the small computational requirements of the assimilation in the reduced models that make it feasible to process in quasi-real time image acquisitions. Twin experiments have been designed to quantify the full model and the learning method on sliding windows and demonstrate the quality of the motion fields estimated by the approach. KEYWORDS: Motion Estimation, Data Assimilation, Model Reduction, Galerkin projection 1. Introduction Motion estimation from an image sequence has been intensively studied since the beginning of image processing [1, 2]. The aim is to retrieve the velocity field ),( txw visualised by a discrete image sequence Z=zzZ=z z tx,I=I=I …… 11 )( }{}{ . The application of data assimilation techniques to motion estimation also emerged a few years ago [3 – 5]. In the case of motion estimation, these techniques aim to find the optimal solution to the equations describing the temporal evolution of motion fields and images and to the observation equation, which links the motion field to the observed image data. Their major drawbacks are the memory and computer resources required that do not allow to process long temporal sequences of large size images. To get round this problem, reduction methods are required to apply the data assimilation on subspaces. In [6] such reduced model has been proposed. Coefficients characterizing image observations in the image subspace are assimilated in the reduced model to estimate those characterizing the motion field. 67 In this paper, we focus on the estimation of motion on long temporal windows of satellite images acquired over oceans. The image sequence is split into small windows that half overlap in time. A «full model» is chosen in order to approximately describe the dynamics of motion fields and images. Image assimilation in the full model is applied on the first window to retrieve its motion field. A learning process is designed that defines a «reduced model» from the full model in the second window. This learning defines the subspaces used to characterize motion and images and applies the Galerkin projection of the full model on these subspaces. Data assimilation in the reduced model is then applied for this second window. The learning method is iterated on the next window until the whole image sequence has been processed. The paper describes the two main components of the learning method on sliding windows: the full model and its image assimilation process, the learning of reduced models and their data assimilation systems. Oceans are incompressible fluids and the 2D incompressible hypothesis still remains a good approximation for image sequences if no or small vertical motion occurs (no upwelling or downwelling). If the motion field is divergence-free ( 0)( =wdiv ), it is then only characterized by its vorticity ξ , according to the Helmholtz orthogonal decomposition [7]. An equation on the dynamics of vorti- city ξ is then included in the full model. As temporal integration of the vorticity requires the knowledge of the velocity value at each time step, the discrete computation of w from ξ is performed, based on an algebraic decomposition of vorticity. The transport of image brightness by velocity, which is the usual optical flow equation, is chosen to describe the image dynamics. Section 2 describes the divergence-free image model used for motion estimation on an image sequence. The algebraic method that computes w from its vorticity ξ is also given. Section 3 explains how the solution is obtained by minimizing a cost function with a strong 4D-Var (no error on the dynamics) data assimilation method. The derivation of a reduced model by the Galerkin projection is provided in Section 4. The learning method used to process long temporal image sequences is fully described in Section 5. Section 6 provides results on synthetic data for the full model and Section 7 for the learning method on a long temporal window. 2. Definition of the full model This section describes the divergence-free model that is used to determine velocity from images, on the pixel grid, on the first window of the long temporal sequence. 2.1. Divergence-free model Vorticity characterizes a rotational motion while divergence characterizes sinks and sources in a flow. A fluid motion ( )Tvu=w is described by its vorticity y u x v = ∂ ∂ ∂ ∂ −ξ , under the hypothesis of null divergence [7]. ξ is chosen as the first component of the state vector X of the full model. Deriving the 68 evolution law for ξ requires heuristics on the velocity w . The Lagrangian constancy hypothesis, 0= dt dw , is considered in the paper that can be expanded as ( ) 0 ∂ ∂ =ww+ t w ∇. , or: 0= ∂ ∂+ ∂ ∂+ ∂ ∂ y u v x u u t u (1) 0= ∂ ∂+ ∂ ∂+ ∂ ∂ y v v x v u t v (2) Let us compute the y-derivative of Eq. (1) and subtract it from the x-de- rivative of Eq. (2), replace the quantity y u x v ∂ ∂ ∂ ∂ − by the vorticity ξ , and we obtain: 0=      ∂ ∂+ ∂ ∂+ ∂ ∂+ ∂ ∂+ ∂ ∂ y v x u y v x u t ξξξξ (3) This is rewritten in a conservative form as: 0)( =∇+ ∂ ∂ w t ξξ (4) The observations that are used for the data assimilation process are images acquired by satellites. The second component of the state vector is chosen as a pseudo-image sI , which has the same dynamics than the image observation. It is included in the state vector in order to allow an easy comparison with the image observations at each acquisition date: they have to be almost identical. The evolution law chosen for sI verifies the heuristics for the transport of images by velocities: this is the well known Optical Flow Constraint Equation [1] expressed as: 0=∇+ ∂ ∂ wI t I s s (5) or with the divergence-free hypothesis: 0)( =∇+ ∂ ∂ wI t I s s (6) The divergence-free model is then defined by the state vector ( )TsI=X ξ and its evolution system: 0)( =∇+ ∂ ∂ w t ξξ (7) 0)( =∇+ ∂ ∂ wI t I s s (8) 69 2.2. Algebraic computation of w When the state vector is integrated in time from an initial condition, using Eqs. (7,8), the knowledge of ξ , sI and w is required. The velocity field w should then be computed from the scalar field ξ as follow. A stream function ϕ is first defined as the solution of the Poisson equation: ξϕ =∆− (9) Then, w is derived from ϕ : T yy w       ∂ ∂− ∂ ∂= ϕϕ (10) In the literature, Eq. (9) is usually solved in Fourier domain, with periodic boundary conditions. An algebraic solution is proposed in order to allow Dirichlet boundary conditions. An eigenfunction,φ , of the linear operator ∆− has to verify λ=φ∆− with λ the associated eigenvalue. Explicit solutions of this eigenvalue problem are the family of bi-periodic functions )sin()sin()( mynx=yx,mn, ππφ with the associated eigenvalues 2222 mπ+nπ=λ mn, . These functions form an orthogonal basis of a subspace of )(Ω2L , space of square- integrable functions defined on the spatial domain Ω . Let )( mn,a be the coefficients of ξ in the basis )( mn,φ . We have ∑ mn, mn,mn, yx,a=yx, )()( φξ . It comes: ),(),( , , , yx a yx mn mn mn ϕ λ ϕ ∑= (11) We verify: ξφλ λ φ λ ϕ ==∆−=∆− ∑∑ ),(),(),( , , , , , , , yx a yx a yx mn mn mn mn mn mn mn At each time step, having knowledge of ξ and )( mn,φ , the values of )( mn,a are first computed. Then φ is derived by Eq. (11), using the )( mn,λ values, and w by Eq. (10). 3. Strong 4D-Var Data Assimilation Image assimilation is applied on the first window of the long sequence with the full model described in Section 2. We consider the state vector ( )Ts tyxItyx=y,tx,X ),,(),,()( ξ defined on the space-time domain ],t[ N0×Ω . In order to determineX on this domain, the 4D-Var framework considers a system of three equations to be solved. The first equation describes the evolution in time of the state vector X . This is given by Eqs. (7, 8). For sake of simplicity, we summarize the system and introduce the evolution model M for the state vectorX : 70 0)( =+ ∂ ∂ XM t X (12) We consider having some knowledge of the state vector value at initial date 0 which is described by the background value )( yx,Xb . As this initial condition is uncertain, the second equation of the system involves an error term: ),(),()0,,( yxyxXyxX Bb ε+= (13) The error )( yx,Bε is supposed Gaussian and characterized by its covariance matrix )( yx,B .The last equation, named observation equation, links the state vector to the image observations )( y,tx,I . It is expressed as: ),,()),,((),,( tyxtyxXHtyxI Rε+= (14) with H the observation operator. As the component sI is directly comparable to the observations, the operator H reduces to a projection: sI=HX=XH )( . Image acquisitions are noisy and their underlying dynamics could be different from the one described by Eq. (8). An observation error, Rε , is used to model these uncertainties. It is supposed Gaussian and characterized by its covariance matrix )( y,tx,R . For discussing how Eqs. (12, 13, 14) are solved by the data assimilation method, the state vector and its evolution equation are first discretized in time with an Euler scheme. The space variables x and y are omitted for sake of simplicity. Let dt be the time step, the state vector at discrete index k , tNk ≤≤0 , is denoted )()( dtkX=kX × . The discrete evolution equation is : ))(())(()()1( kXZkXdtMkXkX k=−=+ (15) with ( )Tssk kξwkIdtkIkξwkξdtkξ=kXZ )))(()(()()))(()(()())(( .. ∇−∇− . We assume that obsN image observations )( itI are acquired at indexes. obsNi1 t<<t<<t LL . Looking for ))()0(( tNX,,X=X L solving Eqs.(15, 13, 14) is expressed as a constrained optimization problem: the cost function +−−= ∫ Ω − dydxXXBXXXJ b T b ))0()0(())0()0(( 2 1 ))0(( 1 dydxtItHXtRtItHX ii N i i T ii Obs ))()()(())()(( 2 1 1 1 −−+ ∑ ∫ = Ω − has to be minimized under the constraint of Eq. (15). The first term of J comes from Eq. (13). The second term of J comes from Eq. (14), which is valid at observation indexes it . (16) 71 The gradient of J is obtained from the directional derivative of J and from the definition of an auxiliary variable λ that verifies the backward equation: ))()()(()1()( 1 * kIkHXkRHK X Z k Tk −++        ∂ ∂ = −λλ with 0)( =Nλ t , the term ))()()(( kIkHXkRH T −−1 being only taken into account at observation indexes it . It can be proven [8] that the gradient reduces to: )0())0((1 )0( λ+−=∆ − bX XXBJ The cost function J is minimized using an iterative steepest descent method. At each iteration, the forward time integration of X is performed which provides J , then a backward integration of λ computes )0(λ and provides J∇ . An efficient solver [9] is used to perform the steepest descent given J and J∇ . 4. Derivation of a reduced model This section explains the derivation by Galerkin projection of a reduced model from the full model described in Section 2. We assume that we have knowledge of the background value bξ of vorticity at the beginning of the studied temporal window. The first issue is to define subspaces for vorticity fields and images, onto which the evolution equations (7) and (8) are projected. These subspaces are defined by their respective orthogonal basis ξΨ and IΨ . First, a Proper Orthogonal Decomposition transform (POD) is applied to the image observations Zz ZII ...1}{ == that defines ′IΨ . Second, bξ is numerically integrated in time with Eq. (7). It provides snapshots, on which POD is applied to obtain ′ξΨ . We keep the first K modes of ′ξΨ and the first L modes of ′IΨ to obtain ξΨ and IΨ . Let )(tai and )(tbj be the projection coefficients of )(x,tξ and )(x,tI s on ξΨ and IΨ . )(x,tξ and )(x,tI s are then approximated by: ∑ = ≈ K i ii xΨtatx 1 , )()(),( ξξ (17) ∑ = ≈ L j jIjS xΨtbtxI 1 , )()(),( (18) and replaced in Eqs. (7) and (8): 0)()()()()()( 1 1 , 1 ,, =         ∇⋅         + ∂ ∂ ∑ ∑∑ = == K i L j jj K i iii i xΨtaxΨtawxΨt t a ξξξ (19) 0)()()()()()( 1 1 , 1 ,, =         ∇⋅         + ∂ ∂ ∑ ∑∑ = == L i L j iIj K i iijI i xΨtbxΨtawxΨt t b ξ (20) 72 This system is projected on ξΨ and IΨ : 0,)()(,)( ,, 1 , 1 ,, =         ∇⋅         + ∂ ∂ ∑∑ == ki K i ii K i ikk k ΨΨtaΨtawΨΨt t a ξξξξξ (21) 0,)()(,)( ,, 1 , 1 ,, =         ∇⋅         + ∂ ∂ ∑∑ == lIlI L j ji K i ilIlI l ΨΨtbΨtawΨΨt t b ξ (22) with , being the scalar product in the )(Ω2L space: ∫ Ω = dxxgxFgf )()(, (23) System (21, 22) is simplified to get: KktakBtat dt da Tk ...1,0)()()()( ==+ (24) LltblGtat dt db Tl ...1,0)()()()( ==+ (25) with: T K tata=ta ))()(()( …1 , T L tbtb=tb ))()(()( …1 , B(k) a KK × matrix : kξ,kξ, kξ,jξ,iξ, ji, ψ,ψ ψ,ψψw =B(k) ∂)( ⋅ , G(l) a LK × matrix : lI,lI, lI,jI,iξ, ji, ψ,ψ ψ,ψψw =G(l) ∂)( ⋅ . Let T R tbta=x,tX ))()(()( be the state vector of the reduced model. System (24, 25) is rewritten as: 0)( =+ RR R XM dt dX (26) RM being the Galerkin projection of the full model M on ξΨ and IΨ . 5. Learning reduced models on sliding windows This section describes the learning method on sliding windows, with the full model of Section 2 applied on the first window and the reduced models of Section 4 applied on the following. This learning method allows to process long temporal image sequences. The discrete sequence Z1=z zI=I …}{ is first split into short temporal windows, with 4 to 6 images, that half overlap in time. These windows are denoted mWi , with m the index. Images belonging to 1Wi are assimilated in the 73 divergence-free model described in Section 2. This allows the retrieval of the vorticity on 1Wi . The retrieved value at the beginning of 2Wi is taken as background vorticity bξ required to learn the reduced model on 2Wi , as it has been explained in Section 4. The coefficients of projection of images belonging to 2Wi are assimilated in the reduced model to retrieve the vorticity coefficients and compute the vorticity values and motion fields over 2Wi .This again provides bξ for 3Wi and allows to learn the reduced model on 3Wi . The process is then iterated until the whole sequence I has been analyzed. The method is summarized in Figure 1. Fig. 1. Learning reduced models on sliding windows. The major advantage is that full assimilation is only applied on the first temporal window 1Wi that has a short duration. It requires, at each iteration of the optimisation process, a forward integration of M and a backward integration of its adjoint [5]. The complexity is proportional to the image size multiplied by the number of time steps in the assimilation window. On the next window mWi , the complexity greatly decreases as the state vector involved in the reduced models RM is of size L+K , which is less than 10 in the experiments. 6. Results of the full model In order to quantify the method, it is applied on synthetic data produced by twin experiments. A sequence of five synthetic observations (see Figure 3) is obtained by time integration of the divergence-free model from the initial conditions displayed in Figure 2. t1 t5 t7 t8 t9 t10 t11 t12t2 t3 t6 Assimilation Reduced Model Assimilation Reduced Model Assimilation Full Model t4 T0 TF Observation Dates tz Assimilation Full Model Assimilation Reduced Model Assimilation Reduced Model 74 Fig. 2: Pseudo-image, vorticity (positive values are drawn in white, negative ones in black) and motion field at t = 0. Fig. 3. Observations. For the assimilation experiment, the background of vorticity is set to zero and the one of pseudo-image is the first observation. The result of the assimilation process is the state vector ( )Ts kIk=kX )()()( ξ and its associated motion vector w(k) over the discrete assimilation window. In Table 1, the error between the motion result and the ground truth is given for our approach and four state-of-the-art image processing methods: [1, 10 – 12] that use either a 2L regularization of motion [1] or a second order regularization on the divergence [10 – 12]. This demonstrates that our approach is almost exact for this twin experiment. 7. Results of the learning method on sliding windows Twin experiments were also designed to quantify the learning method on sliding windows and its benefit for motion estimation on long temporal image sequences. The full model was used, with initial conditions displayed in Figure 4. Snapshots of sI were taken to create the observation images Z=z zI=I …1}{ . Assimilation of these data in the full and reduced models is then applied as desc- 75 Table 1: Error analysis: misfit between motion results and ground truth. Method Angular error (in deg.) Norm error (in %) Mean Std. Dev. Min Max Mean Min Max [1] 15,26 9,65 0,33 67,12 24,98 0,85 93,10 [11] 12,54 9,49 0,17 68,49 20,03 0,51 87,74 [12] 10,41 5,34 0,06 35,58 18,07 0,09 92,31 [10] 10,61 6,92 0,00 56,62 18,01 0,01 97,74 Our approach 0,18 0,10 0,00 0,572 0,41 0,00 19,47 described in Section 5 on six windows. Results on motion estimation are given in Figure 5 and compared with the ground truth provided by the simulation creating the observations. Each column corresponds to the first frame of one of the six windows mWi . Fig. 4. Initialisation for the twin experiment: a – )0(ξ ; b – )0(sI . In order to demonstrate the potential of the learning method on sliding windows, statistics on the retrieved vorticity are provided. The normalized root mean square error (in percentage) ranges from 1,1 to 4,0% from the first to the sixth window, while the correlation value between the retrieved vorticity and the ground truth decreases from 0,99 to 0,96. The computing time reduces from around 4 hours for the first window processed by the full model to less than 1 minute for the next five one, processed by reduced models. 8. Conclusions In the paper, we proposed a learning method on sliding windows for estimating motion on long temporal image sequences with data assimilation techniques. This method couples full and reduced models obtained by Galerkin projection and allows to process images in quasi-real time. The method has been quantified with twin experiments to demonstrate its potential. First, the quality of motion fields retrieved by the full model has been assessed. Second, statistics on performances of the reduced models learned on the sliding windows have been provided. a b 76 Fig. 5. Estimated Motion (a – e) compared to the ground truth (g – k). a b c d e g h i k j 76 77 One perspective is to replace the POD bases ξΨ which were used to define the reduced models by a fixed basis in order to even reduce the computational requirements on the first part of the image sequence. Acknowledgements This research is partially supported by the Geo-FLUIDS project (ANR 09 SYSC 005 02). RE FERE NCES 1. Horn B. and Schunk B. Determining optical flow // Art. Int. – 1981. – vol. 17. – P. 185-203. 2. Isambert T., Berroir J. and Herlin I. A multiscale vector spline method for estimating the fluids motion on satellite images / In: Forsyth, D., Torr, P., Zisserman A. (eds.). – Springer, Heidelberg, 2008. – part IV. – vol. 5303. – P. 665-676. 3. Papadakis N., Corpetti T. and Mémin E. (2007). Dynamically consistent optical flow estimation / In ICCV. 2007. – P. 1-7. 4. Titaud O., Vidard A., Souopgui I. and Dimet F.-X. L. Assimilation of image sequences in numerical models // Tellus Series A: Dynamic Meteorology and Oceanography. – 2010. – vol. 62, № 1. – P. 30-47. 5. Béréziat D. and Herlin I. Solving ill-posed image processing problems using data assimilation // Numerical Algorithms. – 2011. – vol. 56, № 2. – P. 219-252. 6. Drifi K. and Herlin I. Assimilation d’images dans un modèle réduit pour l’estimation du mouvement / In GRETSI 2011 – Groupe d’Etudes du Traitement du Signal et des Images, Bordeaux, France. – 2011. – 4 p. 7. Deriaz E. and Perrier V. Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows // Journal of Turbulence. – 2006. – vol. 7, № 3. – P. 1-37. 8. Le Dimet, F.-X. and Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects // Tellus. – 1986. – vol. 38A, № 2. – P. 97-110. 9. Zhu C., Byrd R., Lu P. and Nocedal J. L-BFGS-B: a limited memory FORTRAN code for solving bound constrained optimization problems. Technical Report NAM-11. EECS Department, Northwestern University. – 1994. 10. Isambert T., Herlin I., and Berroir J.-P. Fast and stable vector spline method for fluid flow estimation / In ICIP. – 2007. – P. 505-508. 11. Corpetti T., Mémin E. and Pérez P. Dense estimation of fluid flows // Pat. Anal. and Mach. Int. – 2002. – vol. 24, № 3. – P. 365-380. 12. Suter D. Motion estimation and vector splines / In CVPR. – 1994. – P. 939-942. Rec eived 05 .11 .2011 ; Материал поступил в редакцию 05 .11 .2011 г . 78 АНОТАЦ IЯ У статті описується метод вкладених вікон, використовуваний для розрахунку параметрів руху при обробці зображень океану, отриманих за допомогою супутникових систем. «Повна модель», яка використовується для опису динаміки полів, заснована на рівнянні бездівергентного руху рідини і перенесення яскравості зображення швидкістю. Послідовність зображень розбивається на невеликі тимчасові вікна, з половинною перекриттям у часі. Асиміляція зображення в повній моделі проводиться для першого вікна. Це дозволяє визначити підпрос- тори полів руху і зображень та побудувати «редуцiровану модель» проектуванням на ці підпростори методом Гальоркіна. Асиміляція даних в «скороченої моделі» застосовується для другого вікна. Цей процес повторюється для всієї послідовності вікон. Основною перевагою такого підходу є прискорення обробки, що дозволяє використовувати його при обробці зображень у темпі, близькому до реального часу. Переваги «скороченої моделі» продемонстровані чисельними експериментами використовуючи метод близнюків. АННОТАЦИЯ В статье описывается метод вложенных окон, используемый для расчета параметров движения при обработке изображений океана, полученных с помощью спутниковых систем. «Полная модель», которая используется для описания динамики полей, основана на уравнении бездивергентного движения жидкости и переносе яркости изображения скоростью. Последовательность изображений разбивается на небольшие временные окна, с половинным пере- крытием во времени. Ассимиляция изображения в полной модели проводится для первого окна. Это позволяет определить подпространства полей движения и изображений и построить «редуцированную модель» проектированием на эти подпространства методом Галеркина. Ассимиляция данных в «редуцированной модели» применяется для второго окна. Этот процесс повторяется для всей последовательности окон. Основным преимуществом такого подхода является ускорение обработки, что позволяет использовать его при обработке изображений в темпе, близком к реальному времени. Преимущества «редуцированной модели» продемонстрированы численными экспериментами используя метод близнецов.