Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods
This article is aimed at analyzing the effects of industrial coatings of hardened chromium, trim chromium, hardened nickel and warm-galvanization with a thin structure and dimensions in micron scale, on fatigue endurance limit of components. In order to do this, using the plating process and t...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2013
|
Назва видання: | Проблемы прочности |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112668 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods / K.R. Kashvzadeh, A. Arghavan // Проблемы прочности. — 2013. — № 6. — С. 152-163. — Бібліогр.: 13 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112668 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1126682020-12-17T19:30:15Z Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods Kashvzadeh, K.R. Arghavan, A. Научно-технический раздел This article is aimed at analyzing the effects of industrial coatings of hardened chromium, trim chromium, hardened nickel and warm-galvanization with a thin structure and dimensions in micron scale, on fatigue endurance limit of components. In order to do this, using the plating process and the analyzed coatings with the thickness of 13 and 19 m under the operation conditions, the components of CK45 steel were plated. An attempt was made to analyze the fatigue of components by modeling the interface phase between the base metal and coating more accurately, using the linear spring elements. The S–N curves obtained via the proposed finite element model (including 3 different phases) and other finite element models in which the shell element was used to model the intermediate phase, are compared to the experimental results. The findings indicate that, considering the difference between the S–N curves constructed via the present finite element model and via test results, this model is improved in comparison to the earlier one, and yields more reliable results. Taking into account the environmental and operating conditions of components, the galvanized coating is the most appropriate among low-thickness coatings, but with significant increase in coating thickness, the best choice becomes hardened chromium coating. Increase in coating thickness by 6 m reduces the fatigue limit by 14.96 and 4.37% for galvanized and hardened chromium coatings, respectively. Анализируется влияние промышленных покрытий из упрочненного хрома, износостойкого хрома и упрочненного никеля, полученных методом горячего цинкования, на предел выносливости деталей. Предпринята попытка более точно проанализировать усталость деталей посредством моделирования границы раздела между основным металлом и покрытием, используя при этом упругие элементы. Проведено сравнение кривых усталости, полученных представленным методом конечноэлементного моделирования (включая три различные фазы) и известными методами конечноэлементного моделирования, в которых для моделирования промежуточной фазы использовали элемент оболочки, с кривыми усталости, построенными по данным экспериментальных исследований. Результаты показали, что данная модель является усовершенствованной по сравнению с другими моделями и позволяет получить более надежные результаты. С учетом условий окружающей среды и эксплуатационных условий в качестве наиболее приемлемого покрытия представлено тонкое цинковое покрытие. При значительном увеличении толщины покрытия наилучшим вариантом является упрочненное хромовое покрытие. Увеличение толщины оцинкованных и упрочненных хромовых покрытий на 6 мкм приводит к уменьшению значения предела выносливости на 14,96 и 4,37% соответственно. Аналізується вплив промислових покриттів із зміцненого хрому, зносостійкого хрому та зміцненого нікелю, отриманих методом гарячого цинкування, на границю витривалості деталей. Зроблено спробу більш точно проаналізувати втому деталей за допомогою моделювання границі поділу між основним металом і покриттям, використовуючи при цьому пружні елементи. Проведено порівняння кривих утоми, отриманих описаним методом скінченноелементного моделювання (включаючи три різних фази) і відомими методами скінченноелементного моделювання, в яких для моделювання проміжної фази використовували елемент оболонки, з кривими утоми, побудованими за даними експериментальних досліджень. Результати показали, що дана модель є удосконаленою порівняно з іншими моделями і дозволяє отримати більш надійні результати. З урахуванням умов оточуючого середовища й експлуатаційних умов як найбільш прийнятне покриття представлено тонке цинкове покриття. Зі значним збільшенням товщини покриття найкращим є зміцнене хромове покриття. Зі збільшенням товщини оцинкованих і зміцнених хромових покриттів на 6 мкм значення границі витривалості зменшується на 14,96 і 4,37% відповідно. 2013 Article Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods / K.R. Kashvzadeh, A. Arghavan // Проблемы прочности. — 2013. — № 6. — С. 152-163. — Бібліогр.: 13 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/112668 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Kashvzadeh, K.R. Arghavan, A. Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods Проблемы прочности |
description |
This article is aimed at analyzing the effects of
industrial coatings of hardened chromium, trim
chromium, hardened nickel and warm-galvanization
with a thin structure and dimensions in micron
scale, on fatigue endurance limit of
components. In order to do this, using the plating
process and the analyzed coatings with the
thickness of 13 and 19 m under the operation
conditions, the components of CK45 steel were
plated. An attempt was made to analyze the fatigue
of components by modeling the interface
phase between the base metal and coating more
accurately, using the linear spring elements. The
S–N curves obtained via the proposed finite element
model (including 3 different phases) and
other finite element models in which the shell element
was used to model the intermediate phase,
are compared to the experimental results. The
findings indicate that, considering the difference
between the S–N curves constructed via the present
finite element model and via test results, this
model is improved in comparison to the earlier
one, and yields more reliable results. Taking
into account the environmental and operating
conditions of components, the galvanized coating
is the most appropriate among low-thickness
coatings, but with significant increase in coating
thickness, the best choice becomes hardened
chromium coating. Increase in coating thickness
by 6 m reduces the fatigue limit by 14.96 and
4.37% for galvanized and hardened chromium
coatings, respectively. |
format |
Article |
author |
Kashvzadeh, K.R. Arghavan, A. |
author_facet |
Kashvzadeh, K.R. Arghavan, A. |
author_sort |
Kashvzadeh, K.R. |
title |
Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods |
title_short |
Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods |
title_full |
Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods |
title_fullStr |
Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods |
title_full_unstemmed |
Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods |
title_sort |
study of the effect of different industrial coating with microscale thickness on the ck45 steel by experimental and finite element methods |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2013 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112668 |
citation_txt |
Study of the Effect of Different Industrial Coating with Microscale Thickness on the CK45 Steel by Experimental and Finite Element Methods / K.R. Kashvzadeh, A. Arghavan // Проблемы прочности. — 2013. — № 6. — С. 152-163. — Бібліогр.: 13 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT kashvzadehkr studyoftheeffectofdifferentindustrialcoatingwithmicroscalethicknessontheck45steelbyexperimentalandfiniteelementmethods AT arghavana studyoftheeffectofdifferentindustrialcoatingwithmicroscalethicknessontheck45steelbyexperimentalandfiniteelementmethods |
first_indexed |
2025-07-08T04:22:54Z |
last_indexed |
2025-07-08T04:22:54Z |
_version_ |
1837051229496147968 |
fulltext |
UDC 539.4
Study of the Effect of Different Industrial Coating with Microscale
Thickness on the CK45 Steel by Experimental and Finite Element
Methods
K. R. Kashyzadeh
1
and A. Arghavan
2
Islamic Azad University, Semnan, Iran
1 kazem.kashyzadeh@gmail.com
2 AlirezaArghavan@semnaniau.ac.ir
ÓÄÊ 539.4
Èññëåäîâàíèå âëèÿíèÿ ðàçíûõ ïðîìûøëåííûõ ïîêðûòèé ìèêðî-
ðàçìåðíîé òîëùèíû íà ñòàëü ÑÊ45 ñ ïîìîùüþ ýêñïåðèìåíòàëüíîãî
è êîíå÷íîýëåìåíòíîãî ìåòîäîâ
Ê. Ð. Êàøèçàäåõ, À. Àðãàâàí
Èñëàìñêèé óíèâåðñèòåò Àçàä, Ñåìíàí, Èðàí
Àíàëèçèðóåòñÿ âëèÿíèå ïðîìûøëåííûõ ïîêðûòèé èç óïðî÷íåííîãî õðîìà, èçíîñîñòîéêîãî õðîìà
è óïðî÷íåííîãî íèêåëÿ, ïîëó÷åííûõ ìåòîäîì ãîðÿ÷åãî öèíêîâàíèÿ, íà ïðåäåë âûíîñëèâîñòè
äåòàëåé. Ïðåäïðèíÿòà ïîïûòêà áîëåå òî÷íî ïðîàíàëèçèðîâàòü óñòàëîñòü äåòàëåé ïîñðåä-
ñòâîì ìîäåëèðîâàíèÿ ãðàíèöû ðàçäåëà ìåæäó îñíîâíûì ìåòàëëîì è ïîêðûòèåì, èñïîëüçóÿ
ïðè ýòîì óïðóãèå ýëåìåíòû. Ïðîâåäåíî ñðàâíåíèå êðèâûõ óñòàëîñòè, ïîëó÷åííûõ ïðåäñòàâ-
ëåííûì ìåòîäîì êîíå÷íîýëåìåíòíîãî ìîäåëèðîâàíèÿ (âêëþ÷àÿ òðè ðàçëè÷íûå ôàçû) è èçâåñò-
íûìè ìåòîäàìè êîíå÷íîýëåìåíòíîãî ìîäåëèðîâàíèÿ, â êîòîðûõ äëÿ ìîäåëèðîâàíèÿ ïðîìå-
æóòî÷íîé ôàçû èñïîëüçîâàëè ýëåìåíò îáîëî÷êè, ñ êðèâûìè óñòàëîñòè, ïîñòðîåííûìè ïî
äàííûì ýêñïåðèìåíòàëüíûõ èññëåäîâàíèé. Ðåçóëüòàòû ïîêàçàëè, ÷òî äàííàÿ ìîäåëü ÿâëÿåòñÿ
óñîâåðøåíñòâîâàííîé ïî ñðàâíåíèþ ñ äðóãèìè ìîäåëÿìè è ïîçâîëÿåò ïîëó÷èòü áîëåå íàäåæ-
íûå ðåçóëüòàòû. Ñ ó÷åòîì óñëîâèé îêðóæàþùåé ñðåäû è ýêñïëóàòàöèîííûõ óñëîâèé â êà-
÷åñòâå íàèáîëåå ïðèåìëåìîãî ïîêðûòèÿ ïðåäñòàâëåíî òîíêîå öèíêîâîå ïîêðûòèå. Ïðè çíà÷è-
òåëüíîì óâåëè÷åíèè òîëùèíû ïîêðûòèÿ íàèëó÷øèì âàðèàíòîì ÿâëÿåòñÿ óïðî÷íåííîå õðîìî-
âîå ïîêðûòèå. Óâåëè÷åíèå òîëùèíû îöèíêîâàííûõ è óïðî÷íåííûõ õðîìîâûõ ïîêðûòèé íà 6 ìêì
ïðèâîäèò ê óìåíüøåíèþ çíà÷åíèÿ ïðåäåëà âûíîñëèâîñòè íà 14,96 è 4,37% ñîîòâåòñòâåííî.
Êëþ÷åâûå ñëîâà: óñòàëîñòü, ïîêðûòèå, óïðî÷íåííûé õðîì, îöèíêîâàííûé,
èçíîñîñòîéêèé õðîì, óïðî÷íåííûé íèêåëü, êðèâàÿ óñòàëîñòè, êîíå÷íîýëåìåíò-
íàÿ ìîäåëü, ïðîìåæóòî÷íàÿ ôàçà.
Introduction. Under frequent and repeated tension, metal is broken by tensile
stress, which is lower than the one required for fracture in static tension conditions.
On the other hand, damage of component subjected to simultaneous action of
fatigue and corrosion is much higher than that under consequent application of
fatigue and corrosion conditions. In the latter situation, there is no clear change in
the metal structure which is broken due to fatigue, which could be used as an
evidence for recognition of the reasons of fatigue fracture. At least 90% of
in-service component failures related to mechanical factors is fatigue [1].
© K. R. KASHYZADEH, A. ARGHAVAN, 2013
152 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6
According to the standards of fatigue testing presented by the Association of
Mechanical Engineers of Japan in 1981 and by ASTM in 1998 for constructing an
S–N curve with the minimum number of test specimens, 14 test specimens are
needed, 8 of which are used to determine the limited lifetime above the fatigue
limit. Testing of two specimens at all four levels specifies the balance of the
applied load. Also, the fatigue limit can be obtained by step-wise procedure with 6
test specimens.
Step-wise procedure, which is often referred to as the up-and-down method, is
one of the most common ways that is consistent with most of the available criteria
for evaluating the statistical properties of the fatigue limit [2, 3].
1. Obtaining the Mechanical Properties of the Components.
1.1. Preparing the Components. Ten cylindrical rod-shaped specimens of
12 mm in diameter and the length of 279 mm with the base metal CK45 are
produced, according to tensile test standards, machined and subjected to surface
treatment [4] for further deposition of each group of coatings under study.
At the final stage of preparation, analyzed coatings of various thickness are
deposited under the same operation conditions, such as temperature, humidity and
other factors [5].
1.2. Testing Conditions. In this study, tensile testing machine STM-600 is
used in accordance with Fig. 1.
1.3. Results. The stress–strain curves obtained from tensile tests for components
with different coatings (industrial coatings under study) of 13 and 19 �m in
thickness are depicted in Fig. 2. In Tables 1 and 2, the mechanical characteristics
of the components with coatings of 13 and 19 �m in thickness obtained from
tensile test are tabulated, respectively.
2. Preparation of Components for Fatigue Tests.
2.1. Number of Components Required. As it was mentioned earlier,
according to the ASTM standard in 1998, the number of experimental components
required to get the first component of the S–N curve (limited lifetime above the
fatigue limit) is equal to 8 specimens, however, in order to obtain more reliable
results, 12 components have been used in experiment with 4 levels of applied
cyclic load, 3 specimens being tested at each cyclic load level, so that the average
fatigue life of 3 specimens is treated as the fatigue life at the respective cyclic load
level.
Study Effect of Different Industrial Coating ...
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 153
Fig. 1. Tensile testing machine.
K. R. Kashyzadeh and A. Arghavan
154 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6
T a b l e 1
Mechanical Properties of Components with a Thickness of 13 �m [6]
Result Embellished chromium Hardened chromium
Peak Break Yield Peak Break Yield
Force (N) 105392.9 87833.47 105193.9 107045.3 95098.09 106539.9
Extension (mm) 1.810215 5.641043 1.478078 3.583356 6.912126 1.8323570
Stress (MPa) 931.8779 776.6183 930.1183 946.4883 840.8517 942.0194
Elongation 3.62043 11.28209 2.956157 7.166711 13.82425 3.664713
Elongation after break 3.457021 11.10079 2.792546 7.465292 13.8729 3.952722
Module (MPa) 25739.43 6883.641 31463.77 13206.73 6082.439 25705.13
Energy (kJ) 178.4 560.6 143.5 373.3 719.5 186.1
Hardened nickel Warm galvanizing
Force (N) 110237.8 94113.62 109983.8 110415.8 95250.06 109962.8
Extension (mm) 0.5746964 3.280554 0.3065699 3.450773 7.622701 1.608388
Stress (MPa) 974.7166 832.1472 972.4702 976.2899 842.1954 972.2845
Elongation 1.149393 6.561108 0.6131397 6.901545 15.2454 3.216776
Elongation after break 1.053799 6.477806 0.5177394 6.904699 15.21457 3.218915
Module (MPa) 84802.73 12683.03 158605.0 14145.96 5524.259 30225.44
Energy (kJ) 96.3 377.4 43.1 376.7 821.2 173.6
T a b l e 2
Mechanical Properties of Components with a Thickness of 19 �m [6]
Result Embellished chromium Hardened chromium
Peak Break Yield Peak Break Yield
Force (N) 103591.1 86814.84 103509.9 105971.7 97161.85 105877.5
Extension (mm) 3.000181 6.830809 2.12211 0.1070035 0.055746 0.0906766
Stress (MPa) 915.9464 767.6118 915.2288 936.9957 859.0994 936.1623
Elongation 6.000362 13.66162 4.244219 0.214007 0.1114921 0.1813531
Elongation after break 5.589775 13.18036 3.83329 0.1689866 0.0685821 0.1363553
Module (MPa) 15264.85 5618.747 21564.12 437834.2 770547.6 516209.6
Energy (kJ) 289.8 666.7 198.8 273.0 203.0 249.0
Hardened nickel Warm galvanizing
Force (N) 105175.5 92869.51 104662.2 106726.0 89014.71 106597.7
Extension (mm) 5.002722 9.035047 3.14964 0.5088025 4.231294 0.4345179
Stress (MPa) 929.9554 821.1467 925.4175 943.665 787.0629 942.5307
Elongation 10.00544 18.07009 6.299279 1.017605 8.462587 0.8690357
Elongation after break 9.98278 18.03479 6.276088 0.804564 8.260647 0.6560751
Module (MPa) 9294.494 4544.231 14690.85 92733.91 9300.499 108457.1
Energy (kJ) 520.5 933.7 325.9 56.0 431.2 48.1
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 155
Study Effect of Different Industrial Coating ...
a b
c d
Fig. 2. Force curves in term of length extension of components with 13 (a–d) and 19 �m (e–h)
thicknesses: (a, e) trim chromium; (b, f) hardened chromium; (c, g) hardened nickel; (d, h) warm
galvanization.
e f
g h
2.2. The Test Conditions. Components for each group of analyzed coatings
were made from CK45 steel according to the British Standard BS3518 for
conducting fatigue tests, which specifies the recommended manufacturing methods
for test specimens [7]. Test specimens with dimensions depicted in Fig. 3 are
machined and subjected to surface treatment, and as the final step, the surface of
specimens are polished by sandpaper No.600. The direction of polishing is along
the length of the component, in order to minimize the surface roughness and make
it smooth and glossy [4, 7].
It is noteworthy that, in order to reduce the error percentage at the stage of
preparing the components, they have been subjeted to rasping surface treatment,
whereas dimensions of the blunt cones in the component edges described in Fig. 3
are controlled by Eq. (1):
tan( ) ,� 2
2
�
�D d
L
(1)
where D is the larger-edge diameter of the blunt cone, d is its smaller-edge
diameter, and L is the blunt cone length.
At the next stage, using the process of plating, the analyzed coatings with the
thickness of 13 and 19 �m have been deposited under the same operation
conditions, including temperature, humidity and other factors effective in the
components [8].
Using the scanning electronic microscope (SEM), several photos with
magnification of 1000 were taken, as it is shown in Fig. 4, in order to analyze the
accuracy of plating of components and the thickness of coatings.
3. Testing Conditions. In this study, the most common type of fatigue test,
Moore rotating beam under pure bending load, has been applied, the average stress
being equal to zero; in other words, the stress range is twice the maximum stress
[4].
The frequency of loading of test machine used is equal to 3500 rpm and the
tests at 4 different levels of applied load 107.91, 117.72, 122.625, and 124.578 N
are conducted; and the averaged experimental results obtained at each level are
introduced as the number of cycles to fracture at that level; and based on it, the first
component of the S–N curve (limited duration) of each of the analyzed coatings
with a thickness of 13 �m are obtained, as is shown in Fig. 5.
4. Finite Element Analysis. Fatigue analysis has traditionally been performed
at a later stage of the design cycle. This is due to the fact that the loading
information could only be derived from the direct measurement, which requires a
prototype. Multibody dynamics is capable of predicting the component loads
156 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6
K. R. Kashyzadeh and A. Arghavan
Fig. 3. A schematic of the fatigue test specimen [7]. (Dimensions in mm.)
which enable a designer to undertake the fatigue assessment even before the
prototype is fabricated. The purpose of analyzing a structure early in the design
cycle is to reduce the development time and costs. This is achieved to determine
the critical region of the structure and improving its design even before prototypes
are produced and tested. The finite element method (FEM) based on fatigue
analysis can be considered as a complete engineering analysis for the component.
The fatigue life can be estimated for every element via FEM model, and the
contour plots of life damage can be obtained. The geometry information is
provided by the FEM result for each load case applied independently. The
respective material properties are also provided for the aplied fatigue analysis
method. An integrated approach to fatigue life analysis combines the multibody
dynamic analysis, FEM analysis, and the fatigue analysis into a consistent entity
for the prediction of fatigue life of a component. A flowchart of the FEM-based
fatigue analysis is shown in Fig. 6 [9].
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 157
Study Effect of Different Industrial Coating ...
a b
Fig. 4. Imaging surface of coating at components by SEM: (a) thickness of coating is 13 �m;
(b) thickness of coating is 19 �m.
Fig. 5. S–N curve of different coatings with the thickness of 13 �m based on experimental data [6].
4.1. Earlier Introduced Finite Element Model. In the finite element model,
which has been elaborated in 2011 within framework of the ANSYS software, two
types of 3D elements, i.e., solid and shell ones, are used which are applied,
respectively, for modeling the base steel, coating and the intermediate phase
between them (having a smaller value thickness as compared to its length). In the
new finite element model, including three separate phases, the base metal, coating
and the interface between them are considered; whereas the mechanical properties
of the interface, are treated as the average value of mechanical properties of the
two adjoining phases [10–12].
In this model, by specifying the type of coating and the base metal, with this
assumption, the mechanical properties of the intermediate phase can be easily
assessed; while the thickness of intermediate phase is also considered to be equal
to the length of the metallic bond between the atoms of the two adjoining phases.
4.2. A New Finite Element Model. The difference between the proposed
model and earlier presented model is just in modeling the intermediate phase
between the base metal and the coating. In the new model, a 3D linear spring
element, which has the axial, bending and torsion stiffness, is used instead of shell
element.
In the model, which describes 1/4 part of the component in cylindrical
coordinates, the number of nodes at the outer surface of the base metal is
considered equal to the number of nodes at the interior surface of coating, while
each of the nodes of the two levels are linked together by a spring element.
In order to assess the spring stiffness, firstly, the axial, bending and torsion
stiffness of a solid cylindrical beam (base metal model) and a hollow cylindrical
beam (coating model or, in other words, the deposited component) are obtained
through engineering formulas [13]:
K
AE
L
r �
3
, (2)
158 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6
K. R. Kashyzadeh and A. Arghavan
Fig. 6. The FEM-based fatigue analysis [9].
K
IG
L� � , (3)
K EI� � . (4)
Then, specifying the stiffness of the two phases of the model in each of the
categories of loading, applying a specific load in the lab, and measuring the total
changes and using the rule of total effects, we can obtain the ratio of unknown
phase transformation from the total changes based on the Fig. 7; and then the
stiffness of intermediate phase can be calculated.
One of the important issues that must be considered in the present finite
element model is the length of a spring element used to model the intermediate
phase between the base metal and the coating; so that specifying the two adjoining
phases, the length of the metal bond of the atoms of the two adjoining phases is
considered to be equal to the length of spring elements in the present model; as it
is seen from the finite element model scheme depicted in Fig. 8.
S–N curves obtained from fatigue analysis via the ANSYS software using the
new finite element model of the coated components with coatings of 13 and 19 �m
thickness values are depicted in Fig. 9.
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 159
Study Effect of Different Industrial Coating ...
Fig. 7. A schematic of a solution for assessing the stiffness of the intermediate phase experimentally,
based on stiffness of the other two phases.
Fig. 8. FE model of the deposited components consisted of three independent phases in the ANSYS
software.
The observed difference between the results obtained from finite element
analysis and experimental data is attributed to application of a linear spring
element, while for better approximation and closer fit one can use a nonlinear
spring element, and moreover, the spring constants coulb also be calculated using
different theories of the potential energy. However, in this research, linear spring
element has been used, in order to reach acceptable results with the minimal
computation efforts (increasing the speed of solving the equations) and
simplification of governing equations (using linear terms instead of nonlinear
terms).
With account of the simplifications made, the results obtained from the
experimental tests and finite element analysis (Figs. 6 and 7) indicate that,
considering the environmental and operation conditions of components, a warm-
galvanized coating with thickness less than 19 �m is the most appropriate coating
160 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6
K. R. Kashyzadeh and A. Arghavan
a
b
Fig. 9. S–N curve obtained for components with a thickness of 13 (a) and 19 �m (b) based on the
extracted data of the software using the new FE model.
among the analyzed coatings. Consider the results of two finite element models
and experimental data on the components with warm-galvanized coatings of 13 �m
in thickness, which are depicted in Fig. 10.
As it is seen from this plot, despite the fact that the results of a new finite
element model and experimental data are different, their fit is improved, as
compared to the earlier developed FEM model.
5. The Effect of Coating Thicknesses on the Fatigue Life of Components.
As is seen from Fig. 9, with increased thickness the median between S–N curves of
the coatings decreases, so that it may be possible to shift curves corresponding to
different coatings by increasing their thickness and even change their position to
each other. In this respect, data on the reduction of fatigue life of components, as a
result of increasing thickness from 6 �m to higher values are given in Table 3 for
various coatings.
In the previous section, warm-galvanized coating was introduced as the most
appropriate, but according to Table 3, the rate/speed of reduction of the fatigue life
of components, as a result of equal increase in thickness of various coatings, is
much higher for the warm-galvanized coating than for hardened chromium coating.
The highest amount of iron in the �-layer of galvanized coating (closest
coating layer to the base metal) may be treated as a metallurgical reason for
embrittlement of cladding due to the increased thickness of the coating. As the
coating thickness increases, the amount of iron in the �-layer increases, and it leads
to higher brittleness of the layer. Therefore, the rate of fatigue life reduction is a
result of high increase in thickness.
According to the data from Table 3, the lowest rate of fatigue life reduction is
observed in hardened chromium coating; in case where the coating thickness
increases to a certain level, the best cladding is the warm-galvanized coating, and
then the hardened chromium coating is the most appropriate cladding. Therefore,
we have thickness limitation for the use of warm-galvanized coating; while beyond
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 161
Study Effect of Different Industrial Coating ...
Fig. 10. Comparison of the S–N curve of the warm-galvanized coating with a thickness of 13 �m
through different methods.
the limitation the hardened chromium coating is the best choice for applications
under the analyzed operation conditions.
Conclusions. Considering the fact that the number of conducted tests exceeds
than the standard number, the conclusions are quite reliable, and the galvanized
coating is shown to be the most appropriate coating, being erosion-, corrosion-, and
fatigue-resistant for very small values of coating thickness (13 and 19 �m) under
the specified conditions.
For the analyzed loading conditions of the component, galvanized coating is
the best than other coatings with small thicknes values, while with increased
thickness values, a galvanized coating beommes too brittle due to the high amount
of iron in �-layer, so that a hardened chrome coating should be used as the most
appropriate coating, which is more resistant against erosion and corrosion under
fatigue conditions.
However, the rate of reduction of the fatigue life under equal conditions of
increasing the coating thickness is much higher for galvanized coatings, than for
hardened chrome coatings. This is one of the reasons for using the hardened
chrome coating in case of very high values of coating thickness.
More detailed calculations of this effect for galvanized coating require
additional compuitation costs and efforts, and have yet to be performed,
Generally, hardened chrome coatings are used as the best protection against
erosion and corrosion. However, in order to achieve the best performance and
highest operational efficiency, the coating thickness should be determined based on
the level of erosion and corrosion of the components, considering the operation
conditions of the components, including the type and level of the applied load,
parameters of corrosive environment, etc.
An finally, the linmited fatigue life and fatigue limit values should be assessed
and, taking into account other parameters, such as cost, availability, etc., the most
appropriate coating should be selected.
Ð å ç þ ì å
Àíàë³çóºòüñÿ âïëèâ ïðîìèñëîâèõ ïîêðèòò³â ³ç çì³öíåíîãî õðîìó, çíîñîñò³é-
êîãî õðîìó òà çì³öíåíîãî í³êåëþ, îòðèìàíèõ ìåòîäîì ãàðÿ÷îãî öèíêóâàííÿ,
íà ãðàíèöþ âèòðèâàëîñò³ äåòàëåé. Çðîáëåíî ñïðîáó á³ëüø òî÷íî ïðîàíàë³çó-
âàòè âòîìó äåòàëåé çà äîïîìîãîþ ìîäåëþâàííÿ ãðàíèö³ ïîä³ëó ì³æ îñíîâíèì
ìåòàëîì ³ ïîêðèòòÿì, âèêîðèñòîâóþ÷è ïðè öüîìó ïðóæí³ åëåìåíòè. Ïðîâå-
162 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6
K. R. Kashyzadeh and A. Arghavan
T a b l e 3
The Reduction of Fatigue Life of Components with Different Coatings
for Increasing Thickness of 6 �m
Type of Coating Reduction in fatigue life, %
Warm galvanizing 20.62
Hardened chromium 14.96
Embellished chromium 7.42
Hardened nickel 4.37
äåíî ïîð³âíÿííÿ êðèâèõ óòîìè, îòðèìàíèõ îïèñàíèì ìåòîäîì ñê³í÷åííî-
åëåìåíòíîãî ìîäåëþâàííÿ (âêëþ÷àþ÷è òðè ð³çíèõ ôàçè) ³ â³äîìèìè ìåòî-
äàìè ñê³í÷åííîåëåìåíòíîãî ìîäåëþâàííÿ, â ÿêèõ äëÿ ìîäåëþâàííÿ ïðîì³æ-
íî¿ ôàçè âèêîðèñòîâóâàëè åëåìåíò îáîëîíêè, ç êðèâèìè óòîìè, ïîáóäîâà-
íèìè çà äàíèìè åêñïåðèìåíòàëüíèõ äîñë³äæåíü. Ðåçóëüòàòè ïîêàçàëè, ùî
äàíà ìîäåëü º óäîñêîíàëåíîþ ïîð³âíÿíî ç ³íøèìè ìîäåëÿìè ³ äîçâîëÿº
îòðèìàòè á³ëüø íàä³éí³ ðåçóëüòàòè. Ç óðàõóâàííÿì óìîâ îòî÷óþ÷îãî ñåðå-
äîâèùà é åêñïëóàòàö³éíèõ óìîâ ÿê íàéá³ëüø ïðèéíÿòíå ïîêðèòòÿ ïðåäñòàâ-
ëåíî òîíêå öèíêîâå ïîêðèòòÿ. dz çíà÷íèì çá³ëüøåííÿì òîâùèíè ïîêðèòòÿ
íàéêðàùèì º çì³öíåíå õðîìîâå ïîêðèòòÿ. dz çá³ëüøåííÿì òîâùèíè îöèíêî-
âàíèõ ³ çì³öíåíèõ õðîìîâèõ ïîêðèòò³â íà 6 ìêì çíà÷åííÿ ãðàíèö³ âèòðè-
âàëîñò³ çìåíøóºòüñÿ íà 14,96 ³ 4,37% â³äïîâ³äíî.
1. R. I. Stefener and H. A. Fachs, Metal Fatigue in Engineering, Gilan
University Publication (1998).
2. J. F. Luo, Y. J. Liu, and E. J. Berger, “Interfacial Stress analysis for
multicoating systems using an advanced boundary element method,” Comput.
Mech., 24, 448–455 (2000).
3. C. Giummarra and H. R. Zonker, “Improving the fatigue response of aerospace
structural joints,” in: ICAF 2005 Proc., Hamburg, Germany (2005).
4. J. Lemaitre and R. Desmorat, Engineering Damage Mechanics: Ductile,
Creep, Fatigue and Brittle Fracture, Springer, Heidelberg (2005).
5. Y. L. Lee, J. Pan, R. Hathaway, and M. Barkley, Fatigue Testing and
Analysis: Theory and Practice, Elsevier, Boston (2005).
6. A. Arghavan, K. R. Kashyzadeh, and A. Amiri Asfarjani, “Investigating effect
of industrial coatings on fatigue damage,” J. Appl. Mech. Mater., 87, 230
(2011).
7. B. Khorshidi, Strength of Material Lab, University Book Publication (2004).
8. E. Besharat, Metals Coating Engineering, Tarrah Publication, Tehran (2005).
9. A. A. Asfarjani, S. Adibnazari, and K. R. Kashyzadeh, “Experimental and
finite element analysis approach for fatigue of unidirectional fibrous composites,”
J. Appl. Mech. Mater., 87, 106 (2011).
10. H. Jahed Motlagh, ANSYS, Industry & Science University (2000).
11. D. A. Hancq, Fatigue Analysis Using ANSYS, ANSYS Inc. (2003).
12. R. Browell and A. Hancq, Calculating and Displaying Fatigue Results (2006).
13. A. Timoshenko, Advanced Strength of Material, Ayizh Publ. (2001).
Received 14. 02. 2013
Study Effect of Different Industrial Coating ...
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 163
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles true
/AutoRotatePages /All
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.4
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJDFFile false
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.0000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams false
/MaxSubsetPct 100
/Optimize true
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile ()
/AlwaysEmbed [ true
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 300
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.50000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 300
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.50000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.50000
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile ()
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName ()
/PDFXTrapped /False
/Description <<
/CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
/CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
/DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
/DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
/ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
/FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
/ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
/JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
/KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
/NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
/NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
/PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
/SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
/SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
/ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
>>
/Namespace [
(Adobe)
(Common)
(1.0)
]
/OtherNamespaces [
<<
/AsReaderSpreads false
/CropImagesToFrames true
/ErrorControl /WarnAndContinue
/FlattenerIgnoreSpreadOverrides false
/IncludeGuidesGrids false
/IncludeNonPrinting false
/IncludeSlug false
/Namespace [
(Adobe)
(InDesign)
(4.0)
]
/OmitPlacedBitmaps false
/OmitPlacedEPS false
/OmitPlacedPDF false
/SimulateOverprint /Legacy
>>
<<
/AddBleedMarks false
/AddColorBars false
/AddCropMarks false
/AddPageInfo false
/AddRegMarks false
/ConvertColors /NoConversion
/DestinationProfileName ()
/DestinationProfileSelector /NA
/Downsample16BitImages true
/FlattenerPreset <<
/PresetSelector /MediumResolution
>>
/FormElements false
/GenerateStructure true
/IncludeBookmarks false
/IncludeHyperlinks false
/IncludeInteractive false
/IncludeLayers false
/IncludeProfiles true
/MultimediaHandling /UseObjectSettings
/Namespace [
(Adobe)
(CreativeSuite)
(2.0)
]
/PDFXOutputIntentProfileSelector /NA
/PreserveEditing true
/UntaggedCMYKHandling /LeaveUntagged
/UntaggedRGBHandling /LeaveUntagged
/UseDocumentBleed false
>>
]
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [612.000 792.000]
>> setpagedevice
|