Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density

The main aim of the present work is to check the suitability of the brittle fracture model, namely the local strain energy density (SED), in predicting the experimental results on mode I fracture of blunt V-notched graphite components. For this purpose, a wide range of test results reported in...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Torabi, A.R., Bertoh, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2013
Назва видання:Проблемы прочности
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/112678
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density / A.R. Torabi, F. Bertoh // Проблемы прочности. — 2013. — № 6. — С. 5-21. — Бібліогр.: 42 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112678
record_format dspace
spelling irk-123456789-1126782020-12-17T17:32:34Z Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density Torabi, A.R. Bertoh, F. Научно-технический раздел The main aim of the present work is to check the suitability of the brittle fracture model, namely the local strain energy density (SED), in predicting the experimental results on mode I fracture of blunt V-notched graphite components. For this purpose, a wide range of test results reported in the recent literature on brittle fracture of V-notched test specimens characterized by different geometries is considered. The specimens are made of the same type of coarsegrained polycrystalline graphite. The fracture assessment is carried out predicting theoretically the fracture loads by means of the SED criterion. The SED parameter is evaluated by averaging the local energy over a well-defined control volume which embraces the notch edge. It is found that the SED criterion allows assessing the fracture behavior of graphite specimens characterized by different notch angles and tip radii. Проводится контроль пригодности модели хрупкого разрушения, а именно: локальной плотности энергии деформации, при прогнозировании результатов экспериментальных исследований по разрушению нормальным отрывом графитовых образцов с тупым V-образным надрезом. Рассмотрены результаты испытаний на хрупкое разрушение образцов с V-образным надрезом с разной геометрией, представленные в литературных источниках. Образцы изготовляли из однотипного крупнозернистого поликристаллического графита. Оценку разрушения проводили посредством теоретического прогнозирования разрушающей нагрузки с помощью критерия плотности энергии деформации. Параметр плотности энергии деформации вычислен путем усреднения значения локальной энергии по определенному контрольному объему, который охватывает кромку надреза. Обнаружено, что данный критерий позволяет оценивать поведение графитовых образцов с разными углами надреза и радиусами у его вершины при разрушении. Проводиться контроль придатності моделі крихкого руйнування, а саме: локальної густини енергії деформації, при прогнозуванні результатів експериментальних досліджень щодо руйнування нормальним відривом графітових зразків із тупим V-подібним надрізом. Розглянуто результати випробувань на крихке руйнування зразків із V-подібним надрізом із різною геометрією, відомі з літературних джерел. Зразки виготовляли з однотипного крупнозернистого полікристалічного графіту. При оцінці руйнування використовували теоретичне прогнозування руйнівного навантаження за допомогою критерію густини енергії деформації. Параметр густини енергії деформації обчислено шляхом усереднення значення локальної енергії за визначеним контрольним об’ємом, що охоплює кромку надрізу. Установлено, що даний критерій дозволяє оцінити поведінку графітових зразків із різними кутами надрізу і радіусами у його вершині при руйнуванні. 2013 Article Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density / A.R. Torabi, F. Bertoh // Проблемы прочности. — 2013. — № 6. — С. 5-21. — Бібліогр.: 42 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/112678 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Torabi, A.R.
Bertoh, F.
Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density
Проблемы прочности
description The main aim of the present work is to check the suitability of the brittle fracture model, namely the local strain energy density (SED), in predicting the experimental results on mode I fracture of blunt V-notched graphite components. For this purpose, a wide range of test results reported in the recent literature on brittle fracture of V-notched test specimens characterized by different geometries is considered. The specimens are made of the same type of coarsegrained polycrystalline graphite. The fracture assessment is carried out predicting theoretically the fracture loads by means of the SED criterion. The SED parameter is evaluated by averaging the local energy over a well-defined control volume which embraces the notch edge. It is found that the SED criterion allows assessing the fracture behavior of graphite specimens characterized by different notch angles and tip radii.
format Article
author Torabi, A.R.
Bertoh, F.
author_facet Torabi, A.R.
Bertoh, F.
author_sort Torabi, A.R.
title Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density
title_short Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density
title_full Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density
title_fullStr Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density
title_full_unstemmed Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density
title_sort fracture assessment of blunt v-notched graphite specimens by means of the strain energy density
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2013
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/112678
citation_txt Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density / A.R. Torabi, F. Bertoh // Проблемы прочности. — 2013. — № 6. — С. 5-21. — Бібліогр.: 42 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT torabiar fractureassessmentofbluntvnotchedgraphitespecimensbymeansofthestrainenergydensity
AT bertohf fractureassessmentofbluntvnotchedgraphitespecimensbymeansofthestrainenergydensity
first_indexed 2025-07-08T04:23:43Z
last_indexed 2025-07-08T04:23:43Z
_version_ 1837051281857839104
fulltext ÍÀÓ×ÍÎ-ÒÅÕÍÈ×ÅÑÊÈÉ ÐÀÇÄÅË UDC 539.4 Fracture Assessment of Blunt V-Notched Graphite Specimens by Means of the Strain Energy Density A. R. Torabia and F. Bertob,1 a University of Tehran, Tehran, Iran b University of Padova, Vicenza, Italy 1 Berto@gest.unipd.it ÓÄÊ 539.4 Îöåíêà ðàçðóøåíèÿ ãðàôèòîâûõ îáðàçöîâ ñ òóïûì V-îáðàçíûì íàäðåçîì ñ ïîìîùüþ êðèòåðèÿ ïëîòíîñòè ýíåðãèè äåôîðìàöèè À. Ð. Òîðàáèà, Ô. Áåðòîá à Òåãåðàíñêèé óíèâåðñèòåò, Òåãåðàí, Èðàí á Ïàäóàíñêèé óíèâåðñèòåò, Âè÷åíöà, Èòàëèÿ Ïðîâîäèòñÿ êîíòðîëü ïðèãîäíîñòè ìîäåëè õðóïêîãî ðàçðóøåíèÿ, à èìåííî: ëîêàëüíîé ïëîò- íîñòè ýíåðãèè äåôîðìàöèè, ïðè ïðîãíîçèðîâàíèè ðåçóëüòàòîâ ýêñïåðèìåíòàëüíûõ èññëåäî- âàíèé ïî ðàçðóøåíèþ íîðìàëüíûì îòðûâîì ãðàôèòîâûõ îáðàçöîâ ñ òóïûì V-îáðàçíûì íàäðåçîì. Ðàññìîòðåíû ðåçóëüòàòû èñïûòàíèé íà õðóïêîå ðàçðóøåíèå îáðàçöîâ ñ V-îáðàç- íûì íàäðåçîì ñ ðàçíîé ãåîìåòðèåé, ïðåäñòàâëåííûå â ëèòåðàòóðíûõ èñòî÷íèêàõ. Îáðàçöû èçãîòîâëÿëè èç îäíîòèïíîãî êðóïíîçåðíèñòîãî ïîëèêðèñòàëëè÷åñêîãî ãðàôèòà. Îöåíêó ðàçðó- øåíèÿ ïðîâîäèëè ïîñðåäñòâîì òåîðåòè÷åñêîãî ïðîãíîçèðîâàíèÿ ðàçðóøàþùåé íàãðóçêè ñ ïîìîùüþ êðèòåðèÿ ïëîòíîñòè ýíåðãèè äåôîðìàöèè. Ïàðàìåòð ïëîòíîñòè ýíåðãèè äåôîð- ìàöèè âû÷èñëåí ïóòåì óñðåäíåíèÿ çíà÷åíèÿ ëîêàëüíîé ýíåðãèè ïî îïðåäåëåííîìó êîíòðîëü- íîìó îáúåìó, êîòîðûé îõâàòûâàåò êðîìêó íàäðåçà. Îáíàðóæåíî, ÷òî äàííûé êðèòåðèé ïîçâîëÿåò îöåíèâàòü ïîâåäåíèå ãðàôèòîâûõ îáðàçöîâ ñ ðàçíûìè óãëàìè íàäðåçà è ðàäèóñàìè ó åãî âåðøèíû ïðè ðàçðóøåíèè. Êëþ÷åâûå ñëîâà: V-îáðàçíûé íàäðåç, õðóïêîå ðàçðóøåíèå, ãðàôèò, ïëîò- íîñòü ýíåðãèè äåôîðìàöèè, íàãðóæåíèå íîðìàëüíûì îòðûâîì. Introduction. Graphite materials are normally utilized as heat shields in various industries like aerospace, steel making and nuclear industries etc. Such materials are vulnerable to abrupt fracture because of weak mechanical properties and high degree of brittleness. The fracture problem would be quite serious if stress © A. R. TORABI, F. BERTO, 2013 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 5 raisers such as defects, scratches, cracks and notches exist in the graphite component. The stress raisers concentrate stresses around themselves and make a hazardous region with high risk of initiating crack(s) and provoking sudden fracture. Therefore, the fracture resistance of graphite parts should be essentially investigated under mechanical loads, particularly in the presence of stress concentrators [1–5] or sharp cracks [6–8]. In general, crack problems have been more extensively investigated by the researchers than notch problems in the context of fracture mechanics, since the origin of fracture mechanics was on those components containing pre-existing cracks. A comprehensive literature review showed that crack propagation and fracture have been widely assessed by several researchers on different types of graphite materials. Under mode I loading conditions where the crack faces open with respect to each other, two main contributions were found. The first one deals with evaluating the fracture toughness of a type of nuclear graphite performed by Shi et al. [9] using a three-point bending specimen. The second investigation has been carried out by Etter et al. [10] on fracture toughness of a type of poly- crystalline graphite using a single-edge cracked beam specimen. Dealing with mixed mode fracture in graphite materials, however, more works were found in literature survey. Awaji and Sato [11] were probably the first researchers who investigated experimentally the fracture toughness of two various graphite materials by means of the cracked Brazilian disk (CBD) specimen. The fracture toughness of different graphite materials has been experimentally evaluated by Yamauchi et al. [12, 13] by means of the CBD and the semi circular bend (SCB) specimens under asymmetric three-point bending. Moreover, Li et al. [14] utilized a single-edge cracked sample to measure the mixed mode fracture toughness of a type of poly-granular graphite material. Other investigations on fracture toughness of graphite materials are also worth of mentioning (see [15–22] and references reported therein). Nowadays, the fracture problems in which a brittle component is weakened by a notch are investigated by means of the principles of the notch fracture mechanics (NFM). Specific needs, like to connect various parts of structures and machines, force designers to introduce notches of different shapes, particularly V- and U-shaped notches, into the engineering components and structures. As mentioned above, notches concentrate stresses in the proximity of their tip making the component more prone to crack initiation. If the component is made of a brittle or quasi-brittle material (such as most of industrial graphite materials), the crack nucleates from the notch border and propagates quickly causing a sudden fracture which usually takes place immediately after a rapid crack growth. Thus, the fracture behavior of brittle components containing notches should be essentially studied by using theoretical and/or experimental methods. Few studies have been previously carried out on the fracture of graphite materials weakened by notches. At the best of authors’ knowledge, the pioneering researchers in this field were Bazaj and Cox [23] and Kawakami [24] who first investigated the notch sensitivity on different graphite materials. In the past five years, brittle fracture assessment of notched graphite components has been conducted by taking into account mainly the notch fracture mechanics approaches. Dealing with mode I loading, some recent results of research in this field have been A. R. Torabi and F. Berto 6 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 published in [25] where the brittle fracture in V-notched graphite components has been investigated both theoretically and experimentally. Some mode I fracture tests on three different shapes of V-notched graphite specimens, which were completely different in overall geometry, were carried out and the fracture loads were assessed by means of a stress-based fracture model named in [25] the mean stress (MS) fracture model. In [26], some experimental results were conducted on brittle fracture of V-notched Brazilian disk (V-BD) specimens made of a type of polycrystalline graphite under mixed mode loading. A stress-based brittle fracture model, namely the V-notched maximum tangential stress (V-MTS) criterion, was utilized for predicting the test results [26]. Beside the works performed in [25, 26] where commonly stress-based fracture models have been employed for the fracture assessment, the strain energy density (SED) approach, as first suggested in [27], has also been successfully used in [28–30] with the aim to assess a large bulk of static mixed mode fracture tests from various brittle and quasi-brittle materials. One of the most important advantages of the mean SED approach is the mesh independency. In fact, contrary to some parameters integrated in the local criteria (e.g., maximum principal stress, hydrostatic stress, deviatoric stress), which are mesh-dependent, the SED averaged over a control volume is substantially insensitive to the mesh refinement. As widely documented in [31, 32], refined meshes are not necessary, because the mean value of the SED on control volume can be directly determined via the nodal displacements, without involving their derivatives. As soon as the average SED is known, the notch stress intensity factors (NSIFs) can be calculated a posteriori on the basis of very simple expressions linking the local SED and the relevant NSIFs. This holds true also for the stress concentration factors (SCFs), at least when the local stress distributions ahead of the blunt notch are available for the plane problem. The extension of the SED method to three-dimensional cases is also possible as well as its extension to notched geometries exhibiting small-scale yielding. Dealing with mixed mode I/II fracture of graphite specimens containing rounded-tip notches of various shapes, the fracture load of notches has been recently predicted successfully by using the SED model (see [33–35]). In a more recent work, a large bulk of out-of-plane fracture tests have been conducted on laboratory-scaled V-notched graphite bars and predicted well the maximum torque that each notched bar can sustain by means of the SED criterion [36]. As a non-conventional fracture study, brittle fracture of isostatic graphite subjected to compression has been also studied experimentally by means of prismatic specimens weakened by sharp and rounded-tip V-notches [37]. The SED model has been utilized for the fracture assessment of notched graphite specimens under compressive loading, as an extension of what has been suggested in previous papers dealing with the cases of in-plane tension/shear and torsion loading in notched graphite specimens. Some new fracture test results on U-notched graphite specimens have been reported in [38] dealing with mode I loading conditions. The specimen tested was a disc-type sample containing a central bean-shaped slit with two U-shaped ends, called U-notched Brazilian disk (UNBD). The experimental results of mode I notch fracture toughness have been assessed by means of some stress-based criteria [38]. Fracture Assessment of Blunt V-Notched Graphite Specimens ... ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 7 In this research, the main target was to verify the suitability of the well-known SED criterion in predicting tensile fracture load of several blunt V-notched graphite specimens reported previously in literature [25]. The results revealed that the SED criterion could predict the experimental results very well for various notch angles and different notch tip radii. 1. Experimental Results Reported in Literature. 1.1. Material. The material utilized in [25] for fabricating the test samples was a type of commercial coarse-grained polycrystalline graphite with the properties presented in Table 1. 1.2. Specimen. Three blunt V-notched specimens; completely different in overall geometry; have been utilized in [25] for mode I fracture experiments. They have been the rounded-tip V-notched three-point bend (RV-TPB), the rounded-tip V-notched semi-circular bend (RV-SCB) and the rounded-tip V-notched Brazilian disk (RV-BD) specimens [25]. Figure 1 displays such specimens schematically. The dimensions of the three test specimens are presented in Tables 2, 3, and 4. 8 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 A. R. Torabi and F. Berto T a b l e 1 Properties of the Graphite Material [25] Material property Value Elastic modulus E, GPa 8.05 Poisson’s ratio � 0.2 Ultimate tensile strength �t , MPa 27.5 Plane-strain fracture toughness K cI , MPa m 1.0 Bulk density (kg/m3) 1710 Mean grain size (�m) 320 Porosity (%) 9 T a b l e 2 Dimensions of the RV-TPB Specimens [25] Specimen �, mm a, mm L, mm S , mm W , mm 2�, deg RV-TPB 1.2 10 100 60 20 30, 60, 90 4.0 16 160 96 32 30, 60, 90 T a b l e 3 Dimensions of the RV-SCB Specimens [25] Specimen a, mm D , mm S , mm �, mm 2�, deg RV-SCB 15 60 45 1, 2, 4 30, 60, 90 T a b l e 4 Dimensions of the RV-BD Specimens [25] Specimen a, mm D , mm �, mm 2�, deg RV-BD 15 60 1, 2, 4 30, 60, 90 The parameters a, �, and 2� denote the notch length, the notch tip radius, and the notch angle, respectively. The thickness for the entire specimens has been equal to 8 mm [25]. For each type of specimens represented in Fig. 1, three notch angles of 30, 60, and 90� and also three notch tip radii of 1, 2, and 4 mm have been considered. To check the repeatability of the experimental results, three samples have been tested for any of twenty seven geometries providing totally eighty one test results [25]. The fracture loads of the V-notched graphite specimens are presented in Table 5 [25]. Since the load–displacement curves recorded during the experiments have been linear up to final fracture [25], using the brittle fracture criteria in the context of linear elastic notch fracture mechanics (LENFM) such as the SED criterion is allowable for predicting the experimental results. 2. Fracture Criterion Based on the Strain Energy Density Averaged Over a Control Volume. In order to estimate the fracture load of notched graphite components, designers need a suitable fracture criterion based on the mechanical behavior of material around the notch tip. A strain-energy-density based criterion is described in this section by which the fracture loads obtained from the experiments can be estimated with a reasonable accuracy. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 9 Fracture Assessment of Blunt V-Notched Graphite Specimens ... a b c Fig. 1. The blunt V-notched test specimens used in [25] for fracture experiments: RV-TPB specimen (a), RV-SCB specimen (b), and RV-BD specimen (c). Dealing with cracked components, the strain energy density factor S [39] was defined first by Sih as the product of the strain energy density by a critical distance from the point of singularity. Failure was thought of as controlled by a critical value S c , whereas the direction of crack propagation was determined by imposing a minimum condition on S . Furthermore, this theory was used to study three problems of structural failure, namely the problem of slow stable growth of an inclined crack in a plate subjected to uniaxial tension, the problem of fracture instability of a plate with a central crack and two notches, and the problem of unstable crack growth in a circular disc subjected to two equal and opposite forces. The results of stress analysis were combined with the strain energy density theory to obtain the whole history of crack growth from initiation to instability. A length parameter was introduced to define the fracture instability of a mechanical system. Fracture trajectories were obtained for fast unstable crack propagation [40]. Different from Sih’s criterion, which is a point-wise criterion, the averaged strain energy density criterion (SED) as presented in [27, 28] states that brittle failure occurs when the mean value of the strain energy density over a given control volume is equal to a critical value Wc . This critical value varies from material to material but it does not depend on the notch geometry and sharpness. The control volume, reminiscent of Neuber’s concept of elementary structural volume [41], is thought of as dependent on the ultimate tensile strength and the fracture toughness K cI in the case of brittle or quasi-brittle materials subjected to static loads. Such a method was formalized and applied first to sharp, zero radius, V-notches under mode I and mixed I/II loading [27] and later extended to blunt U- and V-notches [28–30]. When dealing with cracks, the critical volume is a circle of radius Rc centered at the tip (Fig. 2). Under plane strain conditions, the critical length, Rc , can be evaluated according to the following expression [30]: R K c c t � � � � � �� ( )( ) , 1 5 8 4 2 � � � � I (1) 10 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 A. R. Torabi and F. Berto T a b l e 5 Fracture Loads (N) of the V-Notched Graphite Specimens [25] Specimen 2 30� � � 2 60� � � 2 90� � � � �1 (mm) � � 2 (mm) � � 4 (mm) � �1 (mm) � � 2 (mm) � � 4 (mm) � �1 (mm) � � 2 (mm) � � 4 (mm) RV-TPB 153 163 157 181 195 189 261 291 317 162 174 170 196 209 216 292 327 345 162 170 166 190 200 212 305 315 326 RV-SCB 512 542 568 587 633 620 638 685 718 471 490 508 558 577 602 667 726 801 469 532 550 549 572 630 591 614 694 RV-BD 1893 1939 1875 1890 2060 2119 2057 2204 2023 1379 1452 1485 1758 1574 1606 1688 1932 1545 787 1004 938 960 1080 940 1110 1250 1060 where K cI is the fracture toughness, � Poisson’s ratio, and � t the ultimate tensile strength of a plain specimen that obeys a linear elastic behavior. For a sharp V-notch, the critical volume becomes a circular sector of radius Rc centered at the notch tip (Fig. 2) while for a blunt V-notch under mode I loading, the volume assumes the crescent shape shown in Fig. 2c, where Rc is the depth measured along the notch bisector line. The outer radius of the crescent shape is equal to R rc 0 , being r0 the distance between the notch tip and the origin of the local coordinate system (Fig. 2). Such a distance depends on the V-notch opening angle 2�, according to the expression r0 2 2 2� � � � � �( ) ( ) [28]. Under mixed mode loading, the critical volume is no longer centered on the notch tip, but rather on the point where the principal stress reaches its maximum value along the edge of the notch. It was assumed that the crescent shape volume rotates rigidly under mixed mode, with no change in shape and size. This is the governing idea of the ‘equivalent local mode I’ approach, as proposed and applied to U- and V-notches [29, 30]. When the area embraces the semicircular edge of the notch (and not its rectilinear flanks), the mean value of SED can be expressed in the following form [28]: W F H R Ec tip 1 2 2 2� ( ) ( , ) ,� � � � (2) where F( )2� and H Rc( , )2� � depend on previously defined parameters and are listed in a previous reference [28]. By simply using the definition of the mode I NSIF for blunt V-notches [42], a simple relationship between � tip and K1� can be obtained as follows: K F tip1 1 2 1 � �� � �� ( ) . (3) Then, it is possible to rewrite Eq. (3) in a more compact form: W H R K E R c c 1 1 2 2 1 2 1 1 � ( , ) . ( ) � � � � (4) Equation (4) can be used to evaluate the SED under mode I loading once K1� is known. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 11 Fracture Assessment of Blunt V-Notched Graphite Specimens ... a b c Fig. 2. Control volume (area) for sharp V-notch (a), crack (b), and blunt V-notch (c) under mode I loading. (Distance r0 2 2 2� � � � � �( ) ( ), for a U-notch r0 2� � .) Alternatively avoiding any simplified assumption, the SED values can be directly derived from finite element (FE) models. The advantage of the direct evaluation of the SED from a FE model is that the value of this parameter is mesh-independent as described in [31, 32]. A very coarse mesh can be adopted for the SED evaluation contrary to the mesh required to evaluate the notch stress intensity factors or other stress-based parameters. 3. SED Approach in Fracture Analysis of the Tested Graphite Specimens. The fracture criterion described in the previous section is employed here to estimate the fracture loads obtained from the experiments conducted on the graphite specimens and taken from [25]. In order to determine the SED values, first a finite element model of the graphite specimens was generated. A typical mesh used in the numerical analyzes is shown in Fig. 3 for all the shapes of the specimens considered in the present investigation. The averaged strain energy density criterion (SED) states that failure occurs when the mean value of the strain energy density over a control volume, W , is equal to a critical value Wc , which depends on the material but not on notch geometry [27, 28]. This critical value can be determined from the ultimate tensile strength � t according to Beltrami’s expression: W Ec t � � 2 2 . (5) In parallel, the control volume definition via the control radius Rc needs the knowledge of the fracture toughness K cI and Poisson’s ratio � , see Eq. (1). The critical load that is sustainable by a notched component can be estimated by imposing W equal to the critical value Wc . This value is considered here constant under mode I, mode II, and in-plane mixed-mode conditions. This assumption has been extensively verified for a number of different brittle and quasi-brittle materials [27–30]. As mentioned earlier, the properties of the graphite material used in the present investigation are: � t � 27.5 MPa, K cI �1 MPa m, and Poisson’s ratio � � 0.2. As a result, the critical SED for the tested graphite is Wc � 0.0469 MJ/m3 whereas the radius of the control volume is Rc � 0.429 mm considering realistic plane strain conditions. The material properties are the same of that reported in [25, 33]. The SED occurring inside the control volume embracing the edges of V-notches has been calculated numerically by using the FE code ANSYS. For each geometry, a model was created defining the control volume where the strain energy density should be averaged (see Fig. 3). All the analyses have been carried out by using eight-node elements under the hypothesis of plane-strain conditions. Figure 4, which refers to the case ��1 mm and 2 30�� � , reports the strain energy density contour lines inside the control volume for the three different shapes of specimens considered herein. Note that the SED is symmetric with respect to the notch bisector line. Tables 6–8 summarize the outlines of the experimental, numerical and theoretical findings for the tested graphite specimens with three different notch tip radii and notch opening angles investigated in the present research and re-analyzed 12 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 A. R. Torabi and F. Berto by means of SED. In particular, each table summarizes the experimental loads to failure (P) for every notch radius � compared with the theoretical values (Pth ) based on the SED evaluation. The tables also give the SED value as obtained directly from the FE models of the graphite specimens. ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 13 Fracture Assessment of Blunt V-Notched Graphite Specimens ... a b Fig. 3. Typical mesh used to evaluate the SED in RV-TPB (a), RV-SCB (b), and RV-BD (c) specimens. c T a b l e 6 Synthesis of the Results from RV-TPB Specimens 2�, deg �, mm W , MJ/m3 P, N Pth , N W Wc 30 1 0.0415 0.0470 0.0436 153 163 157 162 162 162 0.940 1.001 0.965 2 0.0473 0.0549 0.0516 181 195 189 180 180 180 1.005 1.082 1.049 4 0.0412 0.0512 0.0608 261 291 317 278 278 278 0.938 1.045 1.139 60 1 0.0455 0.0525 0.0501 162 174 170 164 164 164 0.985 1.058 1.034 2 0.0548 0.0623 0.0665 196 209 216 181 181 181 1.081 1.153 1.192 4 0.0517 0.0648 0.0722 292 327 345 278 278 278 1.050 1.176 1.241 14 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 A. R. Torabi and F. Berto Fig. 4. SED contour lines. 90 1 0.0446 0.0491 0.0468 162 170 166 166 166 166 0.976 1.024 0.999 2 0.0514 0.0569 0.0640 190 200 212 181 181 181 1.047 1.102 1.168 4 0.0563 0.0601 0.0643 305 315 326 278 278 278 1.096 1.132 1.172 T a b l e 7 Synthesis of the Results from RV-SCB Specimens 2�, deg �, mm W , MJ/m3 P, N Pth , N W Wc 30 1 0.0615 0.0689 0.0757 512 542 568 447 447 447 1.145 1.212 1.270 2 0.0636 0.0740 0.0710 587 633 620 504 504 504 1.165 1.256 1.231 4 0.0546 0.0630 0.0692 638 685 718 591 591 591 1.079 1.159 1.215 60 1 0.0510 0.0552 0.0593 471 490 508 452 452 452 1.043 1.085 1.125 2 0.0575 0.0615 0.0669 558 577 602 504 504 504 1.107 1.145 1.195 4 0.0598 0.0709 0.0863 667 726 801 591 591 591 1.129 1.229 1.356 90 1 0.0488 0.0628 0.0671 469 532 550 460 460 460 1.020 1.157 1.196 2 0.0555 0.0602 0.0731 549 572 630 505 505 505 1.088 1.133 1.248 4 0.0471 0.0508 0.0650 591 614 694 589 589 589 1.002 1.041 1.177 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 15 Fracture Assessment of Blunt V-Notched Graphite Specimens ... Continued Table 6 T a b l e 8 Synthesis of the Results from RV-BD Specimens 2�, deg �, mm W , MJ/m3 P, N Pth , N W Wc 30 1 0.0445 0.0467 0.0437 1893 1939 1875 1942 1942 1942 0.974 0.998 0.965 2 0.0486 0.0577 0.0610 1890 2060 2119 1856 1856 1856 1.018 1.109 1.141 4 0.0652 0.0748 0.0630 2057 2204 2023 1745 1745 1745 1.179 1.263 1.159 60 1 0.399 0.0443 0.0463 1379 1452 1485 1493 1493 1493 0.923 0.972 0.994 2 0.0643 0.0516 0.0537 1758 1574 1606 1500 1500 1500 1.172 1.049 1.070 4 0.0599 0.0785 0.0502 1688 1932 1545 1493 1493 1493 1.131 1.294 1.035 90 1 0.0216 0.0352 0.0307 787 1004 938 1158 1158 1158 0.679 0.866 0.809 2 0.0302 0.0381 0.0289 960 1080 940 1197 1197 1197 0.802 0.902 0.785 4 0.0371 0.0471 0.0338 1110 1250 1060 1247 1247 1247 0.889 1.002 0.849 The last column of the tables reports the square root of the SED normalized by the critical value for the material. This non-dimensional parameter is proportional to a load and quantifies the accuracy in the fracture assessment. It should be equal to 1.00 for a 0% of relative deviation between predicted and experimental values. As widely discussed in [30], acceptable engineering values range between 0.8 and 1.2. As visible from the tables, this range is satisfied for the majority of the summarized test data with only few exceptions. Dealing with TPB specimens and notch opening angles equal to 30 and 90�, the results are given also in graphical form in Fig. 5 where the experimental values of the critical loads (open dots) have been compared with the theoretical predictions based on the constancy of the SED in the control volume (solid line). The plots are given for the notched graphite specimens as a function of the notch tip radius �. 16 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 A. R. Torabi and F. Berto The trend of the theoretically predicted loads is in good agreement with the experimental ones. The same comparison is shown in Fig. 6 for SCB specimens. Also in this case, it is evident that the SED is able to assess the fracture loads with a good accuracy being the predicted values also in the safe direction. Figure 7 reports the comparison between theoretical and experimental fracture loads for the BD specimens characterized by a notch opening angle 2 60�� � . A synthesis in terms of the square root value of the local energy averaged over the control volume (of radius Rc), normalized with respect to the critical energy of the material as a function of the normalized notch tip radius is shown in Fig. 8. The plotted parameter is proportional to the fracture load. The new data are plotted together independent of the notch geometries and specimens shape. The aim is to investigate the influence of the notch tip radius on the fracture assessment based on SED. From the figure it is clear that the scatter of the data is very limited and almost independent of the notch radius. All the values fall inside a scatter ranging from 0.80 to 1.20 with the majority of the data inside 0.90 to 1.10 and only few data outside the range 0.8–1.2. The synthesis confirms also the choice of the ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 17 Fracture Assessment of Blunt V-Notched Graphite Specimens ... a b Fig. 5. Comparison between theoretical fracture loads obtained by SED and experimental data for RV-TPB specimens with a notch opening angle 2 30� � � (a) and 2 90� � � (b). a b Fig. 6. Comparison between theoretical fracture loads obtained by SED and experimental data for RV-SCB specimens with a notch opening angle 2 30� � � (a) and 2 90� � � (b). control volume which seems to be suitable to characterize the material behavior under pure mode I loading. The scatter of the experimental data presented here is in good agreement with the recent database in terms of SED reported in [29, 30]. Conclusions. The fracture loads of extensive V-notched graphite specimens reported in recent literature were theoretically predicted very well by means of the well-established brittle fracture criterion, namely the strain energy density (SED) over a specified control volume which embraces the notch edge. Three V-notched test specimens with completely various overall geometries (disk, semi-disk and rectangle) were considered in the predictions. All of the theoretical results fall inside a scatter band of �20% with the majority of which inside a scatter band of �10% demonstrating the effectiveness and the repeatability of the SED criterion. Only very few results fall outside the scatter band of �20% that may or may not be attributed to possible inaccuracy in the experiments. Ð å ç þ ì å Ïðîâîäèòüñÿ êîíòðîëü ïðèäàòíîñò³ ìîäåë³ êðèõêîãî ðóéíóâàííÿ, à ñàìå: ëî- êàëüíî¿ ãóñòèíè åíåð㳿 äåôîðìàö³¿, ïðè ïðîãíîçóâàíí³ ðåçóëüòàò³â åêñïåðè- ìåíòàëüíèõ äîñë³äæåíü ùîäî ðóéíóâàííÿ íîðìàëüíèì â³äðèâîì ãðàô³òîâèõ çðàçê³â ³ç òóïèì V-ïîä³áíèì íàäð³çîì. Ðîçãëÿíóòî ðåçóëüòàòè âèïðîáóâàíü íà 18 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 A. R. Torabi and F. Berto Fig. 7. Comparison between theoretical fracture loads obtained by SED and experimental data for RV-BD specimens with a notch opening angle 2 60� � �. Fig. 8. Synthesis of brittle failure data from graphite specimens. êðèõêå ðóéíóâàííÿ çðàçê³â ³ç V-ïîä³áíèì íàäð³çîì ³ç ð³çíîþ ãåîìåòð³ºþ, â³äîì³ ç ë³òåðàòóðíèõ äæåðåë. Çðàçêè âèãîòîâëÿëè ç îäíîòèïíîãî êðóïíî- çåðíèñòîãî ïîë³êðèñòàë³÷íîãî ãðàô³òó. Ïðè îö³íö³ ðóéíóâàííÿ âèêîðèñòî- âóâàëè òåîðåòè÷íå ïðîãíîçóâàííÿ ðóéí³âíîãî íàâàíòàæåííÿ çà äîïîìîãîþ êðèòåð³þ ãóñòèíè åíåð㳿 äåôîðìàö³¿. Ïàðàìåòð ãóñòèíè åíåð㳿 äåôîðìàö³¿ îá÷èñëåíî øëÿõîì óñåðåäíåííÿ çíà÷åííÿ ëîêàëüíî¿ åíåð㳿 çà âèçíà÷åíèì êîíòðîëüíèì îá’ºìîì, ùî îõîïëþº êðîìêó íàäð³çó. Óñòàíîâëåíî, ùî äàíèé êðèòåð³é äîçâîëÿº îö³íèòè ïîâåä³íêó ãðàô³òîâèõ çðàçê³â ³ç ð³çíèìè êóòàìè íàäð³çó ³ ðàä³óñàìè ó éîãî âåðøèí³ ïðè ðóéíóâàíí³. 1. M. R. Ayatollahi and S. Bagherifard, “Numerical analysis of an improved DCDC specimen for investigating mixed mode fracture in ceramic materials,” Comp. Mater. Sci., 46, No. 1, 180–185 (2009). 2. O. M. Herasymchuk and O. V. Kononuchenko, “Effect of surface stress concentrators and microstructure on the fatigue limit of the material,” Strength Mater., 43, No. 4, 374–383 (2011). 3. V. T. Troshchenko and L. A. Khamaza, “Fatigue limits of steels and stress gradient,” Strength Mater., 43, No. 4, 417–425 (2011). 4. Yu. G. Matvienko, “Approaches of fracture mechanics in the analysis of admissible defects in the form of notches,” Strength Mater., 42, No. 1, 58–63 (2010). 5. A. D. Pogrebnyak, M. N. Regul’skii, and A. V. Zheldubovskii, “Assessment of the effect of stress concentration on the fatigue resistance of structural materials under asymmetrical loading,” Strength Mater., 45, No. 1, 82–92 (2013). 6. A. Carpinteri, R. Brighenti, and S. Vantadori, “Influence of the cold-drawing process on fatigue crack growth of a V-notched round bar,” Int. J. Fatigue, 32, No. 7, 1136–1145 (2010). 7. A. Carpinteri, C. Ronchei, and S. Vantadori, “Stress intensity factors and fatigue growth for surface cracks in notched shells and round bars: two decades of research work,” Fatigue Fract. Eng. Mater. Struct., 36, No. 11, 1164–1177 (2013). 8. R. Brighenti and A. Carpinteri, “Surface cracks in fatigued structural components: a review,” Fatigue Fract. Eng. Mater. Struct., 36, No. 12, doi: 10.1111/ffe.12100 (2013). 9. L. Shi, L. Haiyan, Z. Zhenmin, et al., “Analysis of crack propagation in nuclear graphite using three-point bending of sandwiched specimens,” J. Nucl. Mater., 372, 141–151(2008). 10. T. Etter, J. Kuebler, T. Frey, et al., “Strength and fracture toughness of interpenetrating graphite/aluminum composites produced by the indirect squeeze casting process,” Mater. Sci. Eng. A, 386, 61–67 (2004). 11. H. Awaji and S. Sato, “Combined mode fracture toughness measurement by the disc test,” J. Eng. Mater. Tech., 100, 172–175 (1978). 12. Y. Yamauchi, M. Nakano, K. Kishida, and T. Okabe, “Measurement of fracture toughness for brittle materials under mixed mode impact loading ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 19 Fracture Assessment of Blunt V-Notched Graphite Specimens ... using center-notched disk specimen,” J. Soc. Mater. Sci. Jap., 49, No. 12, 1324–1329 (2000). 13. Y. Yamauchi, M. Nakano, K. Kishida, and T. Okabe, “Measurement of mixed-mode fracture toughness for brittle materials using edge-notched half- disk specimen,” J. Soc. Mater. Sci. Jap., 50, No. 3, 224–229 (2001). 14. M. Li, M. Tsujimura, and M. Sakai, “Crack-face grain interlocking/ bridging of a polycrystalline graphite: The role in mixed mode fracture,” Carbon, 37, No. 10, 1633–1639 (1999). 15. M. R. Ayatollahi and M. R. M. Aliha, “Mixed mode fracture analysis of polycrystalline graphite – A modified MTS criterion,” Carbon, 46, No. 10, 1302–1308 (2008). 16. M. Mostafavi and T. J. Marrow, “In situ observation of crack nuclei in poly-granular graphite under ring-on-ring equi-biaxial and flexural loading,” Eng. Fract. Mech., 78, No. 8, 1756–1770 (2011). 17. M. Mostafavi and T. J. Marrow, “Quantitative in situ study of short crack propagation in polygranular graphite by digital image correlation,” Fatigue Fract. Eng. Mater. Struct., 35, No. 8, 695–707 (2012). 18. M. Mostafavi, S. A. McDonald, P. M. Mummery, and T. J. Marrow, “Observation and quantification of three-dimensional crack propagation in polygranular graphite,” Eng. Fract. Mech., 110, 410–420 (2013). 19. M. Mostafavi, S. A. McDonald, H. Cetinela, et al., “Flexural strength and defect behaviour of polygranular graphite under different states of stress,” Carbon, 59, 325–336 (2013). 20. M. Mostafavi, N. Baimpas, E. Tarleton, et al., “Three-dimensional crack observation, quantification and simulation in a quasi-brittle material,” Acta Mater., 61, No. 16, 6276–6289 (2013). 21. S. Nakhodchi, D. J. Smith, and P. E. J. Flewitt, “The formation of fracture process zones in polygranular graphite as a precursor to fracture,” J. Mater. Sci., 48, 720–732 (2013). 22. G. Seisson, D. Hebert, I. Bertron, et al., “Dynamic cratering of graphite: Experimental results and simulations,” Int. J. Impact Eng., 63, 18–28 (2013). 23. D. K. Bazaj and E. E. Cox, “Stress concentration factors and notch sensitivity of graphite,” Carbon, 7, No. 6, 689–697 (1969). 24. H. Kawakami, “Notch sensitivity of graphite materials for VHTR,” J. Atom. Energ. Soc. Jap., 27, No. 4, 357–364 (1985). 25. M. R. Ayatollahi and A. R. Torabi, “Tensile fracture in notched poly- crystalline graphite specimens,” Carbon, 48, No. 8, 2255–2265 (2010). 26. M. R. Ayatollahi and A. R. Torabi, “Failure assessment of notched poly- crystalline graphite under tensile-shear loading,” Mater. Sci. Eng. A, 528, No. 18, 5685–5695 (2011). 27. P. Lazzarin and R. Zambardi, “A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp V-shaped notches,” Int. J. Fract., 112, No. 3, 275–298 (2001). 20 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 A. R. Torabi and F. Berto 28. P. Lazzarin and F. Berto, “Some expressions for the strain energy in a finite volume surrounding the root of blunt V-notches,” Int. J. Fract., 135, No. 1-4, 161–185 (2005). 29. F. J. Gomez, M. Elices, F. Berto, and P. Lazzarin, “Local strain energy to assess the static failure of U-notches in plates under mixed mode loading,” Int. J. Fract., 145, No. 1, 29–45 (2007). 30. F. Berto and P. Lazzarin, “Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches,” Mater. Sci. Eng. R (2013). Accepted manuscript. 31. P. Lazzarin, F. Berto, F. J. Gomez, and M. Zappalorto, “Some advantages derived from the use of the strain energy density over a control volume in fatigue strength assessments of welded joints,” Int. J. Fatigue, 30, No. 8, 1345–1357 (2008). 32. P. Lazzarin, F. Berto, and M. Zappalorto, “Rapid calculations of notch stress intensity factors based on averaged strain energy density from coarse meshes: Theoretical bases and applications,” Int. J. Fatigue, 32, No. 10, 1559–1567 (2010). 33. M. R. Ayatollahi, F. Berto, and P. Lazzarin, “Mixed mode brittle fracture of sharp and blunt V-notches in polycrystalline graphite,” Carbon, 49, No. 7, 2465–2474 (2011). 34. F. Berto, P. Lazzarin, and C. Marangon, “Brittle fracture of U-notched graphite plates under mixed mode loading,” Mater. Design, 41, 421–432 (2012). 35. P. Lazzarin, F. Berto, and M. R. Ayatollahi, “Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading,” Fatigue Fract. Eng. Mater. Struct., 36, No. 9, 942–955 (2013). 36. F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under torsion loading,” Carbon, 50, No. 5, 1942–1952 (2012). 37. F. Berto, P. Lazzarin, and M. R. Ayatollahi, “Brittle fracture of sharp and blunt V-notches in isostatic graphite under pure compression loading,” Carbon, 63, 101–116 (2013). 38. A. R. Torabi, M. Fakoor, and E. Pirhadi, “Tensile fracture in coarse-grained polycrystalline graphite weakened by a U-shaped notch,” Eng. Fract. Mech., 111, 77–85 (2013). 39. G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, No. 3, 305–321 (1974). 40. E. E. Gdoutos, “Crack growth instability studied by the strain energy density theory,” Arch. Appl. Mech., 82, No. 10-11, 1361–1376 (2012). 41. H. Neuber, Kerbspannungslehre, 2nd edition, Springer-Verlag, Berlin (1958). 42. P. Lazzarin and S. Filippi, “A generalised stress intensity factor to be applied to rounded V-shaped notches,” Int. J. Solids Struct., 43, No. 9, 2461–2478 (2006). Received 03. 09. 2013 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2013, ¹ 6 21 Fracture Assessment of Blunt V-Notched Graphite Specimens ... << /ASCII85EncodePages false /AllowTransparency false /AutoPositionEPSFiles true /AutoRotatePages /All /Binding /Left /CalGrayProfile (Dot Gain 20%) /CalRGBProfile (sRGB IEC61966-2.1) /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2) /sRGBProfile (sRGB IEC61966-2.1) /CannotEmbedFontPolicy /Warning /CompatibilityLevel 1.4 /CompressObjects /Tags /CompressPages true /ConvertImagesToIndexed true /PassThroughJPEGImages true /CreateJDFFile false /CreateJobTicket false /DefaultRenderingIntent /Default /DetectBlends true /DetectCurves 0.0000 /ColorConversionStrategy /LeaveColorUnchanged /DoThumbnails false /EmbedAllFonts true /EmbedOpenType false /ParseICCProfilesInComments true /EmbedJobOptions true /DSCReportingLevel 0 /EmitDSCWarnings false /EndPage -1 /ImageMemory 1048576 /LockDistillerParams false /MaxSubsetPct 100 /Optimize true /OPM 1 /ParseDSCComments true /ParseDSCCommentsForDocInfo true /PreserveCopyPage true /PreserveDICMYKValues true /PreserveEPSInfo true /PreserveFlatness true /PreserveHalftoneInfo false /PreserveOPIComments false /PreserveOverprintSettings true /StartPage 1 /SubsetFonts true /TransferFunctionInfo /Apply /UCRandBGInfo /Preserve /UsePrologue false /ColorSettingsFile () /AlwaysEmbed [ true ] /NeverEmbed [ true ] /AntiAliasColorImages false /CropColorImages true /ColorImageMinResolution 300 /ColorImageMinResolutionPolicy /OK /DownsampleColorImages true /ColorImageDownsampleType /Bicubic /ColorImageResolution 300 /ColorImageDepth -1 /ColorImageMinDownsampleDepth 1 /ColorImageDownsampleThreshold 1.50000 /EncodeColorImages true /ColorImageFilter /DCTEncode /AutoFilterColorImages true /ColorImageAutoFilterStrategy /JPEG /ColorACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /ColorImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000ColorACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000ColorImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth -1 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /GrayImageDict << /QFactor 0.15 /HSamples [1 1 1 1] /VSamples [1 1 1 1] >> /JPEG2000GrayACSImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /JPEG2000GrayImageDict << /TileWidth 256 /TileHeight 256 /Quality 30 >> /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict << /K -1 >> /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False /Description << /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002> /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002> /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e> /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e> /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e> /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e> /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e> /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002> /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e> /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.) /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e> /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e> /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e> /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e> /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.) >> /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ << /AsReaderSpreads false /CropImagesToFrames true /ErrorControl /WarnAndContinue /FlattenerIgnoreSpreadOverrides false /IncludeGuidesGrids false /IncludeNonPrinting false /IncludeSlug false /Namespace [ (Adobe) (InDesign) (4.0) ] /OmitPlacedBitmaps false /OmitPlacedEPS false /OmitPlacedPDF false /SimulateOverprint /Legacy >> << /AddBleedMarks false /AddColorBars false /AddCropMarks false /AddPageInfo false /AddRegMarks false /ConvertColors /NoConversion /DestinationProfileName () /DestinationProfileSelector /NA /Downsample16BitImages true /FlattenerPreset << /PresetSelector /MediumResolution >> /FormElements false /GenerateStructure true /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles true /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /NA /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /LeaveUntagged /UseDocumentBleed false >> ] >> setdistillerparams << /HWResolution [2400 2400] /PageSize [612.000 792.000] >> setpagedevice