Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation
Рассматривается инновационная технология, разработанная в Институте проблем прочности им. Г. С. Писаренко НАН Украины, а именно: импульсная технология нанесения ионно-плазменных покрытий, использование которой позволяет получить диффузионные слои с необходимой структурой путем управления процессом...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем міцності ім. Г.С. Писаренко НАН України
2014
|
Назва видання: | Проблемы прочности |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/112720 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation / A.O. Khotsyanovskii, A.Yu. Kumurzhi, B.A. Lyashenko // Проблемы прочности. — 2014. — № 3. — С. 155-163. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-112720 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1127202017-01-27T03:03:02Z Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation Khotsyanovskii, A.O. Kumurzhi, A.Yu. Lyashenko, B.A. Научно-технический раздел Рассматривается инновационная технология, разработанная в Институте проблем прочности им. Г. С. Писаренко НАН Украины, а именно: импульсная технология нанесения ионно-плазменных покрытий, использование которой позволяет получить диффузионные слои с необходимой структурой путем управления процессом диффузионного насыщения и его оптимизацией в зависимости от конкретных технических требований. При этом диффузионные слои с азотированными и неазотированными фазами могут быть получены путем регулирования состава ионизированных газов и интенсивности тлеющего разряда. Предлагаемая инновационная методика, запатентованная на национальном уровне в 2013 году, в настоящее время используется для промышленного внедрения на отечественных авто и авиаремонтных заводах. Краткий обзор современных промышленных разработок в этой области показывает, что предложенная методика может быть использована в современных коммерческих приложениях/комплексах для нанесения PVD-покрытий. Представленные результаты экспериментальных исследований статической и усталостной прочности, а также износостойкости в агрессивных средах образцов из стали 40Х13 с нанесенными покрытиями по импульсной технологии подтверждают ее положительный эффект. Розглядається інноваційна технологія, розроблена в Інституті проблем міцності ім. Г. С. Писаренка НАН України, а саме: імпульсна технологія нанесення іонно-плазмових покриттів, що дозволяє отримати дифузійні шари з необхідною структурою шляхом управління процесом дифузійного насичення і його оптимізацією в залежності від конкретних технічних вимог. При цьому дифузійні шари з азотованими та неазотованими фазами можуть бути отримані шляхом регулювання складу іонізованих газів і інтенсивності тліючого розряду. Запропонована інноваційна методика, що була запатентована на національному рівні в 2013 році, в даний час використовується для промислового впровадження на вітчизняних авто- та авіаремонтних заводах. Стислий огляд сучасних промислових розробок у цій області показує, що запропонована методика може бути використана в сучасних комерційних прикладаннях/комплексах для нанесення PVD покриттів. Представлені результати експериментальних досліджень статичної й втомної міцності та зносостійкості в агресивних середовищах зразків зі сталі 40Х13 із нанесеними покриттями з використанням імпульсної технології підтверджують її позитивний ефект. 2014 Article Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation / A.O. Khotsyanovskii, A.Yu. Kumurzhi, B.A. Lyashenko // Проблемы прочности. — 2014. — № 3. — С. 155-163. — Бібліогр.: 20 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/112720 621.792.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Научно-технический раздел Научно-технический раздел |
spellingShingle |
Научно-технический раздел Научно-технический раздел Khotsyanovskii, A.O. Kumurzhi, A.Yu. Lyashenko, B.A. Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation Проблемы прочности |
description |
Рассматривается инновационная технология, разработанная в Институте проблем прочности им. Г. С. Писаренко НАН Украины, а именно: импульсная технология нанесения ионно-плазменных покрытий, использование которой позволяет получить диффузионные слои с
необходимой структурой путем управления процессом диффузионного насыщения и его
оптимизацией в зависимости от конкретных технических требований. При этом диффузионные слои с азотированными и неазотированными фазами могут быть получены путем
регулирования состава ионизированных газов и интенсивности тлеющего разряда. Предлагаемая инновационная методика, запатентованная на национальном уровне в 2013 году, в
настоящее время используется для промышленного внедрения на отечественных авто и
авиаремонтных заводах. Краткий обзор современных промышленных разработок в этой
области показывает, что предложенная методика может быть использована в современных
коммерческих приложениях/комплексах для нанесения PVD-покрытий. Представленные результаты экспериментальных исследований статической и усталостной прочности, а также
износостойкости в агрессивных средах образцов из стали 40Х13 с нанесенными покрытиями
по импульсной технологии подтверждают ее положительный эффект. |
format |
Article |
author |
Khotsyanovskii, A.O. Kumurzhi, A.Yu. Lyashenko, B.A. |
author_facet |
Khotsyanovskii, A.O. Kumurzhi, A.Yu. Lyashenko, B.A. |
author_sort |
Khotsyanovskii, A.O. |
title |
Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation |
title_short |
Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation |
title_full |
Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation |
title_fullStr |
Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation |
title_full_unstemmed |
Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation |
title_sort |
improvement of strength and wear resistance of metal products with ion-plasma nitride coatings by pulse technique implementation |
publisher |
Інститут проблем міцності ім. Г.С. Писаренко НАН України |
publishDate |
2014 |
topic_facet |
Научно-технический раздел |
url |
http://dspace.nbuv.gov.ua/handle/123456789/112720 |
citation_txt |
Improvement of Strength and Wear Resistance of Metal Products with Ion-Plasma Nitride Coatings by Pulse Technique Implementation / A.O. Khotsyanovskii, A.Yu. Kumurzhi, B.A. Lyashenko // Проблемы прочности. — 2014. — № 3. — С. 155-163. — Бібліогр.: 20 назв. — англ. |
series |
Проблемы прочности |
work_keys_str_mv |
AT khotsyanovskiiao improvementofstrengthandwearresistanceofmetalproductswithionplasmanitridecoatingsbypulsetechniqueimplementation AT kumurzhiayu improvementofstrengthandwearresistanceofmetalproductswithionplasmanitridecoatingsbypulsetechniqueimplementation AT lyashenkoba improvementofstrengthandwearresistanceofmetalproductswithionplasmanitridecoatingsbypulsetechniqueimplementation |
first_indexed |
2025-07-08T04:30:56Z |
last_indexed |
2025-07-08T04:30:56Z |
_version_ |
1837051749018370048 |
fulltext |
UDC 621.792.4
Improvement of Strength and Wear Resistance of Metal Products with
Ion-Plasma Nitride Coatings by Pulse Technique Implementation*
A. O. Khotsyanovskii, A. Yu. Kumurzhi, and B. A. Lyashenko
Pisarenko Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev, Ukraine
ÓÄÊ 621.792.4
Ïîâûøåíèå ïðî÷íîñòè è èçíîñîñòîéêîñòè ìåòàëëè÷åñêèõ èçäåëèé ñ
ïîìîùüþ èìïóëüñíîé ìåòîäèêè íàíåñåíèÿ èîííî-ïëàçìåííûõ
íèòðèäíûõ ïîêðûòèé
À. Î. Õîöÿíîâñêèé, A. Þ. Êóìóðäæè, Á. À. Ëÿøåíêî
Èíñòèòóò ïðîáëåì ïðî÷íîñòè èì. Ã. Ñ. Ïèñàðåíêî ÍÀÍ Óêðàèíû, Êèåâ, Óêðàèíà
Ðàññìàòðèâàåòñÿ èííîâàöèîííàÿ òåõíîëîãèÿ, ðàçðàáîòàííàÿ â Èíñòèòóòå ïðîáëåì ïðî÷-
íîñòè èì. Ã. Ñ. Ïèñàðåíêî ÍÀÍ Óêðàèíû, à èìåííî: èìïóëüñíàÿ òåõíîëîãèÿ íàíåñåíèÿ èîííî-
ïëàçìåííûõ ïîêðûòèé, èñïîëüçîâàíèå êîòîðîé ïîçâîëÿåò ïîëó÷èòü äèôôóçèîííûå ñëîè ñ
íåîáõîäèìîé ñòðóêòóðîé ïóòåì óïðàâëåíèÿ ïðîöåññîì äèôôóçèîííîãî íàñûùåíèÿ è åãî
îïòèìèçàöèåé â çàâèñèìîñòè îò êîíêðåòíûõ òåõíè÷åñêèõ òðåáîâàíèé. Ïðè ýòîì äèôôó-
çèîííûå ñëîè ñ àçîòèðîâàííûìè è íåàçîòèðîâàííûìè ôàçàìè ìîãóò áûòü ïîëó÷åíû ïóòåì
ðåãóëèðîâàíèÿ ñîñòàâà èîíèçèðîâàííûõ ãàçîâ è èíòåíñèâíîñòè òëåþùåãî ðàçðÿäà. Ïðåäëà-
ãàåìàÿ èííîâàöèîííàÿ ìåòîäèêà, çàïàòåíòîâàííàÿ íà íàöèîíàëüíîì óðîâíå â 2013 ãîäó, â
íàñòîÿùåå âðåìÿ èñïîëüçóåòñÿ äëÿ ïðîìûøëåííîãî âíåäðåíèÿ íà îòå÷åñòâåííûõ àâòî- è
àâèàðåìîíòíûõ çàâîäàõ. Êðàòêèé îáçîð ñîâðåìåííûõ ïðîìûøëåííûõ ðàçðàáîòîê â ýòîé
îáëàñòè ïîêàçûâàåò, ÷òî ïðåäëîæåííàÿ ìåòîäèêà ìîæåò áûòü èñïîëüçîâàíà â ñîâðåìåííûõ
êîììåð÷åñêèõ ïðèëîæåíèÿõ/êîìïëåêñàõ äëÿ íàíåñåíèÿ PVD-ïîêðûòèé. Ïðåäñòàâëåííûå ðåçóëü-
òàòû ýêñïåðèìåíòàëüíûõ èññëåäîâàíèé ñòàòè÷åñêîé è óñòàëîñòíîé ïðî÷íîñòè, à òàêæå
èçíîñîñòîéêîñòè â àãðåññèâíûõ ñðåäàõ îáðàçöîâ èç ñòàëè 40Õ13 ñ íàíåñåííûìè ïîêðûòèÿìè
ïî èìïóëüñíîé òåõíîëîãèè ïîäòâåðæäàþò åå ïîëîæèòåëüíûé ýôôåêò.
Êëþ÷åâûå ñëîâà: òåðìîöèêëè÷åñêèå èîííî-ïëàçìåííûå ïîêðûòèÿ, òåðìîöèêëè÷åñêîå
èîííîå àçîòèðîâàíèå, ôèçè÷åñêîå îñàæäåíèå ïàðîâ, òëåþùèé ðàçðÿä, óñòàëîñòü, èçíîñ.
Introduction. The process of vacuum ion-plasma nitriding (VIPN) of materials was
invented over 60 years ago, but is still treated as quite exotic for the majority of the
enterprises of mechanical engineering in Ukraine. However, complexities related to
implementation of this method, such as high cost of equipment, necessity of ensuring strict
vacuum standards are fully compensated by high quality of the treated products, drastic
cost reduction, and high ecological safety [1–3].
In comparison with widely used expedients of strengthening chemical-thermal
processing of steel parts, such as cementation, nitrocementation, carbonitriding cyanidation
and gas nitriding in furnaces, the VIPN method has the following basic advantages: higher
superficial hardness of the nitrated parts, lack of deformation of parts after processing,
increased endurance limit and improved wear resistance of treated parts, possibility of
processing blind and through holes, invariable hardness of the nitrated layer after heating to
600–650�Ñ, possibility of producing layers of the required composition, possibility of
© A. O. KHOTSYANOVSKII, O. Yu. KUMURZHI, B. A. LYASHENKO, 2014
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 155
* Abridged version of Keynote Report at Second Global Annual Conference “Materials Science and
Engineering” (CMSE2013, November 20–22, 2013, Xianning, Hubei, China).
processing large and complex-shaped products; absence of environmental contamination,
essential treatment cost reduction, as well as lower treatment temperature, which excludes
structural transformations [4–8].
At the Pisarenko Institute of Problems of Strength of the National Academy of
Sciences of Ukraine a new ionic-plasma thermocyclic nitriding (IPTN) technology was
developed, which is based on academic developments such as the theory of thermal fatigue,
abnormal mass transfer under mechanical loading conditions, and the effect of discrete
energy input. This technology, which is protected by the patent of Ukraine [9], has the
following advantages:
(i) only surface layers of treated article are heated without warming its core. Heating
is provided by the glow discharge energy, so no furnace is required for heating;
(ii) cyclic heating and cooling of treated article induce thermal stresses in the surface
layer, which enhances diffusion processes by 2–3 times with respective treatment time
reduction;
(iii) since the shape, dimensions, and surface roughness of treated article remain
unchanged, no finishing treatment is further required;
(iv) short-term treatment duration, cyclic nature of high-speed discrete energy input,
and heat localization in the the surface layer strongly reduces energy consumption costs.
Preliminary industrial tests confirmed the possibility of replacing the processes of gas
nitriding and cementation by the IPTN in the environment of nitrogen and argon mixture.
This technique is currently used for small-scale industrial implementation in domestic
aircraft and machinery repair shop-and-plants, and is can be utilized in the available
commercial applications for physical vapor deposition (PVD) of coatings, including NNV
6.6. I4 unit produced by VNIIINSTRUMENT (Russia) [10], the division of ion-plasma
coatings of Saturn (Rybinsk, Russia) [11], Ionitech (Bulgary) [12], and PLATIT ð-80
Ion-Plasma Unit (Platit Co., Switzerland) [13]. Analysis of these potentials is not detailed
here for brevity, but noteworthy is the appearance of a competing alternative technique of
pulsed-DC plasma assisted chemical vapor deposition of ion-plasma coatings recently
proposed and verified on H13 hot work tool steel by authors [14]. In this article, we’ll
focus on the effects of the proposed IPTN treatment on the mechanical properties, static
strength, fatigue strength and wear resistance of the industrial stainless steel 40Kh13.
Material. Chemical composition and mechanical properties of 40Kh13 steel are given
in Tables 1 and 2, respectively.
The material was obtained after the standard heat treatment (quenching from 1050�Ñ
in air, tempering at 650�Ñ) with hardness of 277–286 ÍÂ. In the tempered condition,
40Kh13 steel microstructure consists of martensite, carbides, and insignificant quantity of
residual austenite. According to earlier studies of this steel [1], after heating above
temperature 860–880�Ñ its structure consists of austenite and carbides of chrome. Starting
from quenching temperature of 1050�Ñ and higher, hardness of this steel exhibits a
A. O. Khotsyanovskii, A. Yu. Kumurzhi, and B. A. Lyashenko
156 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3
T a b l e 1
Chemical Composition (in vol.%) of 40Kh13 Steel
C Si Mn Ni S P Cr Fe
0.35–0.44 up to 0.6 up to 0.6 up to 0.6 up to 0.025 up to 0.03 12–14 84
T a b l e 2
Mechanical Properties of 40Kh13 Steel
�u , MPa �0 2. , MPa �5 , % � , %
950 725 14.0 41.5
decreasing trend, which may be attributed to increased content of residual austenite.
Tempering of quenched 40Kh13 steel results in decomposition of martensite into ferritic-
carbide mix and in reduced hardness. However, within the tempering temperature range of
450–550�Ñ, the secondary hardening effect is observed due to segregation of dispersed
carbides.
Two types of specimens of steel 40Kh13 are used: plane specimens with dimensions
360 75 10. . .� � mm for static and cyclic loading, and rectangular specimens with dimensions
30 30� mm and 10 mm thickness for wear resistance tests.
IPTN Experimental Setup. For the formation of diffusion layers by vacuum
ion-plasma nitriding pulse technique (IPTN), a universal VIPA-1 experimental set-up
developed at the Pisarenko Institute of Problems of Strength was used (Fig. 1).
Technological parameters of the formation of hardened layers are: temperature is 550�C,
pressure is 25–150 Pa, treatment time is 10 h, ratio of reacting gases is 80% Ar + 20% N2.
The general view of VIPA-1 experimental set-up with vacuum chamber for IPTN coating
deposition is shown in Fig. 1. Details on this equipment and technology can be found
elsewhere [2, 9]. The shape of IPTN pulses is depicted in Fig. 2. Hardening of specimen
surfaces occurs uniformly along the perimeter, which provides a uniform thickness of the
diffusion layer. For reference, several specimens were treated by isothermal ion-plasma
nitriding method as depicted in Fig. 3.
Visualization of ion-plasma processes occuring during IPTN treatment of test specimens
and industrial applications (in particular, a gearwheel) of 40Kh13 steel is given in Fig. 4.
As it was mentioned in the introduction, identical conditions for ion-plasma nitride coating
deposition are ensured for small- and large-scale articles.
Improvement of Fatigue Strength and Wear Resistance ...
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 157
Fig. 1. General view of VIPA-1 experimental set-up with vacuum chamber for IPTN pulse nitriding
technology.
Fig. 2. Shape of IPTN pulses.
Using the IPTN technique, specimens were heated to T � �500 C and treated by
different modes of thermal cycles: �20, �50, and �100. After treatment, the diffusion
layer depth values were measured by the standard technique, which included preparation of
microsections, etching and measurements via electron microscopy, as well as indirect
verification via layer-by-layer microhardness measurements (microindentation). As shown
in Fig. 5, the nitriding duration effect on diffusion layer depth is the most pronounced for
IPTN treatment with �50 cycles, the least is for isothermal nitriding. This can be related to
the above-mentioned specifics of the tempering temperature range of 450–550�Ñ, where the
secondary hardening effect due to segregation of dispersed carbides in the core material
occurs parallel to the nitriding treatment of the surface layers.
158 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3
A. O. Khotsyanovskii, A. Yu. Kumurzhi, and B. A. Lyashenko
Fig. 3. Heating rate of specimens by the method of ion-plasma thermocyclic nitriding isothermal (1)
and IPTN pulsing (2) modes.
Fig. 4. 40Kh13 steel specimen (a) and industrial gearwheel (b) in VIPA-1 vacuum chamber subjected
to IPTN treatment.
a
b
Fig. 5. Nitriding duration vs diffusion layer depth: isothermal (�), � �25 C (�), � �50 C (�), and
� �100 C (�).
Fig. 3 Fig. 4
Static Tensile Tests. Untreated specimens and those treated with IPTN cycle of
� �50 C with working portion dimensions of 360 75 10. . .� � mm were subjected to static
loading on a servohydraulic Instron test machine to produce the stress–strain diagram
(Fig. 6).
The comparative analysis of plots in Fig. 6 implies that IPTN treatment did not
deteriorate the characteristics of static strength of steel 40Kh13, but even improved them by
7%.
Fatigue Tests. High-cycle fatigue strength tests were carried out via a magnetostrictive
setup, the operating principle of which is based on the magnetostriction phenomenon, i.e.,
the ability of some materials and alloys to change their linear dimensions under the
influence of an alternating magnetic field [16]. Thus, by adjusting the vibration amplitude
of the magnetostrictor, fatigue tests of 40Kh13 steel specimens were conducted*.
The results of experimental studies are depicted in Fig. 7. Their analysis implies that
40Kh13 steel specimens subjected to IPTN treatment with thermal cycle � �50 C have the
best fatigue strength characteristics, as compared to untreated specimens, their high-cycle
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 159
Improvement of Fatigue Strength and Wear Resistance ...
Fig. 6. Stress–strain diagrams of 40Kh13 steel specimens: untreated (1) and subjected to IPTN
treatment with IPTN cycle of � �50 C (2).
* Tests were conducted by Ph.D. A. G. Trapezon.
Fig. 7. Fatigue curves of 40Kh13 steel specimens at frequency 10 kHz subjected to IPTN treatment
with different thermal cycle ranges: untreated (�, solid line), � �20 C (dashed line), � �50 C (�,
dash-and-dot line), and � �100 C (�, dotted line).
fatigue strength increased by 20%, while IPTN treatments with thermal cycles �20 and
� �100 C resulted, respectively, in fatigue strength deterioration by 5% and improvement by
5%. This trend is attributed to generation of residual stresses in the surface layers of treated
specimens, and is similar to those observed by other researchers for steel specimens with
ion-plasma coatings [15–19].
Wear Resistance Tests. Wear resistance tests of IPTN-deposited coatings are
conducted on an experimental unit [20] according to GOST 23.208-79 (Fig. 8). The friction
process is effected with a free abrasive, which is consistent with ASTM C 6568. Test
equipment is depicted and schematically shown in Fig. 8.
As seen in Fig. 8b, specimen 2 is worn with free abrasive 7, which is fed by rubber
roller 3 to the friction surface. Quartz sand (SiO2) with grain sizes of 200–250 m was used
as an abrasive. Prior to wear tests, an abrasive was dried (humidity did not exceed 0.16%).
The wear level was measured by the weight method with accuracy up to 0.0001 g on
analytical scales ADB-200. Prior to tests, specimens were washed in ethyl alcohol, dried
and weighted. Wear tests were conducted at a 0.158-m/s sliding velocity, a 200-N load
(with a 272-mm lever) and a 50-m friction length.
In additon, wear studies were conducted in the following environments: water +
quartz sand, damp salt + quartz sand. Grain sizes of quartz sand and experimental
conditions were the same as above. For comparative analysis of wear resistance
characteristics, 40Kh13 steel rectangular specimens (both untreated and IPTN-treated ones)
were used as shown in Fig. 9. As aggressive environments we used: (1) quartz sand, (2)
water + sand, and (3) damp salt + sand. The respective results on weight loss by wear are
given in Fig. 10.
The experimental staudies have revealed the following trends:
1. The maximal wear intensity is observed for untreated 40Kh13 steel specimens.
2. IPTN technique enhances wear resistance 40Kh13 steel specimens: in sand – by 3
times; in water + sand – by 3.5 times, in salt + sand – by 2.5 times.
3. The isothermal nitriding technique enhances wear resistance 40Kh13 steel
specimens: in sand – by 4 times, in water + sand – by 2 times, in salt + sand – by 1.7
times.
4. The IPTN technique is superior to the isothermal one for water + sand and salt +
sand environments.
160 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3
A. O. Khotsyanovskii, A. Yu. Kumurzhi, and B. A. Lyashenko
a b
Fig. 8. Photo (a) and schematic diagram (b) of a unit for wear tests: (1) abrasive debris collector,
(2) specimen, (3) rubber roller, (4) roller core, (5) free abrasive feeder, (6) abrasive feeder velocity
controller, (7) free abrasive, (8) abrasive feeder shute, (9) load lever, and (10) load.
Conclusions. The proposed ion-plasma coating deposition pulse technique offers a
considerable opportunity for producing diffusion layers with good wear resistance, fatigue
resistance and static strength. The results of the respective experimental studies on
40Kh13 steel specimens treated by the proposed pulse technique confirm its positive
effect.
Ð å ç þ ì å
Ðîçãëÿäàºòüñÿ ³ííîâàö³éíà òåõíîëîã³ÿ, ðîçðîáëåíà â ²íñòèòóò³ ïðîáëåì ì³öíîñò³ ³ì.
Ã. Ñ. Ïèñàðåíêà ÍÀÍ Óêðà¿íè, à ñàìå: ³ìïóëüñíà òåõíîëîã³ÿ íàíåñåííÿ ³îííî-ïëàçìî-
âèõ ïîêðèòò³â, ùî äîçâîëÿº îòðèìàòè äèôóç³éí³ øàðè ç íåîáõ³äíîþ ñòðóêòóðîþ
øëÿõîì óïðàâë³ííÿ ïðîöåñîì äèôóç³éíîãî íàñè÷åííÿ ³ éîãî îïòèì³çàö³ºþ â çàëåæ-
íîñò³ â³ä êîíêðåòíèõ òåõí³÷íèõ âèìîã. Ïðè öüîìó äèôóç³éí³ øàðè ç àçîòîâàíèìè òà
íåàçîòîâàíèìè ôàçàìè ìîæóòü áóòè îòðèìàí³ øëÿõîì ðåãóëþâàííÿ ñêëàäó ³îí³çî-
âàíèõ ãàç³â ³ ³íòåíñèâíîñò³ òë³þ÷îãî ðîçðÿäó. Çàïðîïîíîâàíà ³ííîâàö³éíà ìåòîäèêà,
ùî áóëà çàïàòåíòîâàíà íà íàö³îíàëüíîìó ð³âí³ â 2013 ðîö³, â äàíèé ÷àñ âèêîðèñ-
òîâóºòüñÿ äëÿ ïðîìèñëîâîãî âïðîâàäæåííÿ íà â³ò÷èçíÿíèõ àâòî- òà àâ³àðåìîíòíèõ
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 161
Improvement of Fatigue Strength and Wear Resistance ...
a b c d
Fig. 9. 40Kh13 specimens before (a) and after (b) wear tests in sand, water + sand (c), and damp salt +
sand (d).
a b
c
Fig. 10. Weight loss of 40Kh13 steel specimens: in sand (a), water + sand (b), and damp salt + sand (c):
(1) untreated specimens, (2) after thermocyclic IPTN mode of nitriding, and (3) after isothermal
mode of nitriding.
çàâîäàõ. Ñòèñëèé îãëÿä ñó÷àñíèõ ïðîìèñëîâèõ ðîçðîáîê ó ö³é îáëàñò³ ïîêàçóº, ùî
çàïðîïîíîâàíà ìåòîäèêà ìîæå áóòè âèêîðèñòàíà â ñó÷àñíèõ êîìåðö³éíèõ ïðèêëà-
äàííÿõ/êîìïëåêñàõ äëÿ íàíåñåííÿ PVD ïîêðèòò³â. Ïðåäñòàâëåí³ ðåçóëüòàòè åêñïåðè-
ìåíòàëüíèõ äîñë³äæåíü ñòàòè÷íî¿ é âòîìíî¿ ì³öíîñò³ òà çíîñîñò³éêîñò³ â àãðåñèâíèõ
ñåðåäîâèùàõ çðàçê³â ç³ ñòàë³ 40Õ13 ³ç íàíåñåíèìè ïîêðèòòÿìè ç âèêîðèñòàííÿì
³ìïóëüñíî¿ òåõíîëî㳿 ï³äòâåðäæóþòü ¿¿ ïîçèòèâíèé åôåêò.
1. V. V. Kharchenko (Ed.), B. A. Lyashenko, E. K. Solovykh, et al., Optimization of
the Coating Technology According to Strength Criteria [in Russian], Pisarenko
Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev
(2010).
2. B. A. Lyashenko, A. G. Trapezon, and A. V. Rutkovskii, “Vacuum-plasma deposited
coatings as a provision for enhancing the fatigue strength of materials,” Vibr. Tekhn.
Tekhnol., No. 5 (21), 76–79 (2001).
3. A. G. Trapezon, B. A. Lyashenko, and N. V. Lipinskaya, “Fatigue of VT20 titanium
alloy with vacuum plasma coatings at high temperatures,” Strength Mater., 41, No. 4,
417–422 (2009).
4. V. V. Kudinov and V. M. Ivanov, Plasma Deposition of Refractory Coatings [in
Russian], Mashinostroenie, Moscow (1981).
5. V. V. Kostikov and Yu. A. Shesterin, Plasma Coatings [in Russian], Metallurgiya,
Moscow (1978).
6. A. I. Grigorov and O. A. Elizarov, Ion-Assisted Vacuum Deposited Wear-Resistant
Coatings [in Russian], Naukova Dumka, Kiev (1979).
7. A. Alsaran, I. Kaymaz, A. Celik, et al., “A repair process for fatigue damage using
plasma nitriding,” Surf. Coat. Technol., 186, No. 3, 333–338 (2004).
8. G. V. Klevtsov, N. A. Klevtsova, L. L. Il’ichev, et al., “Influence of plasma ion
assisted deposition coatings,” Vestn. Orenburg. Gos. Univer., No. 10, 171–175
(2007).
9. V. V. Kharchenko, B. A. Lyashenko, A. V. Rutkovskii, et al., Technique of Surface
Hardening of Steel Machine Parts by Ion-Plasma Nitriding in a Pulsed Glow
Discharge [in Ukrainian], Ukraine Patent on Useful Model No. 78071 Ñ23Ñ 8/06
(2006.01), Published 11.03.2013, Bull. No. 5.
10. Official Site of VNIIINSTRUMENT (Russia), www.vniiinstrument.ru.
11. Technologies of Protective Coatings by Division of Ion-Plasma Coatings of Saturn
(Rybinsk, Russia), http://npo-saturn.ru/?sat=32.
12. Plasma/Ion Nitriding Technology for Best Coating, Official Site of Ionitech
(Bulgary), http://www.ionitech.com/.
13. Official Site of Platit Co. (Switzerland), http://platit.com/coating-equipment/p80?page=
0%2C1.
14. M. Azadi and A. Sabour Rouhaghdam, “Nanomechanical properties of TiN/TiC
multilayer coatings,” Strength Mater., 46, No. 1, 121–131 (2014).
15. A. G. Trapezon, “Methodological problems in the investigation of thin hardening
films,” Strength Mater., 39, No. 2, 178–188 (2007).
16. A. G. Trapezon, “To the method of accelerated evaluation of fatigue of metals with
hardening coatings,” Strength Mater., 41, No. 2, 174–182 (2009).
17. S. Y. Sirin, K. Sirin, and E. Kaluc, “Effect of the ion nitriding surface hardening process
on fatigue behavior of AISI 4340,” Mater. Charact., 59, No. 4, 351–358 (2008).
162 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3
A. O. Khotsyanovskii, A. Yu. Kumurzhi, and B. A. Lyashenko
18. J. Qian and A. Fatemi, “Cyclic deformation and fatigue behaviour of ionitrided steel,”
Int. J. Fatigue, 17, No. 1, 15–24 (1995).
19. S. Fukui, H. Nakayama, and T. Tanaka, “Effects of TiN thin films prepared by ion
beam and vapor deposition method on fatigue strength of high strength martensitic
stainless steels,” Trans. Jap. Soc. Mech. Eng. A, 64, No. 622, 1455–1462 (1998).
20. A. V. Rutkovskii and A. Yu. Kumurzhi, “Investigation of diffusion layers of steel
40Kh13 obtained by thermocyclic ion-plasma nitriding of friction in corrosive
environments,” in: Friction and Wear Problems [in Ukrainian], NAU-Druk, Kiev
(2011), pp. 240–230.
Received 22.11. 2013
ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 163
Improvement of Fatigue Strength and Wear Resistance ...
|