Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys

Выполнены экспериментальные исследования трещиностойкости -сплава на базе TiAl сплавов при различных температурах. Оценено влияние температуры на характеристики роста усталостной трещины и определены формула, описывающая ее скорость на участке II (область развития), а также конкретные значения кон...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2014
Hauptverfasser: Feng, R.C., Rui, Z.V., Zuo, Y., Yan, C.F., Zhang, G.T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут проблем міцності ім. Г.С. Писаренко НАН України 2014
Schriftenreihe:Проблемы прочности
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/112728
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys / R.C. Feng, Z.V. Rui, Y. Zuo, C.F. Yan, G.T. Zhang // Проблемы прочности. — 2014. — № 3. — С. 149-154. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-112728
record_format dspace
spelling irk-123456789-1127282017-01-27T03:02:34Z Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys Feng, R.C. Rui, Z.V. Zuo, Y. Yan, C.F. Zhang, G.T. Научно-технический раздел Выполнены экспериментальные исследования трещиностойкости -сплава на базе TiAl сплавов при различных температурах. Оценено влияние температуры на характеристики роста усталостной трещины и определены формула, описывающая ее скорость на участке II (область развития), а также конкретные значения констант уравнения с использованием экспериментальных результатов. Испытания проводили в вакууме при температурах 25, 750 и 850C. Полученные экспериментальные результаты показывают, что температура существенно влияет на скорость роста усталостных трещин. При повышении температуры до 750C скорость роста таких трещин увеличивается, по достижении этой температуры имеет место хрупковязкий переход TiAl сплава. Аналогичная зависимость наблюдается также для традиционных сплавов. Проведено експериментальні дослідження тріщиностійкості -сплава на базі TiAl сплавів за різних температур. Оцінено вплив температури на характеристики росту тріщин від утомленості і визначено формулу, що описує її швидкість на ділянці II (область розвитку), та конкретні значення констант рівняння з використанням експериментальних результатів. Випробування проводили в вакуумі за температур 25, 750 і 850C. Отримані експериментальні дані показують, що температура суттєво впливає на швидкість росту тріщин від утомленості. Із підвищенням температури до 750 С швидкість росту таких тріщин збільшується, при досягненні цієї температури має місце крихков’язкий перехід TiAl сплаву. Аналогічна залежність відмічається також для традиційних сплавів. 2014 Article Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys / R.C. Feng, Z.V. Rui, Y. Zuo, C.F. Yan, G.T. Zhang // Проблемы прочности. — 2014. — № 3. — С. 149-154. — Бібліогр.: 12 назв. — англ. 0556-171X http://dspace.nbuv.gov.ua/handle/123456789/112728 539.4 en Проблемы прочности Інститут проблем міцності ім. Г.С. Писаренко НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Научно-технический раздел
Научно-технический раздел
spellingShingle Научно-технический раздел
Научно-технический раздел
Feng, R.C.
Rui, Z.V.
Zuo, Y.
Yan, C.F.
Zhang, G.T.
Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys
Проблемы прочности
description Выполнены экспериментальные исследования трещиностойкости -сплава на базе TiAl сплавов при различных температурах. Оценено влияние температуры на характеристики роста усталостной трещины и определены формула, описывающая ее скорость на участке II (область развития), а также конкретные значения констант уравнения с использованием экспериментальных результатов. Испытания проводили в вакууме при температурах 25, 750 и 850C. Полученные экспериментальные результаты показывают, что температура существенно влияет на скорость роста усталостных трещин. При повышении температуры до 750C скорость роста таких трещин увеличивается, по достижении этой температуры имеет место хрупковязкий переход TiAl сплава. Аналогичная зависимость наблюдается также для традиционных сплавов.
format Article
author Feng, R.C.
Rui, Z.V.
Zuo, Y.
Yan, C.F.
Zhang, G.T.
author_facet Feng, R.C.
Rui, Z.V.
Zuo, Y.
Yan, C.F.
Zhang, G.T.
author_sort Feng, R.C.
title Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys
title_short Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys
title_full Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys
title_fullStr Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys
title_full_unstemmed Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys
title_sort influence of temperature on fatigue crack propagation in tial alloys
publisher Інститут проблем міцності ім. Г.С. Писаренко НАН України
publishDate 2014
topic_facet Научно-технический раздел
url http://dspace.nbuv.gov.ua/handle/123456789/112728
citation_txt Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys / R.C. Feng, Z.V. Rui, Y. Zuo, C.F. Yan, G.T. Zhang // Проблемы прочности. — 2014. — № 3. — С. 149-154. — Бібліогр.: 12 назв. — англ.
series Проблемы прочности
work_keys_str_mv AT fengrc influenceoftemperatureonfatiguecrackpropagationintialalloys
AT ruizv influenceoftemperatureonfatiguecrackpropagationintialalloys
AT zuoy influenceoftemperatureonfatiguecrackpropagationintialalloys
AT yancf influenceoftemperatureonfatiguecrackpropagationintialalloys
AT zhanggt influenceoftemperatureonfatiguecrackpropagationintialalloys
first_indexed 2025-07-08T04:32:47Z
last_indexed 2025-07-08T04:32:47Z
_version_ 1837051857454759936
fulltext UDC 539.4 Influence of Temperature on Fatigue Crack Propagation in TiAl Alloys* R. C. Feng,a,b,1 Z. Y. Rui,a,b,2 Y. Zuo,a,3 C. F. Yan,a,b,4 and G. T. Zhanga,b,5 a Key Laboratory of Digital Manufacturing Technology and Application, Ministry of Education, Lanzhou University of Technology, Lanzhou, China b School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou, China 1 frcly@163.com 2 zhiy_rui@163.com 3 825738568@qq.com 4 changf_yan@163.com 5 zhangguotao_good@126.com ÓÄÊ 539.4 Âëèÿíèå òåìïåðàòóðû íà ðîñò óñòàëîñòíûõ òðåùèí â TiAl ñïëàâàõ Ð. ×. Ôåíãà,á,1, Æ. É. Ðóèà,á,2, ß. Çóîà,3, ×. Ô. ßíà,á,4, Ã. Ò. Æàíãà,á,5 à Ëàáîðàòîðèÿ ïðîèçâîäñòâà è ïðèìåíåíèÿ öèôðîâûõ òåõíîëîãèé, Ìèíèñòåðñòâî îáðàçîâàíèÿ, Ëàíü÷æîóñêèé òåõíîëîãè÷åñêèé óíèâåðñèòåò, Ëàíü÷æîó, Êèòàé á Ôàêóëüòåò ìàøèíîñòðîåíèÿ è ýëåêòðîíèêè, Ëàíü÷æîóñêèé òåõíîëîãè÷åñêèé óíèâåðñèòåò, Ëàíü÷æîó, Êèòàé Âûïîëíåíû ýêñïåðèìåíòàëüíûå èññëåäîâàíèÿ òðåùèíîñòîéêîñòè �-ñïëàâà íà áàçå TiAl ñïëà- âîâ ïðè ðàçëè÷íûõ òåìïåðàòóðàõ. Îöåíåíî âëèÿíèå òåìïåðàòóðû íà õàðàêòåðèñòèêè ðîñòà óñòàëîñòíîé òðåùèíû è îïðåäåëåíû ôîðìóëà, îïèñûâàþùàÿ åå ñêîðîñòü íà ó÷àñòêå II (îáëàñòü ðàçâèòèÿ), à òàêæå êîíêðåòíûå çíà÷åíèÿ êîíñòàíò óðàâíåíèÿ ñ èñïîëüçîâàíèåì ýêñïåðèìåíòàëüíûõ ðåçóëüòàòîâ. Èñïûòàíèÿ ïðîâîäèëè â âàêóóìå ïðè òåìïåðàòóðàõ 25, 750 è 850�C. Ïîëó÷åííûå ýêñïåðèìåíòàëüíûå ðåçóëüòàòû ïîêàçûâàþò, ÷òî òåìïåðàòóðà ñó- ùåñòâåííî âëèÿåò íà ñêîðîñòü ðîñòà óñòàëîñòíûõ òðåùèí. Ïðè ïîâûøåíèè òåìïåðàòóðû äî 750�C ñêîðîñòü ðîñòà òàêèõ òðåùèí óâåëè÷èâàåòñÿ, ïî äîñòèæåíèè ýòîé òåìïåðàòóðû èìååò ìåñòî õðóïêîâÿçêèé ïåðåõîä TiAl ñïëàâà. Àíàëîãè÷íàÿ çàâèñèìîñòü íàáëþäàåòñÿ òàêæå äëÿ òðàäèöèîííûõ ñïëàâîâ. Êëþ÷åâûå ñëîâà: ðîñò óñòàëîñòíîé òðåùèíû, TiAl ñïëàâ, òåìïåðàòóðà. Introduction. Significant interest in TiAl alloys for high-temperature structural applications is determined by some of their advantages over conventional metallic systems [1–3]. TiAl-based alloys are promising structural intermetallic materials, which may be considered as potential high-temperature materials. �-TiAl alloys are highly competitive materials for heat-resistant structural parts of aerospace, aviation, and automotive engines. The effect of temperature can be of great significance for �-alloys as these materials undergo the brittle–ductile transition at about 700�C [4]. Fatigue fracture at high temperatures was predominantly intergranular, probably, due to a higher slip activity, © R. C. FENG, Z. Y. RUI, Y. ZUO, C. F. YAN, G. T. ZHANG, 2014 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 149 * Report on Second Global Annual Conference “Materials Science and Engineering” (CMSE2013, November 20–22, 2013, Xianning, Hubei, China). inducing crack initiation in these ranges [5]. An increase in temperature enhances the fatigue crack growth resistance only in inert environment. The fatigue resistance does not significantly degrade with temperature, at least up to 800�C. While the fatigue crack growth resistance is almost unaffected under 500�C, it grows above 500�C, and mainly at high crack growth rates, which results in flatter slope of the da dN curve [6]. Therefore, it is essential to study the influence of temperature on fatigue crack propagation in �-TiAl alloys. Based on the experimental data of Mabru et al. [7], the present study is aimed at investigating the fatigue crack propagation patern in range II. The influence of temperature on fatigue crack growth rate is investigated at three different temperatures in vacuum. Then the propagation behavior is analyzed according to the data obtained in the experiment. Then the modified formula for the fatigue crack propagation pattern is derived to describe the influence of temperature on its behavior. 1. Experimental Methods. The experimental results were taken from Mabru et al. [7] and the material used in the experiment is �-TiAl alloy with duplex microstructure. Fatigue crack propagation experiments were performed on CT specimens. The experimental data are shown in Fig. 1. Figure 1 presents crack propagation rate curves obtained in vacuum for a lamellar TiAl alloy at different temperatures and the stress ratio R � 0.1. In these tests, the three temperatures, which are 25, 750, and 850�C, respectively, are chosen to characterize their influence on fatigue crack propagation. The threshold values (�K th ) are similar for all temperatures. The experiments were carried out in vacuum to minimize interference with other factors, like environment. As is seen in Fig. 1, at the onset of crack growth, the three curves are close. The behavior of the curves at 750�C is almost the same as that at room temperature, whereas the curve at 850�C is slightly lower than those at 25 and 750�C as �K eff is increased. 2. Modification of the Fatigue Crack Propagation Rate Formula at Different Temperatures. The complete formula of the fatigue crack growth rate covers the near-threshold, central stable propagation and rapid propagation ranges (I, II, and III, respectively. R. C. Feng, Z. Y. Rui, Y. Zuo, et al. 150 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 Fig. 1. Influence of temperature on the crack propagation pattern. da dN , m/cycle �K eff , MPa m 2.1. Several Formulas of the Fatigue Crack Growth Rate. 2.1.1. The Paris [8] Formula. In 1963, Paris presented the formula for calculating crack propagation patterns under constant amplitude loading: da dN C K m� ( ) ,� (1) where �K is the stress intensity factor range, � � �K K K� �max min , and C and m are the material constants. The formula is generally applied to various materials, but suitable only for describing the behavior in range II. 2.1.2. The Forman [9] Formula. The Paris formula does not reflect the influence of average stress on the crack propagation rate and does not show the effects of accelerated crack propagation when the stress intensity factor �K approaches the critical value K c . Considering the above factors, Forman proposed another formula of the crack growth rate da dN C K R K K m c � � � ( ) ( ) , � �1 (2) where K c is the critical value of stress intensity factor, R is stress ratio, and C and m are the material constants. This equation mainly describes the medium-rate crack propagation behavior of range II and the rapid crack propagation of range III. 2.1.3. The Zheng–Hirt [10] Formula. Zheng and Hirt designed a reasonable model of the fatigue crack propagation rate, termed the passivation cracking model of the crack tip da dN B K K th� �( ) ,� � 2 (3) where B represents the fatigue crack growth factor, and �K th is the threshold value. It can be applied to describe the propagation range II and near-threshold range I. The formula is simple and easy for engineering applications. 2.2. Modified Formula of the Fatigue Crack Growth Rate. Based on formulas of the fatigue crack propagation rate (1), (2), and (3), the modified formula can be derived to demostrate the influence of temperature on fatigue crack propagation of range II. According to the above formulas and the data in Fig. 1, the modified formula for range II at different temperatures can be presented as da dN C T K eff m� ( )( ) ,� (4) where �K eff is the variable range of the effective stress intensity factor, m equals 3.52, C T( ) is the temperature-dependent coefficient, T is the temperature. According to Fig. 1, C T( ) will be 2 92 10 9. ,� � 935 10 9. ,� � and 6 18 10 9. � � when T equals 25, 750, and 850�C, respectively. The results can be used to plot the graph demostrating the influence of temperature on the fatigue crack growth rate of range II (Fig. 2). As can be seen in Fig. 1, the crack propagation rate is growing with time. Meanwhile, as Eq.(4) and Fig. 2 show, within range II at temperatures of 25 and 850�C, the C T( ) values are slightly lower than those at 750�C, which indicates that the fatigue crack growth rate is fastest at a certain temperature in range II. Influence of Temperature on Fatigue Crack Propagation ... ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 151 When the temperature is between 25 and 750�C, the material constant m remains invariant, while C T( ) grows with temperature in range II. As is seen, the fatigue crack propagation rate grows with temperature. However, when the temperature is between 750 and 850�C, C T( ) exhibited a decrease, instead of an increase. As is seen, the fatigue crack propagation rate decreases with temperature. In range III, growth rates increase rapidly when the temperatures are 25 and 750�C, and the respective curves are close. The curve at 25�C is higher than that at 750�C when �K eff increases. Although the growth rate at 850�C increases, the curve becomes flatter and is apparently lower than the curves at 25 and 750�C. It also can be seen that the curves are very close before entering range III. Therefore, temperature exerts a significant effect on the fatigue crack propagation rate according to the modified formula. 3. Discussion. Based on the Paris equation, which is applicable only to the medium-rate propagation range II, the modified formula is derived. The formula of the temperature effect on the fatigue crack growth rate in the near-threshold range I and the rapid propagation range III was not yet derived. If the formulas for rangea I and III were available, the temperature effect on the fatigue crack propagation rate would be more pronounced, as well as additional information may be gained. Numerous experiments should be performed, and it is still very necessary to examine and derive the formula of the whole process as regards the temperature effect on the fatigue crack growth rate. The three basic elements of crack propagation are the elastic modulus E, the threshold value �K eff , and the fracture toughness K c , which are the basic parameters of crack propagation resistance. The variable range of the stress intensity factor K c is the driving force of fatigue crack propagation. So the question, which factors are affected, should be identified accurately in the case of temperature variation. According to Fig. 1, the three curves at different temperatures began to deviate at different starting points, so the threshold value �K eff may vary. The questions are how temperature affects the threshold value �K eff and what is the magnitude of �K eff at each temperature. It also can be seen that the three curves are close in the near-threshold (I) and medium-rate (II) propagation ranges. When entering the rapid propagation range, the curve at 850�C is apparently different from those at 25 and 750�C. Generally, the ductile–brittle transition temperature is between 700–750�C. So it may be suggested that 750�C is approximately the ductile–brittle transition temperature of TiAl alloys. This conclusion may explain the reason why the rate of fatigue crack growth at 850�C is less than that at 750�C. When temperature rises, the material creep occurs, and the crack propagation resistance enhances, so the crack propagation rate drops down. It can also be seen that the fatigue crack growth curve at 25�C comes to an end earlier than that at 750�C, and finally this occurs to the curve at 850�C (Fig.1). That is, if the temperature is higher, the fracture of TiAl alloys occurs earlier. It may be suggested that if the temperature is higher, material molecules are more active, which, of course, needs further substantiation. Further experimental verification would be required to clarify 152 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 Fig. 2. Influence of temperature on the fatigue crack growth rate for range II. R. C. Feng, Z. Y. Rui, Y. Zuo, et al. whether the facts mentioned above are correct and whether there is a fast-slow transition temperature like the ductile-brittle temperature. The influence of temperature on high crack growth rates is related to the variation of toughness as a function of temperature. Moreover, different authors agree that the toughening mechanisms are still active under cyclic loading, but solely under high crack propagation rate conditions [11, 12]. This paper examines only three temperatures, namely 25, 750, and 850�C. The curves of temperature effect on fatigue crack propagation are few. Several sets of experiments should be performed to get more data to demostrate the temperature effect on fatigue crack growth rates. Conclusions. Fatigue crack growth patterns of TiAl alloys were investigated under three different temperatures, namely 25, 750, and 850�C in vacuum to elucidate the effect of temperature. It turned out that, in range II, the fatigue crack growth rate increases when the temperature is between 25 and 750�C, and the rate decreases when the temperature is between 750 and 850�C. Therefore, when the temperature rises to a certain extent, the acceleration of fatigue crack growth rates starts to decrease. This suggests that the fatigue crack propagation mechanism is the same as the mechanism active in conventional alloys. Therefore, this characteristic of alloys influenced by temperature can be used for practical purposes. The shortcoming of this paper is the limitation of the modified formula, which can characterize only range II. Also, the new formula to represent the whole process influenced by temperature is failed to be derived. Acknowledgments. This study was supported by National Natural Science Fund of China (51065014). R. C. Feng would like to thank Key Laboratory of Digital Manufacturing Technology and Application, Ministry of Education, Lanzhou University of Technology for providing help. Ð å ç þ ì å Ïðîâåäåíî åêñïåðèìåíòàëüí³ äîñë³äæåííÿ òð³ùèíîñò³éêîñò³ �-ñïëàâà íà áàç³ TiAl ñïëàâ³â çà ð³çíèõ òåìïåðàòóð. Îö³íåíî âïëèâ òåìïåðàòóðè íà õàðàêòåðèñòèêè ðîñòó òð³ùèí â³ä óòîìëåíîñò³ ³ âèçíà÷åíî ôîðìóëó, ùî îïèñóº ¿¿ øâèäê³ñòü íà ä³ëÿíö³ II (îáëàñòü ðîçâèòêó), òà êîíêðåòí³ çíà÷åííÿ êîíñòàíò ð³âíÿííÿ ç âèêîðèñòàííÿì åêñïå- ðèìåíòàëüíèõ ðåçóëüòàò³â. Âèïðîáóâàííÿ ïðîâîäèëè â âàêóóì³ çà òåìïåðàòóð 25, 750 ³ 850�C. Îòðèìàí³ åêñïåðèìåíòàëüí³ äàí³ ïîêàçóþòü, ùî òåìïåðàòóðà ñóòòºâî âïëèâຠíà øâèäê³ñòü ðîñòó òð³ùèí â³ä óòîìëåíîñò³. ²ç ï³äâèùåííÿì òåìïåðàòóðè äî 750� Ñ øâèäê³ñòü ðîñòó òàêèõ òð³ùèí çá³ëüøóºòüñÿ, ïðè äîñÿãíåíí³ ö³º¿ òåìïåðàòóðè ìຠì³ñöå êðèõêîâ’ÿçêèé ïåðåõ³ä TiAl ñïëàâó. Àíàëîã³÷íà çàëåæí³ñòü â³äì³÷àºòüñÿ òàêîæ äëÿ òðàäèö³éíèõ ñïëàâ³â. 1. D. M. Shah and D. N. Duhl, “Evaluation of multicomponent nickel base LI2 and other intermetallic alloys as high temperature structural materials,” MRS Proc., 81, 411–418 (1986). DOI: http://dx.doi.org/10.1557/PROC-81-411 (About DOI). 2. G. Sauthoff, “Intermetallic phases – materials development and prospects,” Z. Metall- kunde, 80, 337–344 (1989). 3. K. Sadananda and A. K. Vasudevan, “Fatigue crack growth behavior in titanium aluminides,” Mater. Sci. Eng. A, 192-193, 490–501 (1995). 4. H. A. Lipsitt, D. Shechtman, R. E. Schafrik, “The deformation and fracture of TiAl at elevated temperatures,” Metall. Trans., 6A, 1991–1996 (1975). 5. S. M. L. Sastry and H. A. Lipsitt, “Fatigue deformation of TiAl base alloys,” Metall. Trans., 8A, 299–308 (1977). ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 153 Influence of Temperature on Fatigue Crack Propagation ... 6. G. Hénaff and A.-L. Gloanec, “Fatigue properties of TiAl alloys,” Intermetallics, 13, 543–558 (2005). 7. C. Mabru, D. Bertheau, S. Pautrot, et al., “Influence of temperature and environment on fatigue crack propagation in a TiAl-based alloy,” Eng. Fract. Mech., 64, 23–47 (1999). 8. P. C. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” J. Basic Eng., 85, 528–534 (1963). 9. R. G. Forman, V. E. Kearney, and R. M. Engle, “Numerical analysis of crack propagation in cyclic-loaded structures,” J. Basic Eng., 89, 459–464 (1967). 10. X. Zheng and M. A. Hirt, “Fatigue crack propagation in steels,” Eng. Fract. Mech., 18, No. 5, 965–973 (1983). 11. K. S. Chan and D. S. Shih, “Fatigue and fracture behavior of a fine-grained lamellar TiAl alloy,” Metall. Mater. Trans., 28A, 79–90 (1997). 12. K. T. Venkateswara Rao, Y. W. Kim, C. L. Muhlstein, and R. O. Ritchie, “Fatigue crack growth and fracture resistance of a two-phase (� � 2) TiAl alloy in duplex and lamellar microstructures,” Mater. Sci. Eng. A, 192-193, 474–482 (1995). Received 22. 11. 2013 154 ISSN 0556-171X. Ïðîáëåìû ïðî÷íîñòè, 2014, ¹ 3 R. C. Feng, Z. Y. Rui, Y. Zuo, et al.