Modeling of Cloud Surveillance System

The article is devoted to the Cloud Surveillance. The author describes global distributed structure of surveillance system and its main components. The article highlights the main points concerning the processing of video and distributed data storage model. The paper describes main abilities to spre...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Author: Diatlov, Ie.I.
Format: Article
Language:English
Published: Інститут проблем математичних машин і систем НАН України 2016
Series:Математичні машини і системи
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/113669
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Modeling of Cloud Surveillance System / Ie.I. Diatlov // Математичні машини і системи. — 2016. — № 3. — С. 15–20. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-113669
record_format dspace
spelling irk-123456789-1136692017-02-12T03:03:49Z Modeling of Cloud Surveillance System Diatlov, Ie.I. Інформаційні і телекомунікаційні технології The article is devoted to the Cloud Surveillance. The author describes global distributed structure of surveillance system and its main components. The article highlights the main points concerning the processing of video and distributed data storage model. The paper describes main abilities to spread the load among equivalent system services. The author underlines the importance of database replications and backup. This article describes the basic service delivery models of data centers and their positioning relative to the cloud video surveillance applications. Стаття присвячена тематиці хмарного відеоспостереження. Автором описуються глобальна розподілена структура системи і її основні компоненти. Стаття висвітлює основні моменти щодо обробки відеопотоку і розподіленої моделі зберігання даних, описуються можливості для розподілу навантаження між рівнозначними сервісами системи. Автор підкреслює важливість реплікації бази даних і її резервного копіювання. Стаття описує основні сервісні моделі надання послуг дата-центрами і їх позиціонування щодо завдань хмарної системи відеоспостереження. Статья посвящена тематике облачного видеонаблюдения. Автором описываются глобальная распределенная структура системы, а также ее основные компоненты. Статья освещает основные моменты касательно обработки видеопотока и распределенной модели хранения данных, описываются возможности для распределения нагрузки между равнозначными сервисами системы. Автор подчеркивает важность репликации базы данных и ее резервного копирования. Статья описывает основные сервисные модели предоставления услуг дата-центрами и их позиционирование относительно задач облачной системы видеонаблюдения. 2016 Article Modeling of Cloud Surveillance System / Ie.I. Diatlov // Математичні машини і системи. — 2016. — № 3. — С. 15–20. — Бібліогр.: 6 назв. — англ. 1028-9763 http://dspace.nbuv.gov.ua/handle/123456789/113669 004.75 en Математичні машини і системи Інститут проблем математичних машин і систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Інформаційні і телекомунікаційні технології
Інформаційні і телекомунікаційні технології
spellingShingle Інформаційні і телекомунікаційні технології
Інформаційні і телекомунікаційні технології
Diatlov, Ie.I.
Modeling of Cloud Surveillance System
Математичні машини і системи
description The article is devoted to the Cloud Surveillance. The author describes global distributed structure of surveillance system and its main components. The article highlights the main points concerning the processing of video and distributed data storage model. The paper describes main abilities to spread the load among equivalent system services. The author underlines the importance of database replications and backup. This article describes the basic service delivery models of data centers and their positioning relative to the cloud video surveillance applications.
format Article
author Diatlov, Ie.I.
author_facet Diatlov, Ie.I.
author_sort Diatlov, Ie.I.
title Modeling of Cloud Surveillance System
title_short Modeling of Cloud Surveillance System
title_full Modeling of Cloud Surveillance System
title_fullStr Modeling of Cloud Surveillance System
title_full_unstemmed Modeling of Cloud Surveillance System
title_sort modeling of cloud surveillance system
publisher Інститут проблем математичних машин і систем НАН України
publishDate 2016
topic_facet Інформаційні і телекомунікаційні технології
url http://dspace.nbuv.gov.ua/handle/123456789/113669
citation_txt Modeling of Cloud Surveillance System / Ie.I. Diatlov // Математичні машини і системи. — 2016. — № 3. — С. 15–20. — Бібліогр.: 6 назв. — англ.
series Математичні машини і системи
work_keys_str_mv AT diatloviei modelingofcloudsurveillancesystem
first_indexed 2025-07-08T06:11:18Z
last_indexed 2025-07-08T06:11:18Z
_version_ 1837058048909115392
fulltext © Diatlov Ye.I., 2016 15 ISSN 1028-9763. Математичні машини і системи, 2016, № 3 НОВІ ІНФОРМАЦІЙНІ І ТЕЛЕКОМУНІКАЦІЙНІ ТЕХНОЛОГІЇ UDC 004.75 Ie.I. DIATLOV * MODELING OF CLOUD SURVEILLANCE SYSTEM * Institute of Mathematical Machines and Systems Problems, National Academy of Sciences of Ukraine, Kyiv, Ukraine Анотація. Стаття присвячена тематиці хмарного відеоспостереження. Автором описуються глобальна розподілена структура системи і її основні компоненти. Стаття висвітлює основні моменти щодо обробки відеопотоку і розподіленої моделі зберігання даних, описуються можливо- сті для розподілу навантаження між рівнозначними сервісами системи. Автор підкреслює важ- ливість реплікації бази даних і її резервного копіювання. Стаття описує основні сервісні моделі надання послуг дата-центрами і їх позиціонування щодо завдань хмарної системи відеоспостере- ження. Ключові слова: хмарні системи, розподілені системи, відеоспостереження, відмовостійкість. Аннотация. Статья посвящена тематике облачного видеонаблюдения. Автором описываются глобальная распределенная структура системы, а также ее основные компоненты. Статья освещает основные моменты касательно обработки видеопотока и распределенной модели хра- нения данных, описываются возможности для распределения нагрузки между равнозначными сер- висами системы. Автор подчеркивает важность репликации базы данных и ее резервного копиро- вания. Статья описывает основные сервисные модели предоставления услуг дата-центрами и их позиционирование относительно задач облачной системы видеонаблюдения. Ключевые слова: облачные системы, распределенные системы, видеонаблюдение, отказоустой- чивость. Abstract. The article is devoted to the Cloud Surveillance. The author describes global distributed struc- ture of surveillance system and its main components. The article highlights the main points concerning the processing of video and distributed data storage model. The paper describes main abilities to spread the load among equivalent system services. The author underlines the importance of database replications and backup. This article describes the basic service delivery models of data centers and their positioning relative to the cloud video surveillance applications. Keywords: cloud systems, distributed systems, surveillance, failover. 1. Purpose The purpose of the article is to introduce nowadays issues and requests in surveillance market. In response to these requests scientists and researchers works on new types of system software, which are able to process huge amount of cameras and tons of information. One of the ways of development is using cloud technologies. The author tries to find all necessary properties of ideal surveillance system and design special system software based on cloud technologies. 2. Introduction Nowadays cloud computing become more popular and cheaper. That means all resource intensive software products will try to catch a bird with new technological abilities brought by cloud archi- tectures. Surveillance is one of the most important parts of human’s life. Surveillance could pre- vent a crime, could serve as a base of evidence in court and could make our life better with a dif- ferent intelligence system, based on video cameras. 16 ISSN 1028-9763. Математичні машини і системи, 2016, № 3 On the other hand, surveillance is a resource intensive software product, which should be able to operate 24 hours per day and 7 days per week. Surveillance system should process a lot of terra bytes of video stream: to store, display, analyze. To imagine the scale of the problem we can do some easy calculations. One Full HD (1920x1080 and 25 fps) camera streams around 1 TB video data per month with a middle bitrate 2–3 Mbits/sec. The biggest HDD can store up to 8 TB of raw data (real useful size is around 7,3 TB). In this case one biggest HDD can store only 7 cameras for 1 month. For sure, we can build a huge RAID storage, but what we should do if a storage or network subsystem fails? All our data become inaccessible. We will research this issue bellow. The next issue is about centralizing. A lot of different failures could happen even in data centers: electricity fails, network fails, maintenance, etc. All these issues force us to promote the benefits of distributed systems. How to avoid data center failures? The only way is to build distributed and replicated sys- tem. If we are talking about video processing or even storage – there is no problem to build a dis- tributed system. But if we are talking about database, which should be common, the only way is to build fully replicated database system. Luckily, most modern data bases support replications. The purpose of the article is to introduce basic structure of system software which is able to process unlimited amount of cameras. Thus, let’s underline key properties of ideal system: dis- tributed, replicated, failover, redundant. 3. Basic structure In basics, Cloud Surveillance System (CSS) consists of cameras and set of services, which serve for different tasks. The set of main services: connectors, processing nodes, replicated database, distributed file storage and API services illustrates fig. 1. Fig. 1. Main cloud services First, when camera starts up, it should request Connector the list of servers which will serve it. Until the camera connected to CSS has no configuration except network settings: IP ad- dress, mask, gateway and DNS addresses. Here we got the first ability to duplicate Connector service – use multiple DNS “A” records. The method described here is called Round Robin DNS [1]. In its simplest implementation, Round Robin DNS works by responding to DNS requests not only with a single potential IP address, but with one out of a list of potential IP addresses corre- sponding to several servers that host identical services. The order in which IP addresses from the list are returned is the basis for the term Round Robin. With each DNS response, the IP address sequence in the list is permuted. Usually, basic IP clients attempt connections with the first ad- dress returned from a DNS query, so that on different connection attempts, clients would receive service from different providers, thus distributing the overall load among servers. This feature allows spreading all requests from cameras within the system. ISSN 1028-9763. Математичні машини і системи, 2016, № 3 17 The mission of Connector is to transmit camera configuration. This configuration in a special way tells camera the list of servers which can serve it. This list depends on different pa- rameters such as camera geolocation and predefined tasks. After camera received a list of servers (with role “Node”) it will establish connection to them one by one in a random way. If connection with Node server is broken, camera will connect to another one from the list. This principle of operation is described in the article [2]. 4. Database failover Database is the mission critical part of any system. Best DBA practices tell us [3] to use: backups and replications to build failover system. The main idea of replication is to keep few database servers, which should synchronize all data and keep it up to date. Nevertheless, we should keep in mind to setup database backup system and backup validation system. 5. Distributed file storage Failover file storage is the next mission critical component. There are few distributed file systems which could serve us best to author’s mind: Ceph, OrangeFS, Parallel Virtual File System (PVFS), RozoFS and GlusterFS. The main benefit of listed file systems is using TCP transport to connect servers. Distributed File Storage (DFS) usually consist of several server's roles: Master, Backup, Chunks. Master and Backup servers contains database of stored files (meta data). Chunk servers contain files (raw data). Our DFS allows replicating and storing each file several times on differ- ent Chunk servers. Fig. 2. Scheme of Distributed File Storage Principles of storing data among DFS illustrates fig. 2. The main benefit of using Chunk servers is fault tolerance, which means that we do not lose any file if some Chunk server fails. Depending on tasks it is recommended to store each file at least 2 times in different Chunk servers. In case of Chunk server fault (network fault, HDD fault), we can retrieve needed file from another Chunk server. All files, which were lost on faulty server, will be replicated from 2nd file copy to available Chunk servers. Described system does not exclude of using RAID technology. To author’s mind it is more cheap to replicate file rather than redundant each Chunk storage with RAID. The other advantage of our DFS is scalability. We can add or remove Chunk servers on the fly. 6. Video processing Let’s go deeper and review more detailed system architecture. Fig. 3 shows us new system roles: message queue cluster, cleaner. Also, we can study detailed Node structure. 18 ISSN 1028-9763. Математичні машини і системи, 2016, № 3 Message queue cluster is a failover messaging environment based on replicated database and replicated interchangeable servers. This service allows all services within the system keep in touch. Back to the Node we should remind main Cloud Surveillance System tasks. The first one is recoding of huge amount of cameras. We should prepare our system to process as more as pos- sible cameras to release system in projects like Smart City [2]. The second task is broadcasting. Broadcasting different types of public events becomes more popular nowadays. And the last but most important thing is video analyze. Fig. 3. Cloud Surveillance System modules Let's explore the recording process. Every surveillance camera provides continuous end- less video stream. That means that we need to split video data to fragments, because we cannot save endless file to DFS. The other side well described in official FFmpeg [4] knowledge base: “Normally, a MOV/MP4 file has all the metadata about all packets stored in one location (written at the end of the file, it can be moved to the start for better playback by adding faststart to the movflags). A fragmented file consists of a number of fragments, where packets and metadata about these packets are stored together. Writing a fragmented file has the advantage that the file is decodable even if the writing is interrupted (while a normal MOV/MP4 is undecodable if it is not properly finished), and it requires less memory when writing very long files (since writing normal MOV/MP4 files stores info about every single packet in memory until the file is closed). The downside is that it is less compatible with other applications.” Thus, Video Splitter processing live stream and split it to video segments. Video Parser waits for complete segments and when it’s ready (fig. 4), start simple processing: 1) Coping segment to DFS; 2) Analyzing segment for any kind of alarm (movement, fire alarm, etc); 3) Storing file information in database. Only these 3 steps could lead to a huge CPU load in real time system [5] and cause Node fail. ISSN 1028-9763. Математичні машини і системи, 2016, № 3 19 Fig. 4. Recording & video processing scheme Cleaner – is the simplest, but heavy loaded module of cloud system. The main goal of the service is to remove old events and files from our system. But in case of Video Parser, which op- erates with video fragments from only 1 Node, Cleaner should process files and events from all over the system. This makes this service no less interesting. 7. Cloud approach to the surveillance system Well, described surveillance system is distributed, replicated, failover, redundant. But where is the Cloud? To answer this question, we need to rollback to Cloud service models [6] and check them one by one (fig. 5). Fig. 5. Cloud service models The basic service model is IaaS (Infrastructure as a Service), which means that we can re- quest data center to provide us predefined server with network connection. This is the hardest way to build own cloud solution. After we got a bare metal we can choose a cloud platform from a variety of solutions. One of the popular are: Apache Cloud Stack, Xen Cloud Platform, 20 ISSN 1028-9763. Математичні машини і системи, 2016, № 3 VmWare vCloud, Proxmox. After we choose cloud software platform we can install and manage everything by our self. This way provides best flexibility of configuration and options, but diffi- cult to manage and maintain. The second level is PaaS (Platform as a Service). In this case we receive pre-installed software for our solution (operating system, database server or even distributed failover file stor- age). This way more preferred, because it is much easier to maintain. At the moment PaaS service is promoted by huge corporation like Amazon (Amazon Web Services), Google (Google Cloud Services), Microsoft (Azure Cloud). The third level is the level of Cloud Surveillance System customers. As a result of Cloud- based infrastructure and distributed, redundant surveillance software model customers receive a well stable, secure, reliable Cloud Surveillance System. 8. Conclusion The article describes the main nuts and bolts of video processing under conditions of cloud ser- vice models and principals. The author found main properties of failover surveillance system and proposed methods, which allowed reaching failover and redundant system attributes. It was pro- posed the methods how to spread the load among computing resources. The software basic struc- ture and key processing mechanisms were described. REFERENCES 1. Aitchison R. Pro DNS and BIND / Aitchison R. – New York: Apress, 2005. – P. 165 – 167. 2. Дятлов Е.И. Использование облачных технологий видеонаблюдения в рамках программы интел- лектуального города / Е.И. Дятлов // Inudeco’16. – Slavutych, 2016. – P. 222 – 227. 3. Connolly T.M. Database Systems: A Practical Approach to Design, Implementation, and Management / T.M. Connolly, C.E. Begg. – [6 ed.]. – Pearson Education Limited, 2015. – 785 p. 4. FFmpeg multimedia framework [Електронний ресурс]. – Режим доступу: https://www.ffmpeg.org. 5. Дятлов Е.И. Балансировка нагрузки в распределенных вычислительных системах / Е.И. Дятлов // Системи обробки інформації: зб. наук. праць. – Х.: Харківський університет Повітряних сил імені Івана Кожедуба, 2015. – Вип. 136. – C. 128 – 134. 6. Kavis M.J. Architecting the cloud. Design decisions for cloud computing service models (SaaS, PaaS and IaaS) / Kavis M.J. – Wiley, 2014. – 104 p. Стаття надійшла до редакції 30.05.2016 https://www.ffmpeg.org/