Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn
This review is dedicated to the analysis of the hexagonal-to-orthorhombic transition into Ti₃Sn. The place of martensitic transformation into broader category of displacive (diffusionless) transformations is shown from the point of view of a transformation strain associated with the transition. The...
Збережено в:
Дата: | 2014 |
---|---|
Автор: | |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут проблем матеріалознавства ім. І.М. Францевича НАН України
2014
|
Назва видання: | Электронная микроскопия и прочность материалов |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/114285 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn / O.I. Ivanova // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2014. — Вип. 20. — С. 83-92. — Бібліогр.: 25 назв. — рос. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-114285 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1142852017-03-06T03:02:30Z Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn Ivanova, O.I. This review is dedicated to the analysis of the hexagonal-to-orthorhombic transition into Ti₃Sn. The place of martensitic transformation into broader category of displacive (diffusionless) transformations is shown from the point of view of a transformation strain associated with the transition. The transformation strain regarded to the transformation into Ti₃Sn was analyzed and the displacive shear-dominant (martensitic) origin of this transition was shown. The latter part of the work is dedicated to the comparison of the volume change and transformation temperature in Ti₃Sn with those into other materials undergoing martensitic transformation. Огляд присвячений аналізу перетворення із гексагональної в орторомбічну фазу в Ti₃Sn. Показано місце мартенситного перетворення в ширшій категорії бездифузійних перетворень з точки зору деформації перетворення. Деформація перетворення в Ti₃Sn проаналізована і зсувний (мартенситний) характер перетворення проілюстровано. Порівняно зміни об’єму та температури перетворення в Ti₃Sn з такими в інших матеріалах, що зазнають мартенситного перетворення. Обзор посвящен анализу превращения из гексагональной в орторомбическую фазу в Ti₃Sn. Показано место мартенситного превращения в более широкой категории бездиффузионных превращений с точки зрения деформации превращения. Деформация превращения в Ti₃Sn проанализирована и сдвиговый (мартенситный) характер превращения показан. Проведено сравнение изменения объема и температуры превращения в Ti₃Sn с этими характеристиками в других материалах, претерпевающих мартенситное превращение. 2014 Article Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn / O.I. Ivanova // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2014. — Вип. 20. — С. 83-92. — Бібліогр.: 25 назв. — рос. XXXX-0048 http://dspace.nbuv.gov.ua/handle/123456789/114285 669.01:669.296.017.12 en Электронная микроскопия и прочность материалов Інститут проблем матеріалознавства ім. І.М. Францевича НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
This review is dedicated to the analysis of the hexagonal-to-orthorhombic transition into Ti₃Sn. The place of martensitic transformation into broader category of displacive (diffusionless) transformations is shown from the point of view of a transformation strain associated with the transition. The transformation strain regarded to the transformation into Ti₃Sn was analyzed and the displacive shear-dominant (martensitic) origin of this transition was shown. The latter part of the work is dedicated to the comparison of the volume change and transformation temperature in Ti₃Sn with those into other materials undergoing martensitic transformation. |
format |
Article |
author |
Ivanova, O.I. |
spellingShingle |
Ivanova, O.I. Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn Электронная микроскопия и прочность материалов |
author_facet |
Ivanova, O.I. |
author_sort |
Ivanova, O.I. |
title |
Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn |
title_short |
Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn |
title_full |
Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn |
title_fullStr |
Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn |
title_full_unstemmed |
Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn |
title_sort |
analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in ti₃sn |
publisher |
Інститут проблем матеріалознавства ім. І.М. Францевича НАН України |
publishDate |
2014 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/114285 |
citation_txt |
Analysis of the transformation strain associated with the hexagonal-to-orthorhombic transition in Ti₃Sn / O.I. Ivanova // Электронная микроскопия и прочность материалов: Сб. научн . тр. — К.: ІПМ НАН України, 2014. — Вип. 20. — С. 83-92. — Бібліогр.: 25 назв. — рос. |
series |
Электронная микроскопия и прочность материалов |
work_keys_str_mv |
AT ivanovaoi analysisofthetransformationstrainassociatedwiththehexagonaltoorthorhombictransitioninti3sn |
first_indexed |
2025-07-08T07:13:36Z |
last_indexed |
2025-07-08T07:13:36Z |
_version_ |
1837061968748347392 |
fulltext |
84
UDC 669.01:669.296.017.12
Analysis of the transformation strain associated with
the hexagonal-to-orthorhombic transition in Ti3Sn
Ivanova Olga
Frantsevich institute for problems of Material Science, Kyiv,
e-mail: iv4103@gmail.com
This review is dedicated to the analysis of the hexagonal-to-orthorhombic
transition into Ti3Sn. The place of martensitic transformation into broader
category of displacive (diffusionless) transformations is shown from the
point of view of a transformation strain associated with the transition. The
transformation strain regarded to the transformation into Ti3Sn was
analyzed and the displacive shear-dominant (martensitic) origin of this
transition was shown. The latter part of the work is dedicated to the
comparison of the volume change and transformation temperature in Ti3Sn
with those into other materials undergoing martensitic transformation.
Keywords: martensitic transformation, transformation strain, shape
memory alloys.
Introduction
Intermetallic compound Ti3Sn and some Ti3Sn-based alloys were
reported to exhibit high damping capacity in the frequency range
0,10—10 Hz [1, 2] and unusual mechanical properties such as low
Young’s modulus and good room temperature plasticity [3—5]. Such
properties in conjunction with strength and high melting
temperature are of interest for materials for aerospace components
operating under vibration and extremely difficult environment.
According to [1, 2] the origin for high damping and unusual
mechanical behaviour is a phase transformation occurring in the
intermetallic compound Ti3Sn at about 350 K which is accompanied
by a peak of damping capacity and a reduction of Young’s modulus.
According to [6] the room temperature Ti3Sn has orthorhombic
Cmcm structure (space group № 63, lattice parameters a = 0,585
nm, b = 1,034 nm, c = 0,475 nm) and undergoes a phase
transformation to the hexagonal DO19 structure (space group № 194,
lattice parameters a = 0,5938 nm, c = 0,4749 nm) under heating.
Microstructural observations by TEM have revealed self-
accommodated twinned microstructure with compound (110) twins in
room-temperature single-phase Ti3Sn [2—6].
For the phase transition into Ti3Sn the ratio between
transformation temperature and melting temperature
18,0
K1943
K343
melt
trans ==
T
T
is low enough to suggest the diffusionless nature of the transition. A
85
formation of specific twinned self-accommodated microstructure [3—
6] points to its martensitic origin. Most of them undergoes diffusion-
displacive transition and several intermetallic compound doesn’t
undergo any transformation. Ni3Sn and Fe3Mg were reported to
exhibit martensitic transformation, but these two
© Ivanova Olga, 2014
compounds have ordered cubic DO3 or L12 high-temperature phase
which transforms into hexagonal phase [7]. However the Ti3Sn
compound crystallizes into hexagonal close-packed DO19 superlattice
from the melt. It is unusual for the case of martensitic
transformations because the high-temperature phase is mostly cubic.
Into our previous work [6] it is shown that hexagonal lattice
transforms to an orthorhombic Cmcm structure in Ti3Sn. Carrying out
analysis of the transformation strain we aimed to show the
martensitic (displacive) origin of the transition, and compare it with
martensitic transformations into other alloys and intermetallic
compounds.
Classifications of diffusionless phase transitions
Buerger in 1951 have made a classification of phase
transformations into solid state based on the mechanism of the
transition and on the structural relations between parent and
product phases. According to this classification [8] phase
transformation can be divided on reconstructive, displacive and
order/disorder transformations.
During reconstructive transition chemical bonds are broken and
new bonds formed. In this case the space group symmetries of parent
and product phases are unrelated. Reconstructive transformations
are quite abrupt and have no order parameter. These
transformations are of first order thermodynamic character, they
occur by nucleation and growth, show thermal hysteresis; parent and
product phases coexist at equilibrium.
Displacive transitions involve the distortion of bonds. In this case
of parent and product phases show group/subgroup relations. Low-
symmetry phase approaches the transition to higher symmetry-phase
continuously. Order parameter exists and measures a ‘distance’ of the
low-symmetry to the high-symmetry structure. These transitions can
be of second or weak first order and are characterized by vanishing or
small latent heat, volume jump and thermal hysteresis.
During order/disorder transitions the structural difference
between phases is related to the different chemical occupation of the
same crystallographic sites. These transitions have second order
character and show vanishing enthalpy and volume changes.
Phase transformations which involve long range diffusion are
regarded as reconstructive rather than displacive. However some
transformations requiring diffusion also have displacive character;
86
they are called "diffusional-displacive transformations" to emphasize
their mixed characteristics; sometimes the term "nonferrous bainites"
is used for them [9]. Displacive transformations involve atom’s
displacement within unit cell and long range diffusion is not
required.
Cohen et al. in 1979 proposed a classification scheme that
identifies a class of displacive transformations. According to his
classification [9], martensitic transformation is a subclass of broader
category of displacive transformation and is defined as a shear-
dominant, lattice-distortive, diffusionless transformation occurring
by nucleation and growth. This classification scheme is reproduced
on fig. 1.
The first subdivision is made between “shuffle transformations”,
in which kinetic and morphology are dominating by shuffle
displacements, and “lattice-distortive transformations” which are
driven by lattice-distortive strain energy. A shuffle is a coordinated
movement of atoms that alters the symmetry or
Diffusionless/displacive phase transformations
Shuffle displacements
Interfacial energy
Shuffle transformation
Kinetic and morphology are
dominated by shuffle displacements
TiZr alloys (β→ω)
SrTiO3 (ferroelastic)
Lattice-distortive displacements
Strain energy energy
Lattice-distortive
transformation
Kinetic and morphology are
dominated by homogeneneous
lattice-distortive deformation
dilatational component Deviatoric component
Dilatation dominant
No undistorted line
Sn (bct→dc)
Ce (fcc →fcc’)
Deviatoric dominant
undistorted line
vibrational displacements
driving energy
Latice-distortive displacements
strain energy
Quasimartensitic
Occurring continuously
Nb-Ru (fcc →fcc’)
Mn-Ni (antiferomagnetic)
Martensitic
Occurring by nucleation and growth
Fe-based alloys, Ni-Ti, Cu-based
Diffusionless/displacive phase transformations
Shuffle displacements
Interfacial energy
Shuffle transformation
Kinetic and morphology are
dominated by shuffle displacements
TiZr alloys (β→ω)
SrTiO3 (ferroelastic)
Lattice-distortive displacements
Strain energy energy
Lattice-distortive
transformation
Kinetic and morphology are
dominated by homogeneneous
lattice-distortive deformation
dilatational component Deviatoric component
Dilatation dominant
No undistorted line
Sn (bct→dc)
Ce (fcc →fcc’)
Deviatoric dominant
undistorted line
vibrational displacements
driving energy
Latice-distortive displacements
strain energy
Quasimartensitic
Occurring continuously
Nb-Ru (fcc →fcc’)
Mn-Ni (antiferomagnetic)
Martensitic
Occurring by nucleation and growth
Fe-based alloys, Ni-Ti, Cu-based
Fig. 1. Classification scheme of diffusionless/displacive phase
transformation proposed by Cohen et al. [9].
structure of the crystal and rearranges the atom positions within a
unit cell. In the case of lattice-distortive transformations the kinetic
87
and morphology are dominated by homogeneous lattice-distortive
deformation; that is a homogeneous strain that transforms the lattice
of parent phase into a lattice of product phase.
A further subdivision was made between “dilatation-dominant”
and “deviatoric- dominant” transformations according to the relative
magnitudes of the two components of the homogeneous lattice
deformation, i. e., the dilatational and the deviatoric (shear)
components.
The next subdivision is made between martensitic transformation,
occurring by nucleation and growth and quasimartensitic
transformation occurring continuously according to the relative
magnitudes of the lattice-distortive displacements and lattice
vibrational displacements. Martensitic transformation requires
heterogeneous nucleation and passes through a two-phase mixture of
parent and product phases; it is a first order diffusionless phase
transformation. In the case of quasimartenstic transformations these
two displacements are comparable. In this case a nucleation is not
required since domains of product phase appear simultaneously
throughout the material by continuous strain modulation.
The “martensitic transformations” are therefore the displacive
and shear-dominant phase transformations where the lattice-
distortive strain is large enough to dominate the kinetics and the
morphology of the transformation. These transformations are
characterizes by existence of invariant line which remains
unchanged during transformation.
The homogeneous lattice-distortive strain can be represented by a
matrix according to
y = S x,
where the strain S deforms the lattice vector x into a lattice vector y.
This strain is homogeneous because it transforms straight lines
into other straight lines. A spherical body of the parent phase will
thus be transformed into another sphere or into an ellipsoidal body.
The actual shape of the ellipsoid depends on the deformation along
the three principal axes. The ellipsoid obtained after a pure shear
intersects the original sphere; hence a set of vectors exist, whose
lengths remain unchanged. The initial and the isotropically dilated
spheres have no intersection and it is therefore not possible to find a
vector whose length has not been changed by the transformation. An
undistorted line can only result from a homogeneous lattice
deformation if the deviatoric or shear component sufficiently exceeds
the dilatational component.
Bilby and Christian [10] stated that for an undistorted line to
exist after homogenous deformation, that one of the principal
distortions must be greater than unity, one must be less than unity
and one must be equal to unity.
Fig. 2 shows one section of the sphere which represents a unit
sphere of parent phase and a section of ellipsoid which represents a
88
product phase. The ellipsoid has a unity principal distortion along y
axis, greater that unity distortion along x axis, less then unity
distortion along z axes. The invariant line of contact between sphere
and ellipsoid can be find; it is A’OB’ line. The plane A’OB’ is a plane
of zero distortion and represents a habit plane into crystal lattice.
Thus during martensitic transformation the transformation
strain exist and displays the volume change that accompanies the
transition. This differs martensitic from shuffle transformation.
Shear-dominant nature of martensitic transformation requires the
existence of invariant line which leads to the necessary
condition that one of principal strains must be greater than unity,
one must be less than unity and one must be equal to unity. This
differs martensitic transformation from dilatational transformation.
Into latter case all principal
Fig. 2. Bain distortion with one strain of zero, one
greater than zero and one less than zero [10].
strains higher or smaller then unity. Quasimartensitic and
martensitic transitions can be distinguished by the magnitude of
volume change, latent heat or thermal hysteresis.
Transformation into Ti3Sn
As reported into [6], Ti3Sn high temperature hexagonal DO19
(P63/mmc, space group #194) phase transforms to orthorhombic
Cmcm (space group #63) phase. These structures obey group-
subgroup relations thus transition from P63/mmc to Cmcm structure
can be displacive. Below we analyze the lattice transformation strain
in order to show the existence of invariant line and to show its shear-
dominant origin.
The defined orthorhombic lattice of Ti3Sn can be viewed as a
distorted hexagonal phase with a relation between lattice
parameters: аorto ≈ аhех, borto ≈ ≈ √3ahex, corto ≈ chex. Based on the
dimensions of orthorhombic and hexagonal structures, a
crystallographic relation between these phases can be suggested. A
schematic of the crystal structures of the orthorhombic and
89
hexagonal phases and their lattice correspondences are shown in fig.
3, a. Therefore the orientation relationships between orthorhombic
and hexagonal phases become (110)orto||(100)hex, <001>orto||<001>hex.
The transition from hexagonal to orthorhombic phase is accompanied
by a shortening of 1,5% along x axis and an elongation of 0,5% along
y axis (into orthorhombic basis) leading to the total transformation
strain about
990,0
100
0005,10
00985,0
det
00
0
3
0
00
detdet
hex
ortho
hex
ortho
hex
ortho
=
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎝
⎛
=
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
⎞
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝
⎛
=
c
c
a
b
a
a
U
which corresponds to reduction of crystal lattice volume of about 1%.
Principal strains of the pure lattice dilatation can be deducted as
a difference between calculated transformation strains and
unit matrix and equal to e1 = –0,015, e2 = 0,005, e3 = 0. This
evidences that the strain ellipsoid of orthorhombic phase is
contracted along x axis, dilated along y axis and not
a b
Fig. 3. Lattice correspondence between orthorhombic and hexagonal phases (a) [6];
a sphere of the hexagonal phase and dilated ellipsoid of orthorhombic phase (b).
Undistorted invariant plane can be found as an intersection between the ellipsoid and
the sphere (AB and A’B’ circles).
altered along z direction compared to the strain sphere of the
hexagonal phase. fig. 3, b shows a sphere representing the hexagonal
phase and an ellipsoid of orthorhombic phase which is contracted on
e1 = –0,015 (1,5%) along x axis, dilated on e2 = 0,005 (0,5%) along y
axis and not altered along z axes.
Therefore, an undistorted invariant plane can be found as an
intersection between dilated ellipsoid of orthorhombic phase and
initial sphere of hexagonal phase (AB and A’B’ circles). The presence
of an invariant plane indicates that this orthorhombic-to-hexagonal
transition is lattice-distortive and shear-dominant, and thus
martensitic transformation according to the definition given by
Cohen et al [9]. The transformation strain matrix correspondent to
90
hexagonal-to-orthorhombic transition in Ti3Sn has λ2 = 1 which
points to good geometrical compatibility [11—13] between parent and
product phases and might explain small thermal hysteresis
measured into previous works [14].
The volume change and transformation strain associated with the
hexagonal-to-orthorhombic transition into Ti3Sn are deducted and
this transition can be compared with those into other materials.
Table 1 shows volume changes, transformation and melting
temperatures for some alloys and intermetallic compounds
undergoing martensitic transformation. Crystal structures of parent
phases of the SMAs are either of ordered cubic superlattice (B2) or
disordered cubic (fcc) lattice, as seen in the table 2. Product phase
have low-symmetry orthorhombic or monoclinic lattice.
It is seen from table 1 and fig. 4 that alloys with lower Ms have
negative volume change while into materials with higher
transformation temperature parent B2 phase is denser then
martensite. Shape memory materials can be distinguished on low-
(if Ms < 400 K) and high-temperature (if Ms > 400 K) ones [22]. Ti3Sn
having Ms = 343 K belongs to low-temperature materials. As it seen
from fig. 1 the volume change associated with the transition in Ti3Sn
is negative and quite big compared to other low-temperature SMA.
Ms/Tm ratio is a measure of interplay between diffusion processes
and martensitic transformation. Into high-temperature SMA
diffusion processes
T a b l e 1. Volume changes, transformation and melting
temperatures for some alloys undergoing martensitic transformation
Composition,
% (at.)
VP*,
10-3 nm
VM,
10-3 nm ∆V/VM, % Ms, K Tm, K
[15] Ms/Tm
Ti—49,8Ni 13,7035 13,6573 –0,34 330 [16] 1313 0,24
AuCd 18,3303 18,2177 –0,62 325 [17] 629 0,52
Ag—45Cd 18,1982 17,9047 –1,64 199 [18] 740 0,27
Ti49,5Ni40,5Cu10 13,9091 13,9119 0,02 400 [17]
Ti—4Mo 17,3389 17,4777 0,79 780 [19] 3146 0,25
Ti—20Nb 17,7254 17,6805 –0,25 493 [20] 2846 0,17
Ti—24Nb 17,7358 17,7249 –0,06 338 [20] 2766 0,12
Zr—49,9Cu 17,5311 17,6094 0,45 413 [21] 1461 0,28
Ti3Sn 18,1269 17,9577 –0,94 343 [1] 1943 0,18
*VP , VM — volume per atom for parent and martensitic phase;
— volume change during martensitic
transformation.
T a b l e 2. Crystal structures of parent and martensitic phases of
the alloys listed into table 1 [15]
%100×
−
=∆
M
PM
V
VVV
91
of internal stress relaxation inhibit the shape recovery if Ms/Tm is
high [23, 24]. Into materials with low-temperature martensitic
transformation the interplay between diffusion processes of point
defects rearrangement might lead to twinning pseudoelasticity [25].
Twinning pseudoelasticity i. e. strain recovery below transformation
temperature was observed into AuCd, In—Tl, some Cu-based alloys
and was not found into Ni—Ti [25]. For Ti3Sn this ratio is 0,18 (table
1) meaning that diffusion processes are not expected to
deteriorate mechanical effects associated with martensitic
transformation. Although twinning pseudoelasticity is not expected
Parent phase Martensitic phase
Composition,
% (at.) Space
group
Lattice
parameters,
nm
Space
group
Lattice parameters,
nm
Ti—49,8Ni B2 a = 0,3015 B19'
a = 0,2889,
b = 0,4120,
c = 0,4622,
β = 96,8o
AuCd B2 a = 0,3322 B19
a = 0,4766, b =
= 0,3151, c =
0,4859
Ag—45Cd Cubic a = 0,3314 Orthorho
mbic
a = 0,30968,
b = 0,48651,
c = 0,47536
49,5Ti—
40,5Ni—
10Cu
B2 a = 0,303
[16] B19
a = 0,2881,
b = 0,4279,
c = 0,4514 [16]
Ti—4Mo β a = 0,3261
[19] α''
a = 0,3012,
b = 0,4983,
c = 0,4658 [19]
Ti—20Nb β
a =
0,328505
[20]
α''
a = 0,31257,
b = 0,48704,
c = 0,46456 [20]
Ti—24Nb β
a =
0,328569
[20]
α''
a = 0,31785,
b = 0,4812,
c = 0,46355 [20]
Zr—49,9Cu B2 a =0,3273
[22] B19'
a = 0,3237,
b = 0,4138,
c = 0,5449,
β = 105,19о [22]
Ti3Sn DO19
a =
0,5938,
c = 0,4749
[6]
Orthorho
mbic
a = 0,585,
b = 1,034, c =
0,475 [6]
92
for Ti3Sn because of low Ms/Tm, the strain recovery below
transformation temperature was observed in the non-stoichiometric
Ti75.5Sn24.5 [5].
Fig. 4. Transformation temperature Ms versus volume change accompanied
martensitic transformation according to table 1.
Summary
The transformation strain matrix associated with orthorhombic to
hexagonal in Ti3Sn contains eigenvalues λ1<0, λ2 = 1, λ3>0 and
corresponds to the volume change of about 1% (det U = 0,99). These
imply that the transformation is lattice-distortive and shear
dominant, i. e. martensitic. The condition λ2 = 1 points to good
geometrical compatibility between parent and product. The volume
change accompanied the transition in Ti3Sn is negative and quite big
compared to other low-temperature SMA.
1. Vdovychenko O. V. Dynamic mechanical behavior of
intermetallide Ti3Sn / [ O. V. Vdovychenko, M. V. Bulanova, Yu. V.
Fartushna, A. A. Shcheretsky] // Scripta Mater. — 2010. — 62. — P.
758—761.
2. Wong C. R. Low frequency damping and ultrasonic attenuation in
Ti3Sn-based alloys / C. R. Wong, R. L. Fleischer // J. Mater. Res. —
1994. — 9, No. 6. — P. 1441—1448.
3. Окунь И. Ю. Аномальная пластичность в интерметаллиде Ti3Sn
/ [И. Ю. Окунь, А. В. Котко, С. А. Фирстов и др.] //
Электронная микроскопия и прочность материалов. — К. : Ин-т
пробл. материаловедения НАН Украины. — 2007. — Вып. 14. —
С. 12—20.
4. Буланова М. В. Фазовый состав, структура и механические
свойства богатых титаном сплавов системы Ti—Dy—Sn / [М. В.
Буланова, Ю. Н. Подрезов, Ю. В. Фартушная, А. Н. Рафал] //
Доп. Нацiональної академiї наук України. — 2007. — № 6. — C.
95—104.
5. Ivanova O. Room temperature strain recovery into non-
stoichiometric intermetallic compound Ti3Sn / [O. Ivanova, A. R.
93
Yavari, K. Georgarakis, Yu. Podrezov] // J. Alloys.Compd. — 2014. —
617. — P. 34.
6. Ivanova O. In situ X-Ray diffraction study of the phase
transformation in the non stoichiometric intermetallic compound
Ti3Sn / [O. Ivanova, M. Karpets, A. R. Yavari et al.] // Ibid. — 2014.
— 582. — P. 360.
7. Ghosh G. First-principles calculation of phase stability and cohesive
properties of Ni—Sn intermetallics // Met. Mat. Trans. A. — 2009.
— 40. — P. 4.
8. Buerger M. J. Phase Transformations in Solids / [M. J. Buerger, R.
Smoluchowski, J. E. Mayer et al.]. — New York, 1951.
9. Cohen M., Olson G. B., Clapp P. C. // Proc. of ICOMAT -79. — 1979.
— P. 1.
10. Bilby B. A., Christian J. W. // Inst. Met. Monograph. — 1955. — No. 18.
11. Bhattacharya K. Crystal symmetry and the reversibility of martensitic
transformations / [K. Bhattacharya, S. Conti, G. Zanzotto, J. Zimmer] //
Nature. — 2004. — 428. — P. 4.
12. Cui J. Combinatorial search of thermoelastic shape-memory alloys with
extremely small hysteresis width /[ J. Cui, J. Chu, O. Famodu et al.] //
Nature Mater. — 2006. — 5. — P. 286.
13. Zhang Zh. Energy barriers and hysteresis in martensitic phase transformations
/ Zh. Zhang, R. D. James, S. Mulle // Acta Mater. (in press).
14. Подрезов Ю. М. Властивості сплавів на основі iнтерметалiду Ti3Sn в
області температур мартенситного перетворення / [Ю. М. Подрезов,
О. М. Іванова, М. В. Буланова, О. А. Щерецький] // Металознавство та
обробка металів. — 2014. — № 1. — С. 3— 8.
15. Inorganic Materials Database (AtomWork) on http://crystdb.nims.
go.jp/index_en.html.
16. Otsuka K. Physical metallurgy of Ti—Ni—based shape memory alloys /
K. Otsuka, X. Ren //Progress in Mater. Sci. — 2005. — 50. — P. 511.
17. Ohba T. Temperature dependence of lattice parameters in Au—49,5% (at.) Cd
martensite and the relationship between parent and martensite / [T. Ohba,
K. Sato, J. Ye, K. Otsuka] // Scripta Mater. — 2003. — 49. — P. 291.
18. Krishnan R. V. Pseudoelasticity and the strain-memory effect in an Ag—
45% (at.) Cd alloy / R. V. Krishnan, L. C. Brown // Metall. Trans. — 1973. —
4. — P. 423.
19. Mantani Y. Phase transformation of α’’ martensite structure by aging in
Ti—8% (mas.). Mo alloy / [Y. Mantani, Y. Takemoto, M. Hida et al.] // Mater.
Trans. — 2004. — 45, No. 5. — P. 1629.
20. Chai Y. W. Interfacial defects in Ti—Nb shape memory alloys /
[Y. W. Chai, H. Y. Kim, H. Hosoda, S. Miyazaki] // Acta Mater. — 2008. —
56. — P. 3088.
21. Koval Yu. N. Martensitic transformation and shape memory effect in ZrCu
intermetallic compound / Yu. N. Koval, G. S. Firstov, A. V. Kotko // Scripta
Metal. Mater. — 1992. — 27. — P. 1611.
22. Firstov G. Phase stability at martensitic transformation in Zr-based shape
memory intermetallics / [G. Firstov, A. Timoshevski, Yu. Koval et al.] //
Mater. Sci. Forum Vols. — 2013. — 738—739. — P. 15.
23. Ma J. High temperature shape memory alloys / J. Ma, I. Karaman, R. D. Noebe
// Internat. Mater. Rev. — 2010. — 55, No. 5. — P. 257.
94
24. Firstov G. S. High-temperature shape memory alloys. Some recent
developments / G. S. Firstov, J. Van Humbeeck, Y. N. Koval // Mat. Sci.
Eng. A. — 2004. — 378. — P. 2.
25. Otsuka K. Mechanism of martensite aging effects and new aspects / K. Otsuka,
X. Ren // Ibid. — 2001. — 312. — P. 207.
Аналіз деформації перетворення, пов’язаної з перетворенням
з гексагональної в орторомбічну фазу в Ti3Sn
О. М. Іванова
Огляд присвячений аналізу перетворення із гексагональної в
орторомбічну фазу в Ti3Sn. Показано місце мартенситного перетворення
в ширшій категорії бездифузійних перетворень з точки зору деформації
перетворення. Деформація перетворення в Ti3Sn проаналізована і
зсувний (мартенситний) характер перетворення проілюстровано.
Порівняно зміни об’єму та температури перетворення в Ti3Sn з такими в
інших матеріалах, що зазнають мартенситного перетворення.
Ключові слова: мартенситне перетворення, деформація перетворення,
сплави з ефектом пам’яті форми.
Анализ деформации превращения, связанной
с превращением из гексагональной в орторомбическую
фазу в Ti3Sn
О. М. Иванова
Обзор посвящен анализу превращения из гексагональной в
орторомбическую фазу в Ti3Sn. Показано место мартенситного
превращения в более широкой категории бездиффузионных
превращений с точки зрения деформации превращения. Деформация
превращения в Ti3Sn проанализирована и сдвиговый (мартенситный)
характер превращения показан. Проведено сравнение изменения
объема и температуры превращения в Ti3Sn с этими характеристиками в
других материалах, претерпевающих мартенситное превращение.
Ключевые слова: мартенситное превращение, деформация
превращения, сплавы с эффектом памяти формы.
|