Effect of the desorption process on photoluminescence excitation spectra of porous silicon

Photoluminescence (PL), photoluminescence excitation (PLE) and FTIR methods were used to study the PL excitation mechanism in porous silicon (PS). Two types of PLE spectra were observed, consisting of two (visible and ultraviolet) and one (only ultraviolet) bands. The intensities of each PLE band de...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1998
Автори: Torchinskaya, T.V., Korsunskaya, N.E., Khomenkova, L.Yu., Dzhumaev, B.R., Many, A., Goldstein, Y., Savir, E.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 1998
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/114671
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Effect of the desorption process on photoluminescence excitation spectra of porous silicon / T.V. Torchinskaya, N.E. Korsunskaya, L.Yu. Khomenkova, B.R. Dzhumaev, A. Many, Y. Goldstein, E. Savir // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 61-65. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-114671
record_format dspace
spelling irk-123456789-1146712017-03-12T03:02:24Z Effect of the desorption process on photoluminescence excitation spectra of porous silicon Torchinskaya, T.V. Korsunskaya, N.E. Khomenkova, L.Yu. Dzhumaev, B.R. Many, A. Goldstein, Y. Savir, E. Photoluminescence (PL), photoluminescence excitation (PLE) and FTIR methods were used to study the PL excitation mechanism in porous silicon (PS). Two types of PLE spectra were observed, consisting of two (visible and ultraviolet) and one (only ultraviolet) bands. The intensities of each PLE band depend differently on the anodization conditions during aging and thermal treatment. Two excitation channels were shown to exist in PS. The visible PLE band at 300 K was attributed to light absorption of some species on the surface of Si wires. Досліджено механізм збудження фотолюмінесценції пористого кремміго методами фотолюмінесценції та інфрачервоного поглинання. Показано, що існує два типі спектрів збудження, які містять або дві смуги (видиму та ультрафіолетову), або тільки одну (ультрафіолетову) смугу. Вивчено залежності інтенсивностей кожної смуги від режимів електрохімічного травлення, а також їх поведінка у процесі старіння та термічного оброблення пористих шарів. Показано, що існують два канали збудження фотолюмінесценції. Видима смуга у спектрі збудження при 300 К пов.язується з поглинанням світла у речовинах, які адсорбовані на поверхні кремнієвих ниток. Исследован механизм возбуждении фотолюминесценции пористого кремнии методами фотолюминесценции и инфракрасного поглощения. Показано, что существуют два типа спектров возбуждения, которые содержат либо две полосы (видимую и ультрафиолетовую), либо только одну (ультрафиолетовую) полосу. Изучены зависимости ингенсивностей каждой полосы возбуждения от режимов электрохимического травления, а также их поведение в процессе старения и термических обработок пористых слоев. Показано, что существуют два канала возбуждения фотолюминесценции. Видимая полоса в спектре возбуждения при 300 К связывается с поглощением света веществами, адсорбированными на поверхности кремниевых нитей. 1998 Article Effect of the desorption process on photoluminescence excitation spectra of porous silicon / T.V. Torchinskaya, N.E. Korsunskaya, L.Yu. Khomenkova, B.R. Dzhumaev, A. Many, Y. Goldstein, E. Savir // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 61-65. — Бібліогр.: 4 назв. — англ. 1560-8034 PACS 78.55.H http://dspace.nbuv.gov.ua/handle/123456789/114671 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Photoluminescence (PL), photoluminescence excitation (PLE) and FTIR methods were used to study the PL excitation mechanism in porous silicon (PS). Two types of PLE spectra were observed, consisting of two (visible and ultraviolet) and one (only ultraviolet) bands. The intensities of each PLE band depend differently on the anodization conditions during aging and thermal treatment. Two excitation channels were shown to exist in PS. The visible PLE band at 300 K was attributed to light absorption of some species on the surface of Si wires.
format Article
author Torchinskaya, T.V.
Korsunskaya, N.E.
Khomenkova, L.Yu.
Dzhumaev, B.R.
Many, A.
Goldstein, Y.
Savir, E.
spellingShingle Torchinskaya, T.V.
Korsunskaya, N.E.
Khomenkova, L.Yu.
Dzhumaev, B.R.
Many, A.
Goldstein, Y.
Savir, E.
Effect of the desorption process on photoluminescence excitation spectra of porous silicon
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Torchinskaya, T.V.
Korsunskaya, N.E.
Khomenkova, L.Yu.
Dzhumaev, B.R.
Many, A.
Goldstein, Y.
Savir, E.
author_sort Torchinskaya, T.V.
title Effect of the desorption process on photoluminescence excitation spectra of porous silicon
title_short Effect of the desorption process on photoluminescence excitation spectra of porous silicon
title_full Effect of the desorption process on photoluminescence excitation spectra of porous silicon
title_fullStr Effect of the desorption process on photoluminescence excitation spectra of porous silicon
title_full_unstemmed Effect of the desorption process on photoluminescence excitation spectra of porous silicon
title_sort effect of the desorption process on photoluminescence excitation spectra of porous silicon
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 1998
url http://dspace.nbuv.gov.ua/handle/123456789/114671
citation_txt Effect of the desorption process on photoluminescence excitation spectra of porous silicon / T.V. Torchinskaya, N.E. Korsunskaya, L.Yu. Khomenkova, B.R. Dzhumaev, A. Many, Y. Goldstein, E. Savir // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 61-65. — Бібліогр.: 4 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT torchinskayatv effectofthedesorptionprocessonphotoluminescenceexcitationspectraofporoussilicon
AT korsunskayane effectofthedesorptionprocessonphotoluminescenceexcitationspectraofporoussilicon
AT khomenkovalyu effectofthedesorptionprocessonphotoluminescenceexcitationspectraofporoussilicon
AT dzhumaevbr effectofthedesorptionprocessonphotoluminescenceexcitationspectraofporoussilicon
AT manya effectofthedesorptionprocessonphotoluminescenceexcitationspectraofporoussilicon
AT goldsteiny effectofthedesorptionprocessonphotoluminescenceexcitationspectraofporoussilicon
AT savire effectofthedesorptionprocessonphotoluminescenceexcitationspectraofporoussilicon
first_indexed 2025-07-08T07:47:28Z
last_indexed 2025-07-08T07:47:28Z
_version_ 1837064100785422336
fulltext 61© 1998 ²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè Ô³çèêà íàï³âïðîâ³äíèê³â, êâàíòîâà òà îïòîåëåêòðîí³êà. 1998. Ò. 1, ¹ 1. Ñ. 61-65. Semiconductor Physics, Quantum Electronics & Optoelectronics. 1998. V. 1, N 1. P. 61-65. PACS 78.55.H Effect of the desorption process on photoluminescence excitation spectra of porous silicon T. V. Torchinskaya, N. E. Korsunskaya, L. Yu. Khomenkova, B. R. Dzhumaev Institute of Semiconductor Physics, NAS Ukraine, 45 prospekt Nauki, Kyiv, 252028, Ukraine A. Many, Y. Goldstein, E. Savir Racah Institute of Physics, The Hebrew University, Jerusalem, ISRAEL Abstract. Photoluminescence (PL), photoluminescence excitation (PLE) and FTIR methods were used to study the PL excitation mechanism in porous silicon (PS). Two types of PLE spectra were observed, consisting of two (visible and ultraviolet) and one (only ultraviolet) bands. The intensities of each PLE band depend differently on the anodization conditions during aging and thermal treatment. Two excita- tion channels were shown to exist in PS. The visible PLE band at 300 K was attributed to light absorp- tion of some species on the surface of Si wires. Keywords: Photoluminescence; excitation; porous silicon; desorbtion. Paper received 16.07.98; revised manuscript received 02.09.98; accepted for publication 27.10.98. 1. Introduction In spite of a large body of research made on the photolumi- nescence (PL) of porous silicon (PS), the origin of visible light emission (silicon wires or substances on their surface) and the mechanism of its excitation are still unknown. In this paper, PL and PL excitation (PLE) measurements and FTIR methods were employed to study the mechanism of PL excitation in porous silicon. To elucidate the role of surface substances in the photoluminescence of porous sili- con, three approaches were used, involving studies of: (i) the dependences of the PL and PLE spectra on the anodization conditions; (ii) the effect of thermal and ultra- sound treatment on the PL, PLE and FTIR spectra, and (iii) aging phenomena in air and vacuum by the techniques of PL and, especially, PLE. It should be noted that up to now, dependences of the PLE spectra on the conditions of preparation and aging have not been studied systematically. 2. Experimental results and discussion Porous silicon samples were prepared from p-type B-doped, (100) oriented silicon wafers with the resistivity of 4.5 Ω⋅cm by anodization in the solution of HF:H 2 O:C 2 H 5 OH = 1:1:2. The current density (I a ) and time (t a ) of anodization were 25, 50, 100, 200 mA/cm2 and 2, 8, 15 min respectively. Pho- toluminescence was excited with the light of a Xe lamp passed through the MDR-23 monochromator. XPS meas- urements were performed with the LAS 2000 (RIBER) spectrometer in the energy range of 0 to 1000 eV. The photoluminescence (PL) and photoluminescence excitation (PLE) spectra are shown in fig.1 and fig. 2 re- spectively. The PLE spectrum consists of two overlapping bands represented by a broad maximum in the visible spec- tral range (380�450 nm) (V band) and a steep rise (or maxi- mum) in the ultraviolet range (UV band). It is essential that positions of the PL peaks depend on the wavelength of the excitation light. Namely, the peak of the photoluminescence excited by the light from the UV band (W UV ) is located at shorter wavelengths than that of PL ex- cited by the light from the V band (W V ) (fig. 1(c)). 2.1. Dependence of PL and PLE spectra on anodization conditions An increase in the anodization current density results in a shift of PL towards shorter wavelengths and in a decrease of the PL intensity and its full width at half maximum (FWHM) independently of the excitation light wavelength (fig. 1(a)). The latter effect takes place mainly in the case of the UV excitation. At the same time, the intensity of the V band in the PLE spectrum decreases, and at the density of anodization current I a = 200 mA/cm2 this band eventually disappears (fig. 2(a)). Comparison of the curves shown in fig. 2 makes it possible to estimate the overlapping range of the V and UV excitation bands. This range covers the range from 350 to 450 nm at least. Longer anodization times lead to a shift of the PL peak toward longer wavelengths and a rise of the PL intensity and its FWHM (fig. 1(b)). The intensity of the V band in the PLE spectrum also increases (fig. 2(b)). These data indicate T. V. Torchinskaya et al.: Effect of desorption on photoluminescence excitation... 62 ÔÊÎ, 1(1), 1998 SQO, 1(1), 1998 a non-elementary nature of the PL band. The V excitation band corresponds to the PL component with longer wave- lengths than that corresponding to the UV excitation, since an increase (decrease) in the V band intensity in PLE spec- trum leads to a shift of the PL peak towards longer (shorter) wavelengths. 2.2. Effect of the aging processes at the air, in a liquid, and in vacuum on the PL and PLE spectra The investigation of the PS aging process at the air has shown that its kinetics is different for the various light wavelength excitation and may be non-monotone. The PL intensity ex- cited by light wavelength from the V band (λ = 480 nm), when the contribution in the UV excitation band is negligi- ble (fig. 3, curve 1), drops monotonical with time. The in- 600 700 800 0 50 100 150 200 b a W , a rb .u n . 25 mA/cm2 15 min 8 min 2 min λ, nm 500 600 700 800 0 50 100 150 200 8 min 100 50 25 mA/cm2 600 700 800 0 50 100 150 200 c λ = 337 nm λ = 480 nm Fig. 1. PL spectra of as-prepared PS samples for different preparation conditions at the excitation wavelength 337 nm (a, b) and for different excitation wavelengths (c). 350 400 450 500 0 50 100 150 200 250 8 min x5W , a rb .u n. λ, nm I=200mA/cm 2 I=100mA/cm 2 I=25 mA/cm 2 350 400 450 500 550 0 50 100 150 200 250 300 2 min 15 min 8 min I=25 mA/cm 2 Fig. 2. PLE spectra measured at the lu- minescence peak energy for PS sam- ples prepared under various conditions. tensity of PL excited by the light wavelength from the UV band (λ = 330 nm) first decreases insignificantly and then rises (fig. 3, curve 2). When the PLE spectrum contains only the UV band, only an increase in the PL intensity is ob- served. Thus, during the process of aging, the V band in the PLE spectra decreases, and the UV band increases. So, there are two processes that take place during the aging. At the same time, the non-monotony of the curve 2 in fig. 3(a) is obviously due to their competition. Different behavior of the V and UV bands in PLE spec- tra with respect to the anodization conditions and aging in- dicates the existence of two independent channels of PL excitation corresponding to these bands. It is essential that a reduction of the excitation efficiency in the V band at the initial stage (fig. 3) is accompanied by a shift of the peak of the PL excited by the light from the UV and V bands towards shorter wavelengths (fig. 4). In addi- T. V. Torchinskaya et al.: Effect of desorption on photoluminescence excitation... 63ÔÊÎ, 1(1), 1998 SQO, 1(1), 1998 tion, its FWHM decreases due to the prevalent drop of the long-wavelength component (fig. 4(a), curves 3 and 4). To clarify the nature of the processes manifested by the transformations of the PL and PLE spectra during aging, we studied the effect of keeping of as-prepared porous Si samples in vacuum and in liquid (specifically, in water and in aqueous NaCl solution). The latter is often employed for electroluminescence studies. Keeping in vacuum was found to result only in a reduction of the PL intensity (fig. 5). In addition, the V band intensity in the PLE spectrum decreases (fig. 5(b), curve 2), while the shape of the PL band changes in the same way as during aging in the air. It is essential that the short-wavelength edges of the PL bands before and after keeping in vacuum coincide. This fact means that a drop of the PL intensity is associated not with an increase in the concentration of the nonradiative recombination centers, but with a reduction of the long-wavelength component. A simi- lar behavior of PL is observed when keeping PS samples in NaCl solution (fig. 6). To separate this component, let us analyze the data shown in fig. 5(a). The positions of W UV and W V peaks for as-pre- pared PS samples are different, but after keeping in vacuum they coincide. So, in these conditions the contribution of the long-wavelength component seems to be negligible. For this reason, the suppressed component can be separated by sub- tracting curve 2 from curve 1. The result of this procedure is shown in fig. 5(a) (curve 5). A similar behavior of the PL and PLE spectra at the ini- tial stage of aging in the air and when keeping in vacuum leads us to the conclusion that the reduction of the PL inten- sity (its long-wavelength component) is caused by desorption of some substance from the surface of Si wires. Thus, one of the PL excitation channels is associated with a substance absorbed on the surface of Si wires (so-called surface exci- tation). Because of the overlapping of the excitation bands associated with two channels, the spectrum of the PL ex- cited by the light from both the V band and the UV band may contain the long-wavelength component. Obviously, this may be the reason for the shift of the W V and W UV peaks after the treatments mentioned above. 350 400 450 500 550 0 50 100 b 2 1 Wavelength , nm W P LE , a rb .u n. 550 600 650 700 750 800 850 0 50 100 150 a W P L , a rb .u n. Wavelength , nm 4 3 2 1 Fig. 3. Variation of the PL intensity caused by aging of PS sam- ples: 1 � 480 nm; 2 � λ exc = 330 nm. Fig. 4. Transformations of the PL and PLE spectra caused by aging in the air at 300 K: a) PL spectra at λ exc = 337 (1, 2) and 480 (3, 4) nm of as-prepared (1, 3) and aged (2, 4) PS samples; curve 5 obtained by subtracting curve 2 from curve 1; b) PLE spectra of as-prepared (1) and aged for 7 days (2) PS samples. T. V. Torchinskaya et al.: Effect of desorption on photoluminescence excitation... 64 ÔÊÎ, 1(1), 1998 SQO, 1(1), 1998 The infrared absorption spectrum of as-prepared PS ex- hibits a number of features which can be ascribed to the Si-H (800�900 cm-1, 2090�2140 cm-1), Si-O (1050� �1170 cm-1), O-Si-H (2200�2240 cm-1), C-H (2850� �2930 cm-1), and O-H (1620 cm-1, 3300�3600 cm-1) bonds (Fig. 7). The presence of the C-H related band is evidently caused by a component contained in the electrolyte � namely, ethanol. Fig. 7 (curve 2) shows the FTIR spectra of a PS sample after thermal treatment at 370 K for 1 h. It is seen that the intensity of bands attributed to the O-H and C-H bonds decreases. At the same time, the Si-H, Si-O and O-Si- H related bands change insignificantly. Therefore, the surface channel of PL excitation may be associated with ethanol or water. This conclusion is in agree- ment with the data on the effect of pumping-out and water vapor treatment on the PL intensity [1]. It is known that water molecules do not have a light ab- sorption band in the visible range of 350�450 nm. How- ever, water molecule complexes containing some impuri- ties (Li, Na, K, H, CH 3 , etc.) do exhibit a photolumines- cence in the 350�500 nm range [2]. Thus, we can conclude that visible PL excitation may be caused by water complexes with some impurities, for example, H, CH 3 and, possibly, F and B. It should be noted that PL excitation in PS is usually attributed to light absorption in Si wires [3]. This conclu- sion is often based on analysis of PLE spectra similar to those shown in fig. 2(a) for PS samples prepared at 100 mA/cm2, and on the assumption that in the limit of the optically thin sample the PLE signal is proportional to the absorption, provided that the quantum efficiency is inde- pendent of the exciting photon energy. From these spectra, the dependence of α(hν) was determined. It was attributed to two indirect light absorption transitions in Si. The shift of the absorption edge to higher energies in comparison to that in the bulk silicon was ascribed to the effect of quantum confinement [4]. Thus, the UV channel may be due to the absorption in Si wires, while, apparently, one cannot exclude the contribution of light absorption by suboxides on the sur- face of Si wires (see below). We applied the analysis described above to both types of PLE spectra of our PS samples (fig. 2(a)). The PLE sig- nal detected near the luminescence peak energy is shown in fig. 8 as a function of the excitation energy. For low excita- tion energies, the signal in the PLE spectra of the first type (fig. 8, curve 1) follows the dependence (α PLE hν)1/2 ~ 550 600 650 700 750 800 850 0 50 100 150 a 5 4 3 2 1 W P L, ar b. un . Wavelength , nm 350 400 450 500 550 0 50 100 b 2 1 Wavelength , nm W P L E , a rb .u n . Fig. 5. Transformations of PL and PLE spectra caused by aging in vacuum at 300 K: a) PL spectra at l exc = 330 (1, 2) and 480 (3, 4) nm of as-prepared (1, 3) and aged (2, 4) PS samples; b) PLE spectra of as-prepared PS samples (1) and those kept in vacuum (2). 600 700 800 900 0 10 20 30 40 50 60 2 1 W , a rb .u n. λ, nm Fig. 6. PL spectra of as-prepared PS samples (1) and those kept in NaCl solution (2). T. V. Torchinskaya et al.: Effect of desorption on photoluminescence excitation... 65ÔÊÎ, 1(1), 1998 SQO, 1(1), 1998 3000 2000 1000 1 2 2 1 Si-O Si-H Si-HC-HO-H Wavenumber, cm-1 A bs or ba nc e, a rb . u n. Fig. 7. FTIR spectra of PS samples: as-prepared (1) and thermally treated at 370 K for 1 h (2). Fig. 8. The dependence of the PLE signal on the excitation photon energy for two PS samples prepared at current densities I a = 25 (1) and 100 (2) mA/cm2 for the same time t = 8 min. ~ (hν-E e ) with two different slopes and two cut-offs at E e1 = = 1.9, 2.2 eV and E e2 = 2.4, 2.7 eV. At the same time, for low excitation energies, the signal in the PLE spectra of the second type (fig. 8, curve 2) is also described by the same kind of dependence (cut-off at E e1 = 1.9, 2.2 eV). So, for both cases, the light absorption dependences correspond to indirect transitions. We should conclude that the light absorption of some species on the surface of Si wires is also characterized by the dependence (α PLE hν)1/2 ~ hν. This dependence agrees with the assumption that these species are complexes (or clusters). Thus, the dependence (α PLE hν)1/2 ~ (hν � E e1 ) and the absorption edge at E e1 = 1.9, 2.2 eV can be due to light absorption not only in Si wires, but also in some complexes on their surface. So, this kind of light absorption behavior cannot be considered as an evidence of absorption in Si wires. 3. Conclusions There are two types of PLE spectra in porous silicon con- taining two (visible and ultraviolet) or one (only ultraviolet) bands. We have shown that the visible PLE band at 300 K is associated with some complexes (water molecules with im- purities) on the surfaces of Si wires. This work was supported by the Ministry of Science and Technology of Ukraine and the Ministry of Sciences of Is- rael (grant 2M/1406). References 1. M. S. Brodin, V. N. Bykov, D. B. Dan'ko, Ukr. Fiz. Zhurn., 40, p. 933 (1995). 2. J. Stauff, J. Chem. Physik 74(1970)358. 3. L. Wang, M. T. Wilson, N. M. Haegel, Appl. Phys. Lett. 62(1993)1113. 4. M. Ben-chorin, B. Averbukh, D. Kovalev, G. Polisski, F. Koch, Phys. Rev. Lett. 77(1996)763 . ÂÏËÈ ÏÐÎÖÅÑÓ ÄÅÑÎÐÁÖ²¯ ÍÀ ÑÏÅÊÒÐÈ ÇÁÓÄÆÅÍÍß ÔÎÒÎËÞ̲ÍÅÑÖÅÍÖ²¯ ÏÎÐÈÑÒÎÃÎ ÊÐÅÌÍ²Þ Ò. Â. Òîð÷èíñüêà, Í. Î. Êîðñóíñüêà, Ë. Þ. Õîìåíêîâà, Á. Ð. Äæóìàºâ, À. Ìåí³*, Þ. Ãîëäñòåéí*, Å. Ñàâ³ð* ²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè *Ðàêàõ ²íñòèòóò ô³çèêè, Õåáðþ Óí³âåðñèòåò, ²çðà¿ëü Ðåçþìå. Äîñë³äæåíî ìåõàí³çì çáóäæåííÿ ôîòîëþì³íåñöåíö³¿ ïîðèñòîãî êðåìì³ãî ìåòîäàìè ôîòîëþì³íåñöåíö³¿ òà ³íôðà÷åðâîíîãî ïîãëèíàííÿ. Ïîêàçàíî, ùî ³ñíóº äâà òèï³ ñïåêòð³â çáóäæåííÿ, ÿê³ ì³ñòÿòü àáî äâ³ ñìóãè (âèäèìó òà óëüòðàô³îëåòîâó), àáî ò³ëüêè îäíó (óëüòðàô³îëåòîâó) ñìóãó. Âèâ÷åíî çàëåæíîñò³ ³íòåíñèâíîñòåé êîæíî¿ ñìóãè â³ä ðåæèì³â åëåêòðîõ³ì³÷íîãî òðàâëåííÿ, à òàêîæ ¿õ ïîâåä³íêà ó ïðîöåñ³ ñòàð³ííÿ òà òåðì³÷íîãî îáðîáëåííÿ ïîðèñòèõ øàð³â. Ïîêàçàíî, ùî ³ñíóþòü äâà êàíàëè çáóäæåííÿ ôîòîëþì³íåñöåíö³¿. Âèäèìà ñìóãà ó ñïåêòð³ çáóäæåííÿ ïðè 300 Ê ïîâ�ÿçóºòüñÿ ç ïîãëèíàííÿì ñâ³òëà ó ðå÷îâèíàõ, ÿê³ àäñîðáîâàí³ íà ïîâåðõí³ êðåìí³ºâèõ íèòîê. ÂËÈßÍÈÅ ÏÐÎÖÅÑÑÀ ÄÅÑÎÐÁÖÈÈ ÍÀ ÑÏÅÊÒÐÛ ÂÎÇÁÓÆÄÅÍÈß ÔÎÒÎËÞÌÈÍÅÑÖÅÍÖÈÈ ÏÎÐÈÑÒÎÃÎ ÊÐÅÌÍÈß Ò. Â. Òîð÷èíñêàÿ, Í. Å. Êîðñóíñêàÿ, Ë. Þ. Õîìåíêîâà, Á. Ð. Äæóìàåâ, À. Ìýíè*, Þ. Ãîëäñòåéí*, Ý. Ñàâèð* Èíñòèòóò ôèçèêè ïîëóïðîâîäíèêîâ ÍÀÍ Óêðàèíû *Ðàêàõ Èíñòèòóò ôèçèêè, Õåáðþ Óíèâåðñèòåò, Èçðàèëü Ðåçþìå. Èññëåäîâàí ìåõàíèçì âîçáóæäåíèè ôîòîëþìèíåñöåíöèè ïîðèñòîãî êðåìíèè ìåòîäàìè ôîòîëþìèíåñöåíöèè è èíôðàêðàñíîãî ïîãëîùåíèÿ. Ïîêàçàíî, ÷òî ñóùåñòâóþò äâà òèïà ñïåêòðîâ âîçáóæäåíèÿ, êîòîðûå ñîäåðæàò ëèáî äâå ïîëîñû (âèäèìóþ è óëüòðàôèîëåòîâóþ), ëèáî òîëüêî îäíó (óëüòðàôèîëåòîâóþ) ïîëîñó. Èçó÷åíû çàâèñèìîñòè èíãåíñèâíîñòåé êàæäîé ïîëîñû âîçáóæäåíèÿ îò ðåæèìîâ ýëåêòðîõèìè÷åñêîãî òðàâëåíèÿ, à òàêæå èõ ïîâåäåíèå â ïðîöåññå ñòàðåíèÿ è òåðìè÷åñêèõ îáðàáîòîê ïîðèñòûõ ñëîåâ. Ïîêàçàíî, ÷òî ñóùåñòâóþò äâà êàíàëà âîçáóæäåíèÿ ôîòîëþìèíåñöåíöèè. Âèäèìàÿ ïîëîñà â ñïåêòðå âîçáóæäåíèÿ ïðè 300 Ê ñâÿçûâàåòñÿ ñ ïîãëîùåíèåì ñâåòà âåùåñòâàìè, àäñîðáèðîâàííûìè íà ïîâåðõíîñòè êðåìíèåâûõ íèòåé.