SIMS study of deuterium distribution and thermal stability in ZMR SOI structures
SIMS measurements and thermal effusion experiments were performed to study the distribution and thermal stability of deuterium in SOI structures fabricated by zone melting recrystallization technique. It was found that the disordered structure at the silicon-buried oxide interfaces is directly relat...
Збережено в:
Дата: | 1998 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
1998
|
Назва видання: | Semiconductor Physics Quantum Electronics & Optoelectronics |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/114678 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | SIMS study of deuterium distribution and thermal stability in ZMR SOI structures / A. Boutry-Forveille, D. Ballutaud, A.N. Nazarov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 108-111. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-114678 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1146782017-03-12T03:02:26Z SIMS study of deuterium distribution and thermal stability in ZMR SOI structures Boutry-Forveille, A. Ballutaud, D. Nazarov, A.N. SIMS measurements and thermal effusion experiments were performed to study the distribution and thermal stability of deuterium in SOI structures fabricated by zone melting recrystallization technique. It was found that the disordered structure at the silicon-buried oxide interfaces is directly related to the distribution of deuterium in the SOI system. The diffusion coefficient of deuterium in the top silicon layer at 250°C was determined. For the first time, the high-temperature (up to 600°C) stability of deuterium in the buried oxide was demonstrated, without any diffision into silicon layers. У роботі вивчались методами вторинної іонної мас-спектрометрії (ВІМС) і термостимульованої десорбції дейтерію розподілення дейтерію і його термічна стабільність у системі кремній-на-ізоляторі (КНІ), виготовленій за допомогою технології зонної лазерної рекристалізації полікремнію. Показано існування прямого зв.язку між розупорядкуванням структури на межах розподілу кремній-внутрішній діелектрик і розподіленням дейтерію у системі КНІ. Визначено коефіцієнт дифузії дейтерію у кремнієвій рекристалізованій плівці при 250°С. Вперше продемонстровано високотемпературну стабільність дейтерію (до 600°С включно) у внутрішньому діелектрику системи КНІ, за відсутності дифузії дейтерію до кремнієвих шарів. В работе методами вторичной ионной масс-спектрометрии (ВИМС) и термостимулированной десорбции дейтерия изучались распределение дейтерия и его термическая стабильность в структурах кремния-на-изоляторе (КНИ), изготовленных с помощью технологии зонной лазерной рекристаллизации поликремния. Показано существование прямой связи между разупорядочением структуры на границах кремний-внутренний окисел и распределением дейтерия в КНИ системе. Определен коэффициент диффузии дейтерия в рекристаллизованном слое кремния при 250°С. Впервые продемонстрирована высокотемпературная стабильность дейтерия (до 600°С включительно) во внутреннем окисле КНИ структуры при отсутствии диффузии дейтерия в кремниевые слои. 1998 Article SIMS study of deuterium distribution and thermal stability in ZMR SOI structures / A. Boutry-Forveille, D. Ballutaud, A.N. Nazarov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 108-111. — Бібліогр.: 12 назв. — англ. 1560-8034 PACS 85.40. http://dspace.nbuv.gov.ua/handle/123456789/114678 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
description |
SIMS measurements and thermal effusion experiments were performed to study the distribution and thermal stability of deuterium in SOI structures fabricated by zone melting recrystallization technique. It was found that the disordered structure at the silicon-buried oxide interfaces is directly related to the distribution of deuterium in the SOI system. The diffusion coefficient of deuterium in the top silicon layer at 250°C was determined. For the first time, the high-temperature (up to 600°C) stability of deuterium in the buried oxide was demonstrated, without any diffision into silicon layers. |
format |
Article |
author |
Boutry-Forveille, A. Ballutaud, D. Nazarov, A.N. |
spellingShingle |
Boutry-Forveille, A. Ballutaud, D. Nazarov, A.N. SIMS study of deuterium distribution and thermal stability in ZMR SOI structures Semiconductor Physics Quantum Electronics & Optoelectronics |
author_facet |
Boutry-Forveille, A. Ballutaud, D. Nazarov, A.N. |
author_sort |
Boutry-Forveille, A. |
title |
SIMS study of deuterium distribution and thermal stability in ZMR SOI structures |
title_short |
SIMS study of deuterium distribution and thermal stability in ZMR SOI structures |
title_full |
SIMS study of deuterium distribution and thermal stability in ZMR SOI structures |
title_fullStr |
SIMS study of deuterium distribution and thermal stability in ZMR SOI structures |
title_full_unstemmed |
SIMS study of deuterium distribution and thermal stability in ZMR SOI structures |
title_sort |
sims study of deuterium distribution and thermal stability in zmr soi structures |
publisher |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України |
publishDate |
1998 |
url |
http://dspace.nbuv.gov.ua/handle/123456789/114678 |
citation_txt |
SIMS study of deuterium distribution and thermal stability in ZMR SOI structures / A. Boutry-Forveille, D. Ballutaud, A.N. Nazarov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 108-111. — Бібліогр.: 12 назв. — англ. |
series |
Semiconductor Physics Quantum Electronics & Optoelectronics |
work_keys_str_mv |
AT boutryforveillea simsstudyofdeuteriumdistributionandthermalstabilityinzmrsoistructures AT ballutaudd simsstudyofdeuteriumdistributionandthermalstabilityinzmrsoistructures AT nazarovan simsstudyofdeuteriumdistributionandthermalstabilityinzmrsoistructures |
first_indexed |
2025-07-08T07:48:06Z |
last_indexed |
2025-07-08T07:48:06Z |
_version_ |
1837064143216050176 |
fulltext |
108 © 1998 ²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè
Ô³çèêà íàï³âïðîâ³äíèê³â, êâàíòîâà òà îïòîåëåêòðîí³êà. 1998. Ò. 1, ¹ 1. Ñ. 108-111.
Semiconductor Physics, Quantum Electronics & Optoelectronics. 1998. V. 1, N 1. P. 108-111.
PACS 85.40.
SIMS study of deuterium distribution
and thermal stability in ZMR SOI structures
A. Boutry-Forveille and D. Ballutaud
LPSB-CNRS, Solid State Physics Laboratory, Bellevue, France
A. N. Nazarov
Institute of Semiconductor Physics, NAS Ukraine, 45 prospekt Nauki, Kyiv, 252028, Ukraine
Abstract. SIMS measurements and thermal effusion experiments were performed to study the distribu-
tion and thermal stability of deuterium in SOI structures fabricated by zone melting recrystallization
technique. It was found that the disordered structure at the silicon-buried oxide interfaces is directly
related to the distribution of deuterium in the SOI system. The diffusion coefficient of deuterium in the
top silicon layer at 250oC was determined. For the first time, the high-temperature (up to 600oC) stability
of deuterium in the buried oxide was demonstrated, without any diffision into silicon layers.
Keywords: silicon-on-insulator, deuterium, SIMS, thermal effusion.
Paper received 19.08.98; revised manuscript received 19.10.98; accepted for publication 28.10.98.
1. Introduction
The important role of hydrogen in a variety of technological
processes employed for fabrication of semiconductor de-
vices is well known. RF plasma hydrogenation leads to a
considerable decrease in the concentration of electrically
active traps in polycrystalline Si films [1], and hydrogen
annealing of Si-SiO
2
-structures is a widely used technique
for production of structures with a low interface state den-
sity [2]. Some processes resulting in thermal instability and
the radiation-induced increase in the density of interface
states in metal-SiO
2
-Si structures are associated with fast
diffusing particles, including hydrogen atoms [3-5]. In ad-
dition, hydrogen has the excellent ability to be trapped at
the reactive sites in silicon [6] and in dielectric layers, such
as SiO
2
[7]. Therefore, its distribution should be related to
the quality of semiconductor and dielectric layers.
Thus, studies of hydrogen trapping and redistribution
during thermal annealing in semiconductors and insulators
are important for elucidating the reasons for electric charge
instabilities in multilayer structures containing dielectric
films.
The silicon-on-insulator (SOI) structure is very promis-
ing for high-speed, interference-immune, and high-tempera-
ture integrated circuits (IC�s) [8]. In this paper, we study
hydrogen distribution and thermal stability in SOI structures
fabricated by the laser zone-melting recrystallization (ZMR)
technique, which is very attractive for production of low-
cost SOI wafers with thin (150�400 nm) silicon layers hav-
ing charge carrier mobilities close to those in single-crystal
silicon.
2. Samples and experimental technique
SOI structures with the thickness of silicon and silicon di-
oxide films equal to 450 and 350 nm, respectively, were
fabricated by the laser ZMR technique [9]. The dioxide layer
was grown by high-pressure thermal oxidation of the silicon
substrate. The top silicon layer consists of slightly
misoriented single-crystalline grains separated by
subboundaries. The average distance between the
subboundaries is about 200 nm (as can be seen from fig. 2
in Ref. 9).
Samples were deuterated in a diode RF plasma reactor.
The deuterium concentration profiles were obtained by SIMS
measurements with CAMECA IMS4F system. The primary
ion was 14 keV Cs+, with the ion current of 5×10-3 A/cm2.
A. Boutry-Forveille et al.: SIMS study of deuterium distribution...
109ÔÊÎ, 1(1), 1998
SQO, 1(1), 1998
The absolute values of concentration were determined by
calibration with respect to a deuterium-implanted reference
sample. The crater depths were measured with a Tencor-
type profilometer. Although the absolute values of deute-
rium concentrations in the oxide layer were unknown, the
concentrations of deuterium in different samples can be com-
pared. The deuterated samples were annealed in an evacu-
ated quartz tube (10-10 mbar).
In addition, thermal deuterium effusion measuremenst
[10] were performed with a quadrupole mass spectrometer
connected to an evacuated quartz tube (10-10 mbar) with the
deuterated sample subjected to linear heating at the rate of
0.25 K/sec. The temperature of measurements ranged from
the room temperature up to 1000oC.
3. Results and discussion
Figure 1a shows the effect of deuteration temperature on the
distribution of deuterium in the ZMR SOI structure. As can
be seen, the RF plasma treatment at 250oC results in deute-
rium penetration through the silicon layer and its uptake in
the buried oxide (BOX). Two intensive deuteruim peaks
corresponding to the top silicon layer-BOX and substrate-
BOX interfaces are observed from SIMS. No deuterium
penetration into the silicon substrate through the BOX is
observed at the measurement temperatures used. On the other
hand, the deuterium diffusion profile does not depend on
the RF plasma power over the range of experimental pa-
rameters studied.
The diffusion profile of deuterium in the top silicon layer
obeys the erfc function behaviour (see fig. 1(b)) with a co-
efficient of 1.8×10-13 cm2s-1 at 250oC, which corresponds to
the trap-limited diffusion in poly-silicon [11]. Indeed, the
laser-recrystallized silicon film consists of a large number
of single-crystalline grains. It is probable that the enhanced
diffusion of deuterium through the grain boundaries in the
silicon film occurs.
The existence of two wide deuterium peaks correspond-
ing to the BOX-silicon interfaces suggests the presence of
quite thick transition layers and of a great number of strained
and dangling bonds at these interfaces. The correlation be-
tween the width of the deuterium peak and the thickness of
the transition layer can be demonstrated by the results pre-
sented in fig. 2. Fig. 2(a) shows the deuterium diffusion pro-
file along with silicon and oxygen profiles for a ZMR SOI
structure deuterated at 250oC for 30 minutes. The width of
oxygen and of silicon distributions in the transition layers of
the BOX-top silicon and the BOX-substrate interface is di-
rectly related to the halfwidth of deiterium peaks for these
interfaces. For an SOI structure annealed at the temperature
up to 1200oC before the deuteration, the redistribution of
silicon and oxygen profiles observed after this treatment is
accompanied by expansion of the deuterium peak (fig. 2(b)).
This is particularly pronounced for the BOX-substrate in-
terface.
1E+15
1E+16
1E+17
1E+18
1E+19
1E+20
1E+21
0 0.2 0.4 0.6 0.8 1 1. 2 1.4 1.6
N(at.cm )-3
d(µm)
a)
1
2
1E+16
1E+17
1E+18
1E+19
1E+20
1E+21
0 0.1 0.2 0.3 0.4 0.5 0.6
D=1.8x10 cm s
-13 2 -1
d(µm)
N(cm )-3 b)
Fig. 1. (a) Deuterium distribution in a ZMR SOI structure after
deuteration for 30 min (1 W/cm2) at the following temperatures:
1 � 150oC; 2 � 250oC. (b) Deuterium distribution in a recrystallized
silicon film deuterated at 250oC for 30 min at 1 W/cm2 ( ____ -
experimental result; - - - - - calculated for D = 1.8×10-13 cm2s-1).
1E+0
1E+1
1E+2
1E+3
1E+4
1E+5
1E+6
1E+7
1E+8
1E+9
0 20 40 60 80 100 120 140 160 180
Time (sec x10)
N(a.u.)
Si
O
D
a)
1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
0.0E+0 2.0E+2 4.0E+2 6.0E+2 8.0E+2 1.0E+3 1.2E+3 1.4E+3 1.6E+3 1.8E+3
N(a.u.)
Si
O
D
Time (sec)
b)
Fig. 2. SIMS profiles for Si, O, and D in a ZMR SOI structure
before (a) and after (b) thermal annealing up to 1200oC.
A. Boutry-Forveille et al.: SIMS study of deuterium distribution...
110 ÔÊÎ, 1(1), 1998
SQO, 1(1), 1998
The wider deuterium peak for the BOX-top silicon in-
terface in comparison to the BOX-substrate interface can
be attributed to a more disordered transition layer at the
former interface. In addition, this interface can display some
waviness with the amplitude of about 20 nm [8].
In the entire temperature range studied, the distribution
of deuterium preserves two peaks located at the BOX-sili-
con interfaces. This result is considerably different from that
for SOI structures manufactured by separation using the im-
planted oxygen (SIMOX) technique. After a high-tempera-
ture annealing at 500oC, the deuterium in the BOX usually
has a flat distribution related to a significant concentration
of broken and strained bonds in the BOX [12]. So, for a
ZMR SOI system, the structure of the amorphous network
in the BOX is probably better than for a SIMOX system.
Thermal annealing of the deuterated ZMR SOI struc-
tures in vacuum shows that BOX can contain deuterium at
temperatures higher than 6000C, retaining the deuterium
profile in the BOX with two peaks (fig. 3). It is worth not-
ing that, after thermal annealing at 600oC for 2 hours, deu-
terium effuses from the top silicon layer, and SIMS meas-
urements do not detect any presence of deuterium in the
recrystallized silicon film.
Thermal effusion experiments performed on SOI struc-
tures show the following four deuterium effusion ranges:
from 20 to 250oC; a thermal effusion peak with the maxi-
mum at 500oC; a thermal effusion peak with the maximum
at 670oC, and a rise of deuterium effusion from 900 to 1000oC
(fig. 4). Comparison of this spectrum to that of deuteruim
thermal effusion from a thick polysilicon layer, which is also
shown in fig. 4 [11], allows us to conclude that the thermal
effusion peak with the maximum at 670oC is probably re-
lated to deuterium effusion from the BOX.
It is worth noting that deuterium incorporated into the
BOX of a SOI structure can be contained there at suffi-
ciently high temperatures without diffusion into the silicon
layer. Therefore, we have for the first time directly observed
the blocking properties of the BOX-silicon interface for deu-
terium at high temperatures.
4. Conclusions
Over the range of experimental parameters used in this study,
deuterium does not diffuse through the thermal oxide into
the silicon substrate.
Intense deuterium peaks corresponding to the BOX-sili-
con interfaces indicate a significant trapping of deuterium
between the thermal BOX and the silicon layer.
For the first time, the blocking properties of the BOX-
silicon interface at high temperatures were directly demon-
strated. Deuterium contained in the BOX is stable and can
still be detected there after thermal annealing at 600oC for 2
hours.
Acknowledgements
The authors would like to thank Professor E. I. Givargizov
and Dr. A. B. Limanov (Institute of Crystallography RAS,
Moscow, Russia) for useful discussions and for the samples
provided.
This work was performed in the framework of CNRS
project N5736. One of the authors (A.N.N.) appreciates par-
tial financial support provided by CRDF (CRDF project UP2-
291).
References
1. M. Aucouturier, Physica B, 170, 469 (1991)
2. K. L. Brower, Phys. Rev. B, 38, 9657 (1988)
3. C. R. Helms and J. D. Plummer, Rep. Prog. Phys., 57, 791 (1994)
4. K. Vanheusden, R. A. B. Devine, J. R. Schwank, D. M. Fleetwood,
R. G. Polcawich, W. L. Warren, S. P. Karnaand R. D. Pugh, IEEE Tr.
Nucl. Sci., 44, 2087 (1997)
5. B. J. Mrstik and R. W. Rendell, IEEE Tr. Nucl. Sci., 38, 1101 (1991)
6. S. Acco, W. Beyer, E. E. van Faassen and W. F. van der Weg, J. Appl.
Phys., 82, 2862 (1997)
7. S. M. Myers and P. M. Richards, J. Appl. Phys., 67, 4064 (1990)
8. J.-P. Colinge, Silicon-On-Insulator technology: materials to VLSI,
Kluwer, Norwell (1991)
9. E. I. Givargizov, V. A. Loukin and A. B. Limanov, in Physical and
technical problems of SOI structures and devices, NATO ASI Series
3/4, ed. by J.-P. Colinge, V. S. Lysenko and A. N. Nazarov, pp. 27-38.
Kluwer, Dordrecht (1995)
10. M. Stutzmann and M. S. Brand, J. Appl. Phys., 68, 1406 (1990)
11. L. Lusson, P. Elkaim, A. Correia and D. Ballutaud, J. Phys. III (France),
5, 1173 (1995)
12. S. M. Myers, G. A. Brown, A. G. Revesz and H. L. Hughes,
J. Appl. Phys., 73, 2196 (1993)
1E+15
1E+16
1E+17
1E+18
1E+19
1E+20
1E+21
1E+22
0 0.2 0.4 0.6 0.8 1 1. 2 1.4
2
d(µm)
N(cm )-3
1
Fig. 3. Deuterium distribution in a ZMR SOI structure after
deuteration at 250oC, 1 W/cm2 for 30 min (1) and after thermal
annealing of the deuterated sample at 600oC for 2 hours (2).
Fig. 4. Deuterium effusion spectra of deuterated ZMR SOI struc-
ture (1) and poly-Si sample (2) (from ref. [11]).
A. Boutry-Forveille et al.: SIMS study of deuterium distribution...
111ÔÊÎ, 1(1), 1998
SQO, 1(1), 1998
SIMS ÄÎÑË²ÄÆÅÍÍß ÐÎÇÏÎIJËÓ ÄÅÉÒÅÐ²ß ² ÒÅÌÏÅÐÀÒÓÐÍί ÑÒÀÁ²ËÜÍÎÑÒ²  ZMR SOI
ÑÒÐÓÊÒÓÐÀÕ
À. Áîóòð³-Ôîðâåéëå, Ä. Áàëëóòàóä
ËÏÑÁ-ÖÍÐÑ, ëàáîðàòîð³ÿ ô³çèêè òâåðäîãî ò³ëà, Ôðàíö³ÿ
Î. Ì. Íàçàðîâ
²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè
Ó ðîáîò³ âèâ÷àëèñü ìåòîäàìè âòîðèííî¿ ³îííî¿ ìàñ-ñïåêòðîìåò𳿠(²ÌÑ) ³ òåðìîñòèìóëüîâàíî¿ äåñîðáö³¿ äåéòåð³þ ðîçïîä³ëåííÿ
äåéòåð³þ ³ éîãî òåðì³÷íà ñòàá³ëüí³ñòü ó ñèñòåì³ êðåìí³é-íà-³çîëÿòîð³ (ÊͲ), âèãîòîâëåí³é çà äîïîìîãîþ òåõíîëî㳿 çîííî¿ ëàçåðíî¿
ðåêðèñòàë³çàö³¿ ïîë³êðåìí³þ. Ïîêàçàíî ³ñíóâàííÿ ïðÿìîãî çâ�ÿçêó ì³æ ðîçóïîðÿäêóâàííÿì ñòðóêòóðè íà ìåæàõ ðîçïîä³ëó êðåìí³é-
âíóòð³øí³é ä³åëåêòðèê ³ ðîçïîä³ëåííÿì äåéòåð³þ ó ñèñòåì³ ÊͲ. Âèçíà÷åíî êîåô³ö³ºíò äèôó糿 äåéòåð³þ ó êðåìí³ºâ³é
ðåêðèñòàë³çîâàí³é ïë³âö³ ïðè 250îÑ. Âïåðøå ïðîäåìîíñòðîâàíî âèñîêîòåìïåðàòóðíó ñòàá³ëüí³ñòü äåéòåð³þ (äî 600îÑ âêëþ÷íî)
ó âíóòð³øíüîìó ä³åëåêòðèêó ñèñòåìè ÊͲ, çà â³äñóòíîñò³ äèôó糿 äåéòåð³þ äî êðåìí³ºâèõ øàð³â.
SIMS ÈÑÑËÅÄÎÂÀÍÈß ÐÀÑÏÐÅÄÅËÅÍÈß ÄÅÉÒÅÐÈß È ÒÅÌÏÅÐÀÒÓÐÍÀß ÑÒÀÁÈËÜÍÎÑÒÜ Â ZMR SOI
ÑÒÐÓÊÒÓÐÀÕ
À. Áîóòðè-Ôîðâåéëå, Ä. Áàëëóòàóä
ËÏÑÁ-ÖÍÐÑ, ëàáîðàòîðèÿ ôèçèêè òâåðäîãî òåëà, Ôðàíöèÿ
Î. Ì. Íàçàðîâ
Èíñòèòóò ôèçèêè ïîëóïðîâîäíèêîâ ÍÀÍ Óêðàèíû
 ðàáîòå ìåòîäàìè âòîðè÷íîé èîííîé ìàññ-ñïåêòðîìåòðèè (ÂÈÌÑ) è òåðìîñòèìóëèðîâàííîé äåñîðáöèè äåéòåðèÿ èçó÷àëèñü
ðàñïðåäåëåíèå äåéòåðèÿ è åãî òåðìè÷åñêàÿ ñòàáèëüíîñòü â ñòðóêòóðàõ êðåìíèÿ-íà-èçîëÿòîðå (ÊÍÈ), èçãîòîâëåííûõ ñ ïîìîùüþ
òåõíîëîãèè çîííîé ëàçåðíîé ðåêðèñòàëëèçàöèè ïîëèêðåìíèÿ. Ïîêàçàíî ñóùåñòâîâàíèå ïðÿìîé ñâÿçè ìåæäó ðàçóïîðÿäî÷åíèåì
ñòðóêòóðû íà ãðàíèöàõ êðåìíèé-âíóòðåííèé îêèñåë è ðàñïðåäåëåíèåì äåéòåðèÿ â ÊÍÈ ñèñòåìå. Îïðåäåëåí êîýôôèöèåíò
äèôôóçèè äåéòåðèÿ â ðåêðèñòàëëèçîâàííîì ñëîå êðåìíèÿ ïðè 250îÑ. Âïåðâûå ïðîäåìîíñòðèðîâàíà âûñîêîòåìïåðàòóðíàÿ
ñòàáèëüíîñòü äåéòåðèÿ (äî 600îÑ âêëþ÷èòåëüíî) âî âíóòðåííåì îêèñëå ÊÍÈ ñòðóêòóðû ïðè îòñóòñòâèè äèôôóçèè äåéòåðèÿ â
êðåìíèåâûå ñëîè.
|