SIMS study of deuterium distribution and thermal stability in ZMR SOI structures

SIMS measurements and thermal effusion experiments were performed to study the distribution and thermal stability of deuterium in SOI structures fabricated by zone melting recrystallization technique. It was found that the disordered structure at the silicon-buried oxide interfaces is directly relat...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:1998
Автори: Boutry-Forveille, A., Ballutaud, D., Nazarov, A.N.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 1998
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/114678
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:SIMS study of deuterium distribution and thermal stability in ZMR SOI structures / A. Boutry-Forveille, D. Ballutaud, A.N. Nazarov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 108-111. — Бібліогр.: 12 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-114678
record_format dspace
spelling irk-123456789-1146782017-03-12T03:02:26Z SIMS study of deuterium distribution and thermal stability in ZMR SOI structures Boutry-Forveille, A. Ballutaud, D. Nazarov, A.N. SIMS measurements and thermal effusion experiments were performed to study the distribution and thermal stability of deuterium in SOI structures fabricated by zone melting recrystallization technique. It was found that the disordered structure at the silicon-buried oxide interfaces is directly related to the distribution of deuterium in the SOI system. The diffusion coefficient of deuterium in the top silicon layer at 250°C was determined. For the first time, the high-temperature (up to 600°C) stability of deuterium in the buried oxide was demonstrated, without any diffision into silicon layers. У роботі вивчались методами вторинної іонної мас-спектрометрії (ВІМС) і термостимульованої десорбції дейтерію розподілення дейтерію і його термічна стабільність у системі кремній-на-ізоляторі (КНІ), виготовленій за допомогою технології зонної лазерної рекристалізації полікремнію. Показано існування прямого зв.язку між розупорядкуванням структури на межах розподілу кремній-внутрішній діелектрик і розподіленням дейтерію у системі КНІ. Визначено коефіцієнт дифузії дейтерію у кремнієвій рекристалізованій плівці при 250°С. Вперше продемонстровано високотемпературну стабільність дейтерію (до 600°С включно) у внутрішньому діелектрику системи КНІ, за відсутності дифузії дейтерію до кремнієвих шарів. В работе методами вторичной ионной масс-спектрометрии (ВИМС) и термостимулированной десорбции дейтерия изучались распределение дейтерия и его термическая стабильность в структурах кремния-на-изоляторе (КНИ), изготовленных с помощью технологии зонной лазерной рекристаллизации поликремния. Показано существование прямой связи между разупорядочением структуры на границах кремний-внутренний окисел и распределением дейтерия в КНИ системе. Определен коэффициент диффузии дейтерия в рекристаллизованном слое кремния при 250°С. Впервые продемонстрирована высокотемпературная стабильность дейтерия (до 600°С включительно) во внутреннем окисле КНИ структуры при отсутствии диффузии дейтерия в кремниевые слои. 1998 Article SIMS study of deuterium distribution and thermal stability in ZMR SOI structures / A. Boutry-Forveille, D. Ballutaud, A.N. Nazarov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 108-111. — Бібліогр.: 12 назв. — англ. 1560-8034 PACS 85.40. http://dspace.nbuv.gov.ua/handle/123456789/114678 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description SIMS measurements and thermal effusion experiments were performed to study the distribution and thermal stability of deuterium in SOI structures fabricated by zone melting recrystallization technique. It was found that the disordered structure at the silicon-buried oxide interfaces is directly related to the distribution of deuterium in the SOI system. The diffusion coefficient of deuterium in the top silicon layer at 250°C was determined. For the first time, the high-temperature (up to 600°C) stability of deuterium in the buried oxide was demonstrated, without any diffision into silicon layers.
format Article
author Boutry-Forveille, A.
Ballutaud, D.
Nazarov, A.N.
spellingShingle Boutry-Forveille, A.
Ballutaud, D.
Nazarov, A.N.
SIMS study of deuterium distribution and thermal stability in ZMR SOI structures
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Boutry-Forveille, A.
Ballutaud, D.
Nazarov, A.N.
author_sort Boutry-Forveille, A.
title SIMS study of deuterium distribution and thermal stability in ZMR SOI structures
title_short SIMS study of deuterium distribution and thermal stability in ZMR SOI structures
title_full SIMS study of deuterium distribution and thermal stability in ZMR SOI structures
title_fullStr SIMS study of deuterium distribution and thermal stability in ZMR SOI structures
title_full_unstemmed SIMS study of deuterium distribution and thermal stability in ZMR SOI structures
title_sort sims study of deuterium distribution and thermal stability in zmr soi structures
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 1998
url http://dspace.nbuv.gov.ua/handle/123456789/114678
citation_txt SIMS study of deuterium distribution and thermal stability in ZMR SOI structures / A. Boutry-Forveille, D. Ballutaud, A.N. Nazarov // Semiconductor Physics Quantum Electronics & Optoelectronics. — 1998. — Т. 1, № 1. — С. 108-111. — Бібліогр.: 12 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT boutryforveillea simsstudyofdeuteriumdistributionandthermalstabilityinzmrsoistructures
AT ballutaudd simsstudyofdeuteriumdistributionandthermalstabilityinzmrsoistructures
AT nazarovan simsstudyofdeuteriumdistributionandthermalstabilityinzmrsoistructures
first_indexed 2025-07-08T07:48:06Z
last_indexed 2025-07-08T07:48:06Z
_version_ 1837064143216050176
fulltext 108 © 1998 ²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè Ô³çèêà íàï³âïðîâ³äíèê³â, êâàíòîâà òà îïòîåëåêòðîí³êà. 1998. Ò. 1, ¹ 1. Ñ. 108-111. Semiconductor Physics, Quantum Electronics & Optoelectronics. 1998. V. 1, N 1. P. 108-111. PACS 85.40. SIMS study of deuterium distribution and thermal stability in ZMR SOI structures A. Boutry-Forveille and D. Ballutaud LPSB-CNRS, Solid State Physics Laboratory, Bellevue, France A. N. Nazarov Institute of Semiconductor Physics, NAS Ukraine, 45 prospekt Nauki, Kyiv, 252028, Ukraine Abstract. SIMS measurements and thermal effusion experiments were performed to study the distribu- tion and thermal stability of deuterium in SOI structures fabricated by zone melting recrystallization technique. It was found that the disordered structure at the silicon-buried oxide interfaces is directly related to the distribution of deuterium in the SOI system. The diffusion coefficient of deuterium in the top silicon layer at 250oC was determined. For the first time, the high-temperature (up to 600oC) stability of deuterium in the buried oxide was demonstrated, without any diffision into silicon layers. Keywords: silicon-on-insulator, deuterium, SIMS, thermal effusion. Paper received 19.08.98; revised manuscript received 19.10.98; accepted for publication 28.10.98. 1. Introduction The important role of hydrogen in a variety of technological processes employed for fabrication of semiconductor de- vices is well known. RF plasma hydrogenation leads to a considerable decrease in the concentration of electrically active traps in polycrystalline Si films [1], and hydrogen annealing of Si-SiO 2 -structures is a widely used technique for production of structures with a low interface state den- sity [2]. Some processes resulting in thermal instability and the radiation-induced increase in the density of interface states in metal-SiO 2 -Si structures are associated with fast diffusing particles, including hydrogen atoms [3-5]. In ad- dition, hydrogen has the excellent ability to be trapped at the reactive sites in silicon [6] and in dielectric layers, such as SiO 2 [7]. Therefore, its distribution should be related to the quality of semiconductor and dielectric layers. Thus, studies of hydrogen trapping and redistribution during thermal annealing in semiconductors and insulators are important for elucidating the reasons for electric charge instabilities in multilayer structures containing dielectric films. The silicon-on-insulator (SOI) structure is very promis- ing for high-speed, interference-immune, and high-tempera- ture integrated circuits (IC�s) [8]. In this paper, we study hydrogen distribution and thermal stability in SOI structures fabricated by the laser zone-melting recrystallization (ZMR) technique, which is very attractive for production of low- cost SOI wafers with thin (150�400 nm) silicon layers hav- ing charge carrier mobilities close to those in single-crystal silicon. 2. Samples and experimental technique SOI structures with the thickness of silicon and silicon di- oxide films equal to 450 and 350 nm, respectively, were fabricated by the laser ZMR technique [9]. The dioxide layer was grown by high-pressure thermal oxidation of the silicon substrate. The top silicon layer consists of slightly misoriented single-crystalline grains separated by subboundaries. The average distance between the subboundaries is about 200 nm (as can be seen from fig. 2 in Ref. 9). Samples were deuterated in a diode RF plasma reactor. The deuterium concentration profiles were obtained by SIMS measurements with CAMECA IMS4F system. The primary ion was 14 keV Cs+, with the ion current of 5×10-3 A/cm2. A. Boutry-Forveille et al.: SIMS study of deuterium distribution... 109ÔÊÎ, 1(1), 1998 SQO, 1(1), 1998 The absolute values of concentration were determined by calibration with respect to a deuterium-implanted reference sample. The crater depths were measured with a Tencor- type profilometer. Although the absolute values of deute- rium concentrations in the oxide layer were unknown, the concentrations of deuterium in different samples can be com- pared. The deuterated samples were annealed in an evacu- ated quartz tube (10-10 mbar). In addition, thermal deuterium effusion measuremenst [10] were performed with a quadrupole mass spectrometer connected to an evacuated quartz tube (10-10 mbar) with the deuterated sample subjected to linear heating at the rate of 0.25 K/sec. The temperature of measurements ranged from the room temperature up to 1000oC. 3. Results and discussion Figure 1a shows the effect of deuteration temperature on the distribution of deuterium in the ZMR SOI structure. As can be seen, the RF plasma treatment at 250oC results in deute- rium penetration through the silicon layer and its uptake in the buried oxide (BOX). Two intensive deuteruim peaks corresponding to the top silicon layer-BOX and substrate- BOX interfaces are observed from SIMS. No deuterium penetration into the silicon substrate through the BOX is observed at the measurement temperatures used. On the other hand, the deuterium diffusion profile does not depend on the RF plasma power over the range of experimental pa- rameters studied. The diffusion profile of deuterium in the top silicon layer obeys the erfc function behaviour (see fig. 1(b)) with a co- efficient of 1.8×10-13 cm2s-1 at 250oC, which corresponds to the trap-limited diffusion in poly-silicon [11]. Indeed, the laser-recrystallized silicon film consists of a large number of single-crystalline grains. It is probable that the enhanced diffusion of deuterium through the grain boundaries in the silicon film occurs. The existence of two wide deuterium peaks correspond- ing to the BOX-silicon interfaces suggests the presence of quite thick transition layers and of a great number of strained and dangling bonds at these interfaces. The correlation be- tween the width of the deuterium peak and the thickness of the transition layer can be demonstrated by the results pre- sented in fig. 2. Fig. 2(a) shows the deuterium diffusion pro- file along with silicon and oxygen profiles for a ZMR SOI structure deuterated at 250oC for 30 minutes. The width of oxygen and of silicon distributions in the transition layers of the BOX-top silicon and the BOX-substrate interface is di- rectly related to the halfwidth of deiterium peaks for these interfaces. For an SOI structure annealed at the temperature up to 1200oC before the deuteration, the redistribution of silicon and oxygen profiles observed after this treatment is accompanied by expansion of the deuterium peak (fig. 2(b)). This is particularly pronounced for the BOX-substrate in- terface. 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 0 0.2 0.4 0.6 0.8 1 1. 2 1.4 1.6 N(at.cm )-3 d(µm) a) 1 2 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 0 0.1 0.2 0.3 0.4 0.5 0.6 D=1.8x10 cm s -13 2 -1 d(µm) N(cm )-3 b) Fig. 1. (a) Deuterium distribution in a ZMR SOI structure after deuteration for 30 min (1 W/cm2) at the following temperatures: 1 � 150oC; 2 � 250oC. (b) Deuterium distribution in a recrystallized silicon film deuterated at 250oC for 30 min at 1 W/cm2 ( ____ - experimental result; - - - - - calculated for D = 1.8×10-13 cm2s-1). 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9 0 20 40 60 80 100 120 140 160 180 Time (sec x10) N(a.u.) Si O D a) 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 0.0E+0 2.0E+2 4.0E+2 6.0E+2 8.0E+2 1.0E+3 1.2E+3 1.4E+3 1.6E+3 1.8E+3 N(a.u.) Si O D Time (sec) b) Fig. 2. SIMS profiles for Si, O, and D in a ZMR SOI structure before (a) and after (b) thermal annealing up to 1200oC. A. Boutry-Forveille et al.: SIMS study of deuterium distribution... 110 ÔÊÎ, 1(1), 1998 SQO, 1(1), 1998 The wider deuterium peak for the BOX-top silicon in- terface in comparison to the BOX-substrate interface can be attributed to a more disordered transition layer at the former interface. In addition, this interface can display some waviness with the amplitude of about 20 nm [8]. In the entire temperature range studied, the distribution of deuterium preserves two peaks located at the BOX-sili- con interfaces. This result is considerably different from that for SOI structures manufactured by separation using the im- planted oxygen (SIMOX) technique. After a high-tempera- ture annealing at 500oC, the deuterium in the BOX usually has a flat distribution related to a significant concentration of broken and strained bonds in the BOX [12]. So, for a ZMR SOI system, the structure of the amorphous network in the BOX is probably better than for a SIMOX system. Thermal annealing of the deuterated ZMR SOI struc- tures in vacuum shows that BOX can contain deuterium at temperatures higher than 6000C, retaining the deuterium profile in the BOX with two peaks (fig. 3). It is worth not- ing that, after thermal annealing at 600oC for 2 hours, deu- terium effuses from the top silicon layer, and SIMS meas- urements do not detect any presence of deuterium in the recrystallized silicon film. Thermal effusion experiments performed on SOI struc- tures show the following four deuterium effusion ranges: from 20 to 250oC; a thermal effusion peak with the maxi- mum at 500oC; a thermal effusion peak with the maximum at 670oC, and a rise of deuterium effusion from 900 to 1000oC (fig. 4). Comparison of this spectrum to that of deuteruim thermal effusion from a thick polysilicon layer, which is also shown in fig. 4 [11], allows us to conclude that the thermal effusion peak with the maximum at 670oC is probably re- lated to deuterium effusion from the BOX. It is worth noting that deuterium incorporated into the BOX of a SOI structure can be contained there at suffi- ciently high temperatures without diffusion into the silicon layer. Therefore, we have for the first time directly observed the blocking properties of the BOX-silicon interface for deu- terium at high temperatures. 4. Conclusions Over the range of experimental parameters used in this study, deuterium does not diffuse through the thermal oxide into the silicon substrate. Intense deuterium peaks corresponding to the BOX-sili- con interfaces indicate a significant trapping of deuterium between the thermal BOX and the silicon layer. For the first time, the blocking properties of the BOX- silicon interface at high temperatures were directly demon- strated. Deuterium contained in the BOX is stable and can still be detected there after thermal annealing at 600oC for 2 hours. Acknowledgements The authors would like to thank Professor E. I. Givargizov and Dr. A. B. Limanov (Institute of Crystallography RAS, Moscow, Russia) for useful discussions and for the samples provided. This work was performed in the framework of CNRS project N5736. One of the authors (A.N.N.) appreciates par- tial financial support provided by CRDF (CRDF project UP2- 291). References 1. M. Aucouturier, Physica B, 170, 469 (1991) 2. K. L. Brower, Phys. Rev. B, 38, 9657 (1988) 3. C. R. Helms and J. D. Plummer, Rep. Prog. Phys., 57, 791 (1994) 4. K. Vanheusden, R. A. B. Devine, J. R. Schwank, D. M. Fleetwood, R. G. Polcawich, W. L. Warren, S. P. Karnaand R. D. Pugh, IEEE Tr. Nucl. Sci., 44, 2087 (1997) 5. B. J. Mrstik and R. W. Rendell, IEEE Tr. Nucl. Sci., 38, 1101 (1991) 6. S. Acco, W. Beyer, E. E. van Faassen and W. F. van der Weg, J. Appl. Phys., 82, 2862 (1997) 7. S. M. Myers and P. M. Richards, J. Appl. Phys., 67, 4064 (1990) 8. J.-P. Colinge, Silicon-On-Insulator technology: materials to VLSI, Kluwer, Norwell (1991) 9. E. I. Givargizov, V. A. Loukin and A. B. Limanov, in Physical and technical problems of SOI structures and devices, NATO ASI Series 3/4, ed. by J.-P. Colinge, V. S. Lysenko and A. N. Nazarov, pp. 27-38. Kluwer, Dordrecht (1995) 10. M. Stutzmann and M. S. Brand, J. Appl. Phys., 68, 1406 (1990) 11. L. Lusson, P. Elkaim, A. Correia and D. Ballutaud, J. Phys. III (France), 5, 1173 (1995) 12. S. M. Myers, G. A. Brown, A. G. Revesz and H. L. Hughes, J. Appl. Phys., 73, 2196 (1993) 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21 1E+22 0 0.2 0.4 0.6 0.8 1 1. 2 1.4 2 d(µm) N(cm )-3 1 Fig. 3. Deuterium distribution in a ZMR SOI structure after deuteration at 250oC, 1 W/cm2 for 30 min (1) and after thermal annealing of the deuterated sample at 600oC for 2 hours (2). Fig. 4. Deuterium effusion spectra of deuterated ZMR SOI struc- ture (1) and poly-Si sample (2) (from ref. [11]). A. Boutry-Forveille et al.: SIMS study of deuterium distribution... 111ÔÊÎ, 1(1), 1998 SQO, 1(1), 1998 SIMS ÄÎÑË²ÄÆÅÍÍß ÐÎÇÏÎIJËÓ ÄÅÉÒÅÐ²ß ² ÒÅÌÏÅÐÀÒÓÐÍί ÑÒÀÁ²ËÜÍÎÑÒ²  ZMR SOI ÑÒÐÓÊÒÓÐÀÕ À. Áîóòð³-Ôîðâåéëå, Ä. Áàëëóòàóä ËÏÑÁ-ÖÍÐÑ, ëàáîðàòîð³ÿ ô³çèêè òâåðäîãî ò³ëà, Ôðàíö³ÿ Î. Ì. Íàçàðîâ ²íñòèòóò ô³çèêè íàï³âïðîâ³äíèê³â ÍÀÍ Óêðà¿íè Ó ðîáîò³ âèâ÷àëèñü ìåòîäàìè âòîðèííî¿ ³îííî¿ ìàñ-ñïåêòðîìåò𳿠(²ÌÑ) ³ òåðìîñòèìóëüîâàíî¿ äåñîðáö³¿ äåéòåð³þ ðîçïîä³ëåííÿ äåéòåð³þ ³ éîãî òåðì³÷íà ñòàá³ëüí³ñòü ó ñèñòåì³ êðåìí³é-íà-³çîëÿòîð³ (ÊͲ), âèãîòîâëåí³é çà äîïîìîãîþ òåõíîëî㳿 çîííî¿ ëàçåðíî¿ ðåêðèñòàë³çàö³¿ ïîë³êðåìí³þ. Ïîêàçàíî ³ñíóâàííÿ ïðÿìîãî çâ�ÿçêó ì³æ ðîçóïîðÿäêóâàííÿì ñòðóêòóðè íà ìåæàõ ðîçïîä³ëó êðåìí³é- âíóòð³øí³é ä³åëåêòðèê ³ ðîçïîä³ëåííÿì äåéòåð³þ ó ñèñòåì³ ÊͲ. Âèçíà÷åíî êîåô³ö³ºíò äèôó糿 äåéòåð³þ ó êðåìí³ºâ³é ðåêðèñòàë³çîâàí³é ïë³âö³ ïðè 250îÑ. Âïåðøå ïðîäåìîíñòðîâàíî âèñîêîòåìïåðàòóðíó ñòàá³ëüí³ñòü äåéòåð³þ (äî 600îÑ âêëþ÷íî) ó âíóòð³øíüîìó ä³åëåêòðèêó ñèñòåìè ÊͲ, çà â³äñóòíîñò³ äèôó糿 äåéòåð³þ äî êðåìí³ºâèõ øàð³â. SIMS ÈÑÑËÅÄÎÂÀÍÈß ÐÀÑÏÐÅÄÅËÅÍÈß ÄÅÉÒÅÐÈß È ÒÅÌÏÅÐÀÒÓÐÍÀß ÑÒÀÁÈËÜÍÎÑÒÜ Â ZMR SOI ÑÒÐÓÊÒÓÐÀÕ À. Áîóòðè-Ôîðâåéëå, Ä. Áàëëóòàóä ËÏÑÁ-ÖÍÐÑ, ëàáîðàòîðèÿ ôèçèêè òâåðäîãî òåëà, Ôðàíöèÿ Î. Ì. Íàçàðîâ Èíñòèòóò ôèçèêè ïîëóïðîâîäíèêîâ ÍÀÍ Óêðàèíû  ðàáîòå ìåòîäàìè âòîðè÷íîé èîííîé ìàññ-ñïåêòðîìåòðèè (ÂÈÌÑ) è òåðìîñòèìóëèðîâàííîé äåñîðáöèè äåéòåðèÿ èçó÷àëèñü ðàñïðåäåëåíèå äåéòåðèÿ è åãî òåðìè÷åñêàÿ ñòàáèëüíîñòü â ñòðóêòóðàõ êðåìíèÿ-íà-èçîëÿòîðå (ÊÍÈ), èçãîòîâëåííûõ ñ ïîìîùüþ òåõíîëîãèè çîííîé ëàçåðíîé ðåêðèñòàëëèçàöèè ïîëèêðåìíèÿ. Ïîêàçàíî ñóùåñòâîâàíèå ïðÿìîé ñâÿçè ìåæäó ðàçóïîðÿäî÷åíèåì ñòðóêòóðû íà ãðàíèöàõ êðåìíèé-âíóòðåííèé îêèñåë è ðàñïðåäåëåíèåì äåéòåðèÿ â ÊÍÈ ñèñòåìå. Îïðåäåëåí êîýôôèöèåíò äèôôóçèè äåéòåðèÿ â ðåêðèñòàëëèçîâàííîì ñëîå êðåìíèÿ ïðè 250îÑ. Âïåðâûå ïðîäåìîíñòðèðîâàíà âûñîêîòåìïåðàòóðíàÿ ñòàáèëüíîñòü äåéòåðèÿ (äî 600îÑ âêëþ÷èòåëüíî) âî âíóòðåííåì îêèñëå ÊÍÈ ñòðóêòóðû ïðè îòñóòñòâèè äèôôóçèè äåéòåðèÿ â êðåìíèåâûå ñëîè.