Forecasting as a method of metals marketing research
The problem of predicting the dynamics of the steel market, demand and supply on the basis of general economic trends is defined. High export dependence metallurgical industry in Ukraine led to the need to examine current trends in the world market, and identify potential sources of competition in t...
Gespeichert in:
Datum: | 2016 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | English |
Veröffentlicht: |
Інститут економіки промисловості НАН України
2016
|
Schriftenreihe: | Економічний вісник Донбасу |
Schlagworte: | |
Online Zugang: | http://dspace.nbuv.gov.ua/handle/123456789/114910 |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Zitieren: | Forecasting as a method of metals marketing research / V. Gonchar // Економічний вісник Донбасу. — 2016. — № 4 (46). — С. 104–108. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-114910 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1149102017-03-20T03:02:17Z Forecasting as a method of metals marketing research Gonchar, V. Marketing The problem of predicting the dynamics of the steel market, demand and supply on the basis of general economic trends is defined. High export dependence metallurgical industry in Ukraine led to the need to examine current trends in the world market, and identify potential sources of competition in the future. The analysis of existing speaker characteristic steel markets in different regions of the world is held. For analysis of the world market is divided into 8 regions: Asia, EU, Europe, CIS, Middle East, Africa, North and South America. The productions dynamics trends are evaluated. The modified method of forecasting the market is applied, based on data from the International Monetary Fund, GDP in the world and in steel production according to data from the International Steel Association from 2002 to 2015. The research results identified a close correlation of GDP and steel production volume in the world, Asia, the Middle East and Europe. The regions leaders and outsiders are distinguished after metallurgical production consumption analysis in the world. The demand level of the advanced economy was defined by the consumption per capita in developed countries of European Union. Based on these research, the production forecast is built in the world and in the Middle East, Asia, and Europe. Визначено проблеми прогнозування динаміки розвитку металургійного ринку, попиту та пропозиції на підставі загальноекономічних тенденцій. Висока експортна залежність металургійної галузі України зумовила необхідність вивчення тенденцій, діючих на світовому ринку, і визначення потенційних джерел конкуренції в майбутньому. Проведено аналіз існуючих динамік, характерних металургійному ринку регіонів світу, оцінено тенденції розвитку, динаміку обсягів виробництва. Для проведення аналізу світовий ринок розділений на 8 регіонів: Азія, ЄС, Європа, СНД, Близький Схід, Африка, Північна і Південна Америка. Застосовано модифіковану методику прогнозування ринку на основі даних ВВП міжнародного валютного фонду в країнах світу та обсягів виробництва сталі в країнах світу згідно даних міжнародної асоціації виробників сталі з 2002 по 2015 рік. Результати проведеного дослідження дозволили виділити тісну кореляцію між ВВП та обсягом виплавки сталі в світі, країнах Азії, Близького Сходу та Європи. Проведено аналіз споживання продукції металургійної галузі, на основі якого виділено регіони - лідери споживання і аутсайдери. Споживання на душу населення в розвинених країнах Європейського Союзу дозволило визначити граничний попит на продукцію галузі для розвиненої економіки. На основі даних досліджень побудовано прогноз виробництва в світі і в країнах Близького Сходу, Азії, Європи. Определены проблемы прогнозирования динамики развития металлургического рынка, спроса и предложения на основании общеэкономических тенденций. Высокая экспортная зависимость металлургической отрасли Украины обусловила необходимость изучения тенденций, действующих на мировом рынке, и определения потенциальных источников конкуренции в будущем. Проведен анализ существующих динамик, характерных металлургическому рынку регионов мира, оценены тенденции развития, динамика объемов производства. Для проведения анализа мировой рынок разделен на 8 регионов: Азия, ЕС, Европа, СНГ, Ближний Восток, Африка, Северная и Южная Америка. Применена модифицированная методика прогнозирования рынка на основе данных ВВП международного валютного фонда в странах мира и объемов производства стали в странах мира согласно данных международной ассоциации производителей стали с 2002 по 2015 год. Результаты проведенного исследования позволили выделить тесную корреляцию ВВП - объем выплавки стали в мире, странах Азии, Ближнего Востока и Европы. Проведен анализ потребления продукции металлургической отрасли, на основе которого выделены регионы - лидеры потребления и аутсайдеры. Потребление на душу населения в развитых странах Европейского Союза позволило определить граничный спрос на продукцию отрасли для развитой экономики. На основе данных исследований построен прогноз производства в мире и в странах Ближнего Востока, Азии, Европы. 2016 Article Forecasting as a method of metals marketing research / V. Gonchar // Економічний вісник Донбасу. — 2016. — № 4 (46). — С. 104–108. — Бібліогр.: 13 назв. — англ. 1817-3772 http://dspace.nbuv.gov.ua/handle/123456789/114910 339.13:669.015 en Економічний вісник Донбасу Інститут економіки промисловості НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Marketing Marketing |
spellingShingle |
Marketing Marketing Gonchar, V. Forecasting as a method of metals marketing research Економічний вісник Донбасу |
description |
The problem of predicting the dynamics of the steel market, demand and supply on the basis of general economic trends is defined. High export dependence metallurgical industry in Ukraine led to the need to examine current trends in the world market, and identify potential sources of competition in the future. The analysis of existing speaker characteristic steel markets in different regions of the world is held. For analysis of the world market is divided into 8 regions: Asia, EU, Europe, CIS, Middle East, Africa, North and South America. The productions dynamics trends are evaluated. The modified method of forecasting the market is applied, based on data from the International Monetary Fund, GDP in the world and in steel production according to data from the International Steel Association from 2002 to 2015. The research results identified a close correlation of GDP and steel production volume in the world, Asia, the Middle East and Europe. The regions leaders and outsiders are distinguished after metallurgical production consumption analysis in the world. The demand level of the advanced economy was defined by the consumption per capita in developed countries of European Union. Based on these research, the production forecast is built in the world and in the Middle East, Asia, and Europe. |
format |
Article |
author |
Gonchar, V. |
author_facet |
Gonchar, V. |
author_sort |
Gonchar, V. |
title |
Forecasting as a method of metals marketing research |
title_short |
Forecasting as a method of metals marketing research |
title_full |
Forecasting as a method of metals marketing research |
title_fullStr |
Forecasting as a method of metals marketing research |
title_full_unstemmed |
Forecasting as a method of metals marketing research |
title_sort |
forecasting as a method of metals marketing research |
publisher |
Інститут економіки промисловості НАН України |
publishDate |
2016 |
topic_facet |
Marketing |
url |
http://dspace.nbuv.gov.ua/handle/123456789/114910 |
citation_txt |
Forecasting as a method of metals marketing research / V. Gonchar // Економічний вісник Донбасу. — 2016. — № 4 (46). — С. 104–108. — Бібліогр.: 13 назв. — англ. |
series |
Економічний вісник Донбасу |
work_keys_str_mv |
AT goncharv forecastingasamethodofmetalsmarketingresearch |
first_indexed |
2025-07-08T07:59:19Z |
last_indexed |
2025-07-08T07:59:19Z |
_version_ |
1837064845391822848 |
fulltext |
V. Gonchar
104
Економічний вісник Донбасу № 4(46), 2016
UDC 339.13:669.015
V. Gonchar,
DrHab (Economics),
Priazovskyi state technical university, Mariupol, Ukraine
FORECASTING AS A METHOD OF METALS MARKETING RESEARCH
Setting the problem. The problem of predicting
the dynamics of the steel market, demand and supply on
the basis of general economic trends is defined. High
export dependence metallurgical industry in Ukraine led
to the need to examine current trends in the world mar-
ket, and identify potential sources of competition in the
future. The analysis of existing speaker characteristic
steel markets in different regions of the world is held.
For analysis of the world market is divided into 8 re-
gions: Asia, EU, Europe, CIS, Middle East, Africa,
North and South America. The productions dynamics
trends are evaluated. The modified method of forecast-
ing the market is applied, based on data from the Inter-
national Monetary Fund, GDP in the world and in steel
production according to data from the International
Steel Association from 2002 to 2015. The research re-
sults identified a close correlation of GDP and steel pro-
duction volume in the world, Asia, the Middle East and
Europe. The regions leaders and outsiders are distin-
guished after metallurgical production consumption
analysis in the world. The demand level of the advanced
economy was defined by the consumption per capita in
developed countries of European Union. Based on this
research, the production forecast is built in the world and
in the Middle East, Asia, and Europe.
Statement of the problem. In the context of in-
creasing goods and services market dynamism there is
an objective necessity in conducting market research by
using existing methods of forecasting market trends.
Effective solution to this problem directly affects
the performance of the companies. Enterprises operating
in the local market to determine the dynamics of the lo-
cal market and to project the development of world
trends in the local market. To enterprises engaged in for-
eign trade, a more complex task, which requires evalua-
tion of a large number of factors. The impact on the in-
ternal factors and worldwide operating in the sector was
identified. The performance of each company depends
on building an effective marketing policy, which in turn
depends on the accuracy of predicting the dynamics of
markets. High export orientation of Ukrainian metallur-
gical enterprises increased the need to analyze the dy-
namics of the global steel market is. The average share
of exports from 2002-2015 was estimated at level of
74.3%. More accurate assessment of market trends will
give the opportunity to our metallurgists quickly coordi-
nate types and amounts of products to market trends, and
stimulate to build economic relations, in the regions
where the expected growth in demand for the products.
The last research analysis. Problems of the theo-
retical aspects of forecasting market trends are reflected
in the works of G. Kassel, V. Pareto, L. Walras,
D. Hicks, A. Marshall, V.M. Glushkov, A.N. Efimov,
D. Bell, T. Gordon, B. de Jouvenel, D. Gabor, F. Polak,
M.V. Bikeeva, N.E Egorova, S.N. Iliashenko.
In spite of this big development of this topic in the
economic theory, the effectiveness of forecasting meth-
ods by the market still needs further research. Forecast-
ing techniques which have been effective in resent 15-
20 years show a dramatic reduction in its effectiveness
due to the dynamism of economic factors. Forecasting
dynamics in different sectors of the economy needs to
be modified to suit individual methods of specific trends
in the industry. Thus, in spite of a long study of the prob-
lem remains relevant and requires constant updating ac-
cording to current market trends.
The purpose of the article is to provide marketing
research of the steel market and forecast trends of re-
gional steel markets, that are based on general develop-
ment economic and economic systems indicators. It has
been done a model of regional markets for the next 5
years, in order to predict the national producer’s threat
of competition from domestic producers of steel.
The main part.
Marketing is a complex and systematic process of
collecting and analyzing information in order to reduce
uncertainty and risk of decisions for business purposes.
The main purpose of market research is to obtain infor-
mation and ideas about the structure and dynamics
trends of the market and enterprise opportunities to bet-
ter adaptation its production structure, technology, prod-
uct or service to the demand and the requirements of
consumers [4].
Forecasting – is the scientific study of the prospects
of humanity, the subject of which study is the future, and
the product, the result of research by research findings
on the state of the variant of the object [1].
A vital challenge confronting economists is how to
forecast. The task is yet more exacting but ever more
pertinent during a recession because livelihoods seem to
depend on forecasts – will unemployment fall soon
enough to stave off foreclosures?
Perhaps unsurprising then is a recent clash in the
blogosphere over forecasting US GDP in the coming
quarters. Greg Mankiw contested the US government’s
forecasts of GDP growth, questioning the trend station-
arity assumption upon which the forecasts were made.
Paul Krugman wrote an outraged response, accusing
Mankiw of “evil wonkishness” [9]. Brad DeLong
weighed in too, pointing out that a univariate analysis
was “useless”; unemployment must be included in the
analysis.
The exchange emphasises not just that economic
variables are important in forecasts, but that economet-
ric issues matter. If GDP is trend stationary, the impli-
cations are very different for forecasting than if GDP is
V. Gonchar
105
Економічний вісник Донбасу № 4(46), 2016
a random walk with drift – one will correct to some equi-
librium, the other won’t. Economic nuances matter too
– what other variables make up this equilibrium rela-
tionship? Historically, there has been such a steady state,
but whether that is the same one to which we will soon
correct is unclear, and bad forecasts may result.
Finally, much has been made of prediction markets
as effective forecasting models [13]. Market participants
in prediction markets buy and sell contracts whose pay-
off is contingent on a particular event happening, such
as a recession in the US by the end of 2008. Evidence
suggests that such markets are well calibrated; if a con-
tract is at 90%, then 9 times out of 10 that contract will
pay out [10; 11]. Perhaps the way forward is to forecast
using prediction markets [5] ?
Economic forecasts are widely used at the firm, in-
dustry, and economy-wide level. For a firm, economic
forecasts facilitate planning for future production, ex-
pansion, or contraction. For example, a retailing firm
that has been in business for the last 25 years may be
interested in forecasting the likely sales volume for the
coming year. Similarly, the auto industry may want to
know the total demand for vans in the coming model
year. Both production plans and the extent of competi-
tion in the automobile industry may depend on the mag-
nitude of the forecasted auto demand. At the economy-
wide level, one may want to know the economic forecast
for growth in the real gross domestic product. One may
also be interested in other macroeconomic variables
such as the projected inflation rate. There are numerous
techniques that can be used to generate economic fore-
casts [12].
While the term "economic forecast" may appear to
be rather technical, planning for the future is a critical
aspect of managing any organization—business, non-
profit, or other. In fact, the long-term success of any or-
ganization is closely tied to how well the management
of the organization is able to foresee its future and to
develop appropriate strategies to deal with likely future
scenarios [6].
Intuition, good judgment, and an awareness of how
well the economy is doing may give the manager of a
business firm a rough idea (or "feeling") of what is likely
to happen in the future. Nevertheless, it is not easy to
convert a feeling about the future into a precise and use-
ful number such as the next year's sales volume or the
raw material cost per unit of output [7].
Suppose that a forecast expert has been asked to
provide estimates of the sales volume for a particular
product for the next four quarters. How should one go
about preparing the quarterly sales volume forecasts?
One will certainly want to review the actual sales data
for the product in question for past periods. Suppose that
the forecaster has access to actual sales data for each
quarter over the 25-year period the firm has been in busi-
ness. Using these historical data, the forecaster can iden-
tify the general level of sales. He or she can also deter-
mine whether there is a pattern or trend, such as an in-
crease or decrease in sales volume over time. A further
review of the data may reveal some type of seasonal pat-
tern, such as peak sales occurring before a holiday. Thus
by reviewing historical data over time, the forecaster can
often develop a good understanding of the previous pat-
tern of sales. Understanding such a pattern can often
lead to better forecasts of future sales of the product. In
addition, if the forecaster is able to identify the factors
that influence sales, historical data on these factors (or
variables) can also be used to generate forecasts of fu-
ture sales volumes [10].
There are many forecasting techniques available to
assist in business planning. All forecasting methods can
be divided into two broad categories: qualitative and
quantitative. Many forecasting techniques use past or
historical data in form of time series. A time series is
simply a set of observations measured at successive
points in time or over successive periods of time. Fore-
casts essentially provide future values of the time series
on a specific variable such as sales volume. Division of
forecasting methods into qualitative and quantitative
categories is based on the availability of historical time
series data [8].
When historical data are not available, qualitative
forecasting techniques are used. Such techniques gener-
ally employ the judgment of experts in the appropriate
field to generate forecasts. Quantitative forecasting
methods are used when historical data on variables of
interest are available—these methods are based on an
analysis of historical data concerning the time series of
the specific variable of interest and possibly other re-
lated time series [9].
There are two major categories of quantitative fore-
casting methods. The first type uses the past trend of a
particular variable to base the future forecast of the var-
iable. As this category of forecasting methods simply
uses time series on past data of the variable that is being
forecasted, these techniques are called time series meth-
ods. The second category of quantitative forecasting
techniques also uses historical data. But in forecasting
future values of a variable, the forecaster examines the
cause-and-effect relationships of the variable with other
relevant variables such as the level of consumer confi-
dence, changes in consumers' disposable incomes, the
interest rate at which consumers can finance their spend-
ing through borrowing, and the state of the economy
represented, by such variables as the unemployment
rate. Thus, this category of forecasting techniques uses
past time series on many relevant variables to produce
the forecast for the variable of interest. Forecasting tech-
niques falling under this category are called causal
methods, as the basis of such forecasting is the cause-
and-effect relationship between the variable forecasted
and other time series selected to help in generating the
forecasts. Some economic forecasts are generated using
a hybrid of the above two methods [9].
An important starting point in the forecasting pro-
cess is the re-assessment of the economic climate in in-
dividual countries and the world economy as a whole.
Here, a combination of model-based analyses and statis-
tical indicator models play an important role in "setting
the scene" at the start of each projection round.
A first step is to look at the range of relevant new
information since the last projections were produced –
V. Gonchar
106
Економічний вісник Донбасу № 4(46), 2016
such as changes in commodity prices (in particular the
oil price), exchange rates and interest rates, fiscal trends,
the path of economic activity and other key variables –
to see how the recent past has developed differently
from what was previously expected. With this new in-
formation, and using the previous set of projections as a
starting point, the effects of the new elements and re-
vised judgments are typically assessed on the basis of
model simulations using the NIGEM global model and
short-term indicator models. Thus the likely impact of
combined and individual changes in assumptions and
new information on key aggregates can be assessed in
consistent fashion for each of the major economies and
economic groupings. These results are mechanical and
therefore intended to be no more than a guide to the in-
formed judgments of country and topic experts on the
underlying “forces acting”.
Is generally distinguished three major campaign to
methods of forecasting the market dynamics:
• Traditional (genetic) – a retrospective analysis of
the actual number of requests for services and heuristi-
cally identification of major trends that shape their fu-
ture amount.
• Classic – prediction, given according to the lim-
ited number of dominant factors (usually – income and
price);
• Modified – adaptation of the classical approach to
the complex process of the formation of the modern de-
mand for services [2].
This study is based on a modified approach, of
forecasting the dynamics of the market. The study used
the data of countries production grouped by geography
(table 1), according to the data of World Steel Associa-
tion [3,5]. Identified the following regions: The Euro-
pean Union (27), (10), CIS (7), North America (7) South
America (9) Africa (13), Middle East (7), Asia (16).
Countries grouping into the regions can more accurately
determine the market trend, while reducing the number
of different trends existing in the national markets.
Table 1
Dynamics of production of steel in 2010, 2015 (tons)
Region 2010 2011 2012 2013 2014 2015 Growth rate, %
EU 206903 210179 198229 139336 172777 177652 13,3
European countries
(not members of the EU) 28205 30608 31710 29076 33734 39164 24,2
CIS 119906 124169 114345 97645 108200 112663 29,0
North America 131789 132618 124494 82578 111565 118893 13,5
South America 45298 48232 47354 37776 43894 48365 37,8
Africa 18695 18675 16970 15400 16624 15697 32,4
Middle East 15376 16452 16646 17656 20000 23002 29,5
Asia 674126 757285 783040 810346 916721 975614 49,4
World market production 1248991 1347002 1341212 1235827 1431664 1518299 28,0
The purpose of this analysis is to identify regions
that are expected to increase demand for steel, the dura-
tion of this dynamic and factors affecting it. Another
purpose is the definition of the regions that are building
their own production capacities to displace foreign man-
ufacturer. In addition there is a necessity of determina-
tion a period when, regions - importers will turn into re-
gions - exporters. The input data used for the analysis of
production volumes, level of consumption and GDP
data for the consumer ability at current prices in U.S.
dollars, steel consumption per capita.
GDP data (table 2) were used to determine the
overall economic trends, operating in the world. Has
been revealed the dependence between production and
GDP’s growth is the usage of steel in all sectors of the
economy.
Table 2
The dynamics of GDP in purchasing power parity. (in current prices bill. $US)
Region 2010 2011 2012 2013 2014 2015 Growth rate, %
EU 13717 14587 14992 14490 14987 15542 -14,1
European countries
( not members of the EU) 1560 1675 1734 1685 1802 1938 38,9
CIS 2635 2953 3179 2991 3176 3400 -6,0
North America 16049 16855 17209 16785 17472 18209 -9,8
South America 3301 3631 3913 3939 4257 4550 6,8
Africa 1708 1858 1991 2065 2191 2262 -16,0
Middle East 1841 2000 2116 2180 2333 2384 49,6
Asia 17729 19824 21334 22286 24510 26492 44,7
World market production 61705 66835 70140 70154 74684 78970 21,6
Analysis of the dependence of steel of GDP shows
that the world's steel production volumes are correlated
with GDP. The study showed that the dependence of
global steel production of the GDP by the equation y =
17,281 x + 136 610, where X is the world's GDP, with
the magnitude squared R2 = 0,9431, indicating high dis-
tress communications.
In terms of regions, the most intimate connection
GDP-production observed in the following regions:
Europe y = 21,421 x - 4850,3; R2 = 0,957.,
Asia y = 40,407 x - 74,492; R2 = 0,9873.,
Middle East y = 7,2417 x + 2927,5; R2 = 0,8431.
These dependences show that in the world there is
a steady growth of GDP, which stimulates the growth of
steel production. The world average GDP growth of
17.281 billions $US provides production growth of
1 000 tonnes.
V. Gonchar
107
Економічний вісник Донбасу № 4(46), 2016
There is almost no dependence of GDP-production
in the EU y = -3,7064 x + 238 796; R2 = 0,0771,
CIS y = 3,9018 x + 101 131; R2 = 0,0728, South Ame-
rica y = 1,2343 x + 40,237; R2 = 0,0765, Africa y =
=-0,337 x + 17,477; R2 = 0,0105.
To clarify the reasons for the lack of correlation in
the EU, CIS, South and North America and Africa we
consider the consumption of finished steel products in
these regions, per capita. This indicator is the most ac-
curate reflection of level of usage of steel in the coun-
try's economy, showing the population's production in-
dustry. In the more developed regions of the world:
North America, the EU, which was consumed from
2002 to 2015, an average of 264.57 and 338.5 kg / cap-
ita, the highest number per capita were consumed in the
UAE in 2008. 2210.9 kg / capita. According to the study,
the growth of GDP and production was observed in re-
gions of the world, which, since 2002. steel consump-
tion population far below the consumption of the more
developed regions: the EU and North America, but high
growth (GDP growth 2002-2015. European countries,
73.3%, Middle East 89.8%, Asia -116%) stimulated the
growth of domestic demand in the region, which in turn
led to a significant increase production in the regions,
what we are seeing in Asia, Europe, the Middle East.
Table 3
Forecasting of GDP growth in 2017 - 2019
Country\Year 2017 2018 2019
European countries 2301,79 2425,61 2562,78
Middle East 2830,58 2982,75 3151,95
Asia 35452,59 38431,51 41785,65
World market 97254,45 103479,8 110405,4
Table 4
Forecasting of steel production in the regions
of the worlds in 2017 - 2019
Country\Year 2017 2018 2019
European countries 44456,34 47108,69 50047,01
Middle East 23425,71 24527,68 25752,98
Asia 1358041 1478410 1613941
World market 1817264 1924845 2044525
In most developed countries: EU, USA, Canada,
Japan, South Korea, where over the study period, GDP
per capita was high, there were only the fluctuations of
consumption goods sector, depending on the economic
situation in the region. Consumption data in these re-
gions are used as the upper limit, above which the
growth of GDP is no longer a significant impact on pro-
duction and consumption in the region. Continuing the
trend in production capacity in the region will need to
search for sharp market outlets, which will make the
competition Ukrainian steel industry. As for the coun-
tries of South America and Africa, they share low levels
of production and consumption, in the absence of signif-
icant growth trends. For the CIS market is inherent high
prevalence of production over domestic demand, which
forces seek foreign markets, at the same time, domestic
consumption is almost not developed (201kg/ capita)
and much lower than the neighboring countries of Eu-
rope (252kg/ capita)
According to the data analysis of the dependence
of production and GDP, and consumption of steel per
person construct a forecast of production (Table 4). The
input data used in the GDP data from the International
Monetary Fund (Table 3).
The projections show that by 2017, the Asian per
capita consumption over and above the EU average for
2002-2015, after which it is possible to expect reduction
of growth rates in the region. In Europe and the Middle
East, this boundary if the current trends will be achieved
by 2018.
Conclusions. Middle East, and Europe until 2017,
taking into account the general economic trends and
market demand for the products of the metallurgical in-
dustry end users. Improving the effectiveness of fore-
casting the metallurgical industry allows advance re-
build production requirements demand. Improving fore-
casting technique allows regional competition increases
the level of information security management, which
positively affects the quality of the developed measures
to reduce the risks of competition. According to the fore-
cast, in the preservation of current economic trends, it is
necessary to expect a 2017 2018godu, the saturation of
domestic demand steelmakers in Asia, Europe and the
Middle East. Projected domestic production, in which a
saturation of the market for Europe is 50,047 tons, the
Middle East 25,752.98 tonnes, 1,613,941 tonnes of
Asia.
References
1. Арефьева Н. Т. Прогнозирование и его со-
циокультурные цели [Электронный реcурс] / Н. Т.
Арефьева // Знание. Понимание. Умение: электрон-
ный журнал. – 2010. – №4. – Режим доступа:
http://www.zpu-journal.ru/e-zpu/2010/4/Arefieva/.
2. Басовский Л. Е. Прогнозирование и планирова-
ние в условиях рынка: учебное пособие / Л. Е. Ба-
совский. – М.: ИНФРА-М, 2003. – 259 с. 3. Всемир-
ная ассоциация производителей стали [Электрон-
ный ресурс] – Режим доступа: http://www.worldsteel.
org/statistics/statistics-archive/yearbook-archive.html.
4. Окландер М.А. Поведінка споживача / М.А.
Окландер, І.О. Жарська. – К.: Центр учбової літера-
тури, 2014. – 209 с. 5. Офіційний сайт Всесвітнього
валютного фонду «World Economic Outlook». [Елек-
тронний ресурс]. - Режим доступу: http://www.
worldeconomicoutlook.com. 6. Пономаренко В. С.
Аналіз даних у дослідженнях соціально-економіч-
них систем: монографія / В. С. Пономаренко, Л. М.
Малярець. – Х.: ВД «ІНЖЕК», 2009. – 430 c.
7. Портер Е. Майкл. Конкурентная стратегия: Ме-
тодика анализа отраслей и конкурентов / Майкл Е.
Портер; пер. с англ. – М.: Альпина Бизнес Букс,
2005. – 454 с. 8. Anderson, David R., Dennis J.
Sweeney, and Thomas A. Williams. An Introduction to
Management Science: Quantitative Approaches to De-
cision Making. 8th ed. Minneapolis/St. Paul: West Pub-
lishing, 1997. 9. For Greg Mankiw's blog, see "GREG
MANKIW'S BLOG / Random Observations for Stu-
V. Gonchar
108
Економічний вісник Донбасу № 4(46), 2016
dents of Economics". Retrieved from http://greg-
mankiw.blogspot.jp/2013/02/a-profile-of-stanley-fisch
er.html. 10. Day G.S. Analysis for Strategic Marketing
Decisions. West Publishing Company, 1986. 11. Door-
nik, J.A. (2009), ‘Autometrics’, in ‘The Methodology
and Practice of Econometrics: A Festschrift in Honour
of David F. Hendry’, Castle, J.L and Shephard, N.
(eds.), OUP, Oxford. 12. Hendry, David F. and Hans-
Martin Krolzig (2005). “The Properties of Automatic
GETS Modelling” Economic Journal, Vol. 115, No.
502, pp. C32-C61, March 2005. 13. Wolfers, Justin and
Eric Zitzewitz (2004) Prediction Markets, The Journal
of Economic Perspectives, Vol. 18, No. 2 (Spring,
2004), pp. 107-126
Гончар В. В. Прогнозування як метод марке-
тингового дослідження ринку металопродукції
Визначено проблеми прогнозування динаміки
розвитку металургійного ринку, попиту та пропози-
ції на підставі загальноекономічних тенденцій. Ви-
сока експортна залежність металургійної галузі Ук-
раїни зумовила необхідність вивчення тенденцій, ді-
ючих на світовому ринку, і визначення потенційних
джерел конкуренції в майбутньому. Проведено ана-
ліз існуючих динамік, характерних металургійному
ринку регіонів світу, оцінено тенденції розвитку, ди-
наміку обсягів виробництва. Для проведення ана-
лізу світовий ринок розділений на 8 регіонів: Азія,
ЄС, Європа, СНД, Близький Схід, Африка, Північна
і Південна Америка. Застосовано модифіковану ме-
тодику прогнозування ринку на основі даних ВВП
міжнародного валютного фонду в країнах світу та
обсягів виробництва сталі в країнах світу згідно да-
них міжнародної асоціації виробників сталі з 2002
по 2015 рік. Результати проведеного дослідження
дозволили виділити тісну кореляцію між ВВП та об-
сягом виплавки сталі в світі, країнах Азії, Близького
Сходу та Європи. Проведено аналіз споживання
продукції металургійної галузі, на основі якого ви-
ділено регіони - лідери споживання і аутсайдери.
Споживання на душу населення в розвинених краї-
нах Європейського Союзу дозволило визначити гра-
ничний попит на продукцію галузі для розвиненої
економіки. На основі даних досліджень побудовано
прогноз виробництва в світі і в країнах Близького
Сходу, Азії, Європи.
Ключові слова: маркетингові дослідження, про-
гнозування, споживачі сталі, металопродукція,
ВВП.
Гончар В. В. Прогнозирование как метод
маркетингового исследования рынка металло-
продукции
Определены проблемы прогнозирования дина-
мики развития металлургического рынка, спроса и
предложения на основании общеэкономических
тенденций. Высокая экспортная зависимость метал-
лургической отрасли Украины обусловила необхо-
димость изучения тенденций, действующих на ми-
ровом рынке, и определения потенциальных источ-
ников конкуренции в будущем. Проведен анализ су-
ществующих динамик, характерных металлургиче-
скому рынку регионов мира, оценены тенденции
развития, динамика объемов производства. Для про-
ведения анализа мировой рынок разделен на 8 реги-
онов: Азия, ЕС, Европа, СНГ, Ближний Восток, Аф-
рика, Северная и Южная Америка. Применена мо-
дифицированная методика прогнозирования рынка
на основе данных ВВП международного валютного
фонда в странах мира и объемов производства стали
в странах мира согласно данных международной ас-
социации производителей стали с 2002 по 2015 год.
Результаты проведенного исследования позволили
выделить тесную корреляцию ВВП – объем вы-
плавки стали в мире, странах Азии, Ближнего Во-
стока и Европы. Проведен анализ потребления про-
дукции металлургической отрасли, на основе кото-
рого выделены регионы - лидеры потребления и аут-
сайдеры. Потребление на душу населения в разви-
тых странах Европейского Союза позволило опреде-
лить граничный спрос на продукцию отрасли для
развитой экономики. На основе данных исследова-
ний построен прогноз производства в мире и в стра-
нах Ближнего Востока, Азии, Европы.
Ключевые слова: маркетинговые исследования,
прогнозирование, потребители стали, металлопро-
дукция, ВВП.
Gonchar V. Forecasting as a method of metals
marketing research
The problem of predicting the dynamics of the steel
market, demand and supply on the basis of general eco-
nomic trends is defined. High export dependence metal-
lurgical industry in Ukraine led to the need to examine
current trends in the world market, and identify potential
sources of competition in the future. The analysis of ex-
isting speaker characteristic steel markets in different re-
gions of the world is held. For analysis of the world mar-
ket is divided into 8 regions: Asia, EU, Europe, CIS,
Middle East, Africa, North and South America. The pro-
ductions dynamics trends are evaluated. The modified
method of forecasting the market is applied, based on
data from the International Monetary Fund, GDP in the
world and in steel production according to data from the
International Steel Association from 2002 to 2015. The
research results identified a close correlation of GDP
and steel production volume in the world, Asia, the Mid-
dle East and Europe. The regions leaders and outsiders
are distinguished after metallurgical production con-
sumption analysis in the world. The demand level of the
advanced economy was defined by the consumption per
capita in developed countries of European Union. Based
on these research, the production forecast is built in the
world and in the Middle East, Asia, and Europe.
Keywords: marketing research, forecasting, steel
consumers, steel, GDP.
Received by the editors: 17.10.2016
and final form 28.12.2016
|