Sequential implantations of deuterium and helium ions into tungsten-coated composite structures

The trapping and thermal desorption of deuterium and helium implanted into tungsten-coated composite structures were studied. The amount of accumulated deuterium and helium, and the shape of thermal desorption spectra were shown to be depended on the way of irradiation by the D⁺ and He⁺ ions: indivi...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Azarenkov, N.A., Bobkov, V.V., Tishchenko, L.P., Starovoitov, R.I., Kovtunenko, Yu.I., Logachev, Yu.E., Gamayunova, L.A.
Формат: Стаття
Мова:English
Опубліковано: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Назва видання:Вопросы атомной науки и техники
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/115320
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Sequential implantations of deuterium and helium ions into tungsten-coated composite structures / N.A. Azarenkov, V.V. Bobkov, L.P. Tishchenko, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.A. Gamayunova // Вопросы атомной науки и техники. — 2016. — № 6. — С. 73-76. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-115320
record_format dspace
spelling irk-123456789-1153202017-04-03T03:02:26Z Sequential implantations of deuterium and helium ions into tungsten-coated composite structures Azarenkov, N.A. Bobkov, V.V. Tishchenko, L.P. Starovoitov, R.I. Kovtunenko, Yu.I. Logachev, Yu.E. Gamayunova, L.A. ITER and fusion reactor aspects The trapping and thermal desorption of deuterium and helium implanted into tungsten-coated composite structures were studied. The amount of accumulated deuterium and helium, and the shape of thermal desorption spectra were shown to be depended on the way of irradiation by the D⁺ and He⁺ ions: individually or sequentially. The possible mechanisms of these processes are proposed. Изучены процессы захвата и термической десорбции дейтерия и гелия, имплантированных в композиционные структуры с вольфрамовым покрытием. Количества накопленных дейтерия и гелия и вид спектров термической десорбции показаны в зависимости от схемы облучения ионами D⁺ и He⁺ : по отдельности или последовательно в разной очерёдности. Предложены возможные механизмы этих процессов. Вивчено процеси захоплювання та термічної десорбції дейтерію та гелію, імплантованих у композиційні структури з вольфрамовим покриттям. Кількості накопичених дейтерію та гелію та вигляд спектрів термічної десорбції показано в залежності від схеми опромінення іонами D⁺ та He⁺ : окремо або послідовно в різній черговості. Запропоновані можливі механізми цих процесів. 2016 Article Sequential implantations of deuterium and helium ions into tungsten-coated composite structures / N.A. Azarenkov, V.V. Bobkov, L.P. Tishchenko, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.A. Gamayunova // Вопросы атомной науки и техники. — 2016. — № 6. — С. 73-76. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 61.80.-x, 61.80.Jh http://dspace.nbuv.gov.ua/handle/123456789/115320 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic ITER and fusion reactor aspects
ITER and fusion reactor aspects
spellingShingle ITER and fusion reactor aspects
ITER and fusion reactor aspects
Azarenkov, N.A.
Bobkov, V.V.
Tishchenko, L.P.
Starovoitov, R.I.
Kovtunenko, Yu.I.
Logachev, Yu.E.
Gamayunova, L.A.
Sequential implantations of deuterium and helium ions into tungsten-coated composite structures
Вопросы атомной науки и техники
description The trapping and thermal desorption of deuterium and helium implanted into tungsten-coated composite structures were studied. The amount of accumulated deuterium and helium, and the shape of thermal desorption spectra were shown to be depended on the way of irradiation by the D⁺ and He⁺ ions: individually or sequentially. The possible mechanisms of these processes are proposed.
format Article
author Azarenkov, N.A.
Bobkov, V.V.
Tishchenko, L.P.
Starovoitov, R.I.
Kovtunenko, Yu.I.
Logachev, Yu.E.
Gamayunova, L.A.
author_facet Azarenkov, N.A.
Bobkov, V.V.
Tishchenko, L.P.
Starovoitov, R.I.
Kovtunenko, Yu.I.
Logachev, Yu.E.
Gamayunova, L.A.
author_sort Azarenkov, N.A.
title Sequential implantations of deuterium and helium ions into tungsten-coated composite structures
title_short Sequential implantations of deuterium and helium ions into tungsten-coated composite structures
title_full Sequential implantations of deuterium and helium ions into tungsten-coated composite structures
title_fullStr Sequential implantations of deuterium and helium ions into tungsten-coated composite structures
title_full_unstemmed Sequential implantations of deuterium and helium ions into tungsten-coated composite structures
title_sort sequential implantations of deuterium and helium ions into tungsten-coated composite structures
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
publishDate 2016
topic_facet ITER and fusion reactor aspects
url http://dspace.nbuv.gov.ua/handle/123456789/115320
citation_txt Sequential implantations of deuterium and helium ions into tungsten-coated composite structures / N.A. Azarenkov, V.V. Bobkov, L.P. Tishchenko, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.A. Gamayunova // Вопросы атомной науки и техники. — 2016. — № 6. — С. 73-76. — Бібліогр.: 9 назв. — англ.
series Вопросы атомной науки и техники
work_keys_str_mv AT azarenkovna sequentialimplantationsofdeuteriumandheliumionsintotungstencoatedcompositestructures
AT bobkovvv sequentialimplantationsofdeuteriumandheliumionsintotungstencoatedcompositestructures
AT tishchenkolp sequentialimplantationsofdeuteriumandheliumionsintotungstencoatedcompositestructures
AT starovoitovri sequentialimplantationsofdeuteriumandheliumionsintotungstencoatedcompositestructures
AT kovtunenkoyui sequentialimplantationsofdeuteriumandheliumionsintotungstencoatedcompositestructures
AT logachevyue sequentialimplantationsofdeuteriumandheliumionsintotungstencoatedcompositestructures
AT gamayunovala sequentialimplantationsofdeuteriumandheliumionsintotungstencoatedcompositestructures
first_indexed 2025-07-08T08:35:17Z
last_indexed 2025-07-08T08:35:17Z
_version_ 1837067107729145856
fulltext ISSN 1562-6016. ВАНТ. 2016. №6(106) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 73-76. 73 SEQUENTIAL IMPLANTATIONS OF DEUTERIUM AND HELIUM IONS INTO TUNGSTEN-COATED COMPOSITE STRUCTURES N.A. Azarenkov, V.V. Bobkov, L.P. Tishchenko, R.I. Starovoitov, Yu.I. Kovtunenko, Yu.E. Logachev, L.A. Gamayunova V.N. Karazin Kharkiv National University, Kharkov, Ukraine E-mail: vbobkov@mail.ru The trapping and thermal desorption of deuterium and helium implanted into tungsten-coated composite structures were studied. The amount of accumulated deuterium and helium, and the shape of thermal desorption spectra were shown to be depended on the way of irradiation by the D + and He + ions: individually or sequential- ly. The possible mechanisms of these processes are proposed. PACS: 61.80.-x, 61.80.Jh INTRODUCTION Tungsten coating of multilayer functional structures is a promising material for devices contacting with the plasma in fusion installations. The possibility of its use in such devices is largely depend on its radiation re- sistance to the accumulation in it hydrogen isotopes and helium, forming in the result of the interaction with plasma streams. As very actual, this problem is inten- sively studied in recent years [1-6]. In [1-3] a compre- hensive analysis of formation of matrix radiation de- fects, as well as the capture, retention and thermal de- sorption of deuterium and helium, ion-implanted in tungsten coatings of multilayer composite systems sepa- rately, was done. It is of interest to carry out these stud- ies at sequential implantation of Не + and D + ions. Only a few literature data showed a mutual influence on each other sequentially implanted ions of hydrogen isotopes and helium in tungsten during irradiation and after heat- ing [4-6]. In this paper we studied the influence of pre- implantation of He + ions (or D + ) on the accumulation of deuterium (or helium) in tungsten coatings of multilayer composite structures and their thermal desorption in a vacuum. The types of radiation damage, formed during single and sequential irradiations by D + and Не + ions, were cleared, their influence on the structural features and radiation resistance of tungsten coatings was shown. 1. EXPERIMENTS Tungsten coatings of about 1 micron in thickness deposited by magnetron sputtering of W target in Ar atmosphere at the pressure of 1.0 Pa were studied. Dep- osition was carried out at a rate of 0.6 nm s -1 on a stain- less steel substrate (SSt) 0.5 mm thick at a temperature T = 600 K with pre-deposited Ti layer of thickness less than 10 nm (SSt + W). Tungsten coatings have a poly- crystalline structure with an average grain size of about 60 nm and a low degree of texture with texture axis [110]. The samples were irradiated at the room tempera- ture sequentially by 10 keV D + (20 keV D2 + ) and 20 keV He + ion beams at a current density  5 µА cm -2 up to doses Ф in the range (0.2…5.0)×10 17 cm -2 in the sequence: He + , D + or D + , He + . Mean projective and full ranges of D + (10 keV) and He + (20 keV) ions in the tungsten coatings from the calculations [7] were about 60 and 160 nm respectively; they were comparable for compared ions and significantly less than the coatings thickness. According to [7], profiles of W lattice radia- tion damages, generated by D + and He + ions, were iden- tical and situated in the area of implanted ions. In exper- iments with implantation of only one type of ions their energy and dose were the same as at combined sequen- tial implantations. In the studies we used the methods of thermal de- sorption spectrometry (TDS) (on PTI-7A gas mass spec- trometer, with calibrated helium leak valve GELIT-1) and electron microscopy. We got the spectra of thermal desorption of helium and deuterium and, using the data of the cross section of ionization of helium and deuteri- um particles [8] in the source of the mass spectrometer, determined the concentrations C and capture coefficient of implanted gases η = C/Ф. A more detailed descrip- tion of the experimental procedure was given in [9]. The desorption spectra of helium atoms and deuteri- um molecules were got, heating the irradiated samples with a constant rate α = 0.8 K∙s -1 in the temperature range 290…1800 K. The temperature measurements error was ± 5 K. The spectra represented dependencies of the number S of implanted gas particles, released at the heating temperature T, on this temperature. The sensitivity of the used method of determining the num- ber of helium and deuterium particles was not worse than 2×10 12 cm -2 . When heated the non-irradiated sam- ples the partial pressures of helium and deuterium were less than 1×10 -7 Pa. Initial background of particles with m = 4 was not greater than S = 0.001×10 16 cm -2 at T < 1200 K and S < 0.005×10 16 см -2 in the temperature range ΔT = 1600…1800 K, where the evaporation of stainless steel substrate components and a slight in- crease in the residual vacuum in the chamber were ob- served. In the thermal desorption spectra of helium and deuterium implanted separately, at T < 1200 K the value S for the helium did not exceed the background S, and the S value for the deuterium at T ≥ 1200 K also did not exceed the background value. The latter fact allowed to suggest that the thermal desorption spectra of helium and deuterium ions which were implanted in sequential mailto:vbobkov@mail.ru 74 ISSN 1562-6016. ВАНТ. 2016. №6(106) combinations, at T < 1200 K showed the D2 release from the W coating in vacuum, and He release when T ≥ 1200 K. Studies of changes of microstructures of the W coat- ing near surface layers with implanted helium and deu- terium were done on thinned samples using a transmis- sion electron microscope TEM-100 L. The morphology of the surface of the irradiated samples was monitored with a scanning electron microscope SEM -100 U. 2. RESULTS AND DISCUSSION When heated the composite structures with tungsten coatings single or sequentially irradiated by D + and He + ions, thermal release of implanted gases into the vacu- um was observed. In Fig.1 the spectra of deuterium thermal desorption from tungsten coated composite structure (SSt + W (µm)), irradiated only by D + ions up to different doses are shown. The desorption of helium from the tungsten coating of the same composite struc- ture, irradiated only by He + ions to different doses, are shown in Fig. 2. In Fig. 3 there are shown the spectra of thermal desorption of deuterium and helium from the tungsten coated composite structure (SSt + W (µm)), irradiated sequentially D + and He + ions under the schemes: (He + – D + ) – curve 1 and (D + – He + ) – curve 2. For other doses of the sequential irradiations by the named ions spectra of thermal desorption of deuterium and helium were similar. As seen from Fig. 1, a significant deuterium release from the coatings started at temperatures T ≥ 350 K, and ended at T ≈ 1000 K (curves 1-4). At ФD+ ≥ 5.0×10 17 cm – 2 small D2 release took place up to T ≈ 1200 K (curve 5). There was one peak of deuterium thermal desorption with the maximum temperature Tm near 640 K. As seen from Fig. 2 (curves 1-4), the temperature range of helium release ΔT ≈ (900…1800) K did not agree with ΔT of deuterium. Helium released mainly at Tm ≈ 1500 K. At ФHe+ ≥ 4.7×10 17 сm -2 (curves 5, 6) in the spectra of helium thermal desorption there appeared the low-temperature region of this gas release: ΔT ≈ (350…900) K, which superposed with the area of D2 release (see Fig. 1). From a comparison of Figs. 1-3 it could be concluded that, if the irradiation doses did not exceed 5.0×10 17 сm -2 , the spectra of thermal desorp- tion of deuterium and helium ions which had been im- planted in different sequences represented a superposi- tion of spectra of thermal desorption D2 and He, im- planted with the same doses separately. The temperature ranges of deuterium and helium release remained the same; maxima of peaks of thermal desorption had the same Tm both for single and sequentially implantations of D + and He + ions. Fig. 4 shows the dependences of the concentration CHe (1) and capture coefficient ηHe (2) of helium in the tungsten coating on the dose ФНе+ of He + ions irradia- tion in different schemes (only He + – ●, ▲; sequentially: (He + – D + ) – ○, Δ, or (D + – He + ) – ×, ж). Fig. 5 shows the dependences of the CD (1) and ηD (2) of deuterium on the dose ФD+ of D + ions irradiation in various schemes (only D + – ●, ▲; sequentially: (He + – D + ) – ○, Δ, or (D + – He + ) – ×, ж). As can be seen from Figs. 4 and 5, for different schemes of D + , He + ions irradiation the values CHe and ηHe for implanted helium much more than simi- lar values of CD and ηD for implanted deuterium. The dependences in Fig. 6 show the influence of pre- implantation of one type of gas on accumulation of another gas in sequential irradiation of tungsten coatings by D + , He + ions. 0 0.2 0.4 0.6 0.8 1 200 600 1000 1400 1800 T , K S , 1 0 1 6 cm -2 5 2 1 4 3 Fig. 1. Spectra of deuterium thermodesorption from the tungsten coatings of the composite structure (SSt+ W(µm)) that irradiated by D + ions (10 keV, ФD+, 10 17 cm -2 : 1 – 1.0; 2 – 2.0; 3 – 3.0; 4 – 4.0; 5 – 5.0); α = 0.8 K∙s -1 0 2 4 6 8 10 200 600 1000 1400 1800 T , K S , 1 0 1 6 cm -2 1 2 3 4 6 5 Fig. 2. Spectra of helium thermodesorption from the tungsten coatings of the composite structure (SSt+ W(µm)) that irradiated by He + ions (20 keV, ФHe+, 10 17 cm -2 : 1 – 1.0; 2 – 2.0; 3 – 3.1; 4 – 4.0; 5 – 4.7; 6 – 8.3); α = 0.8 K∙s -1 0 1 2 3 4 5 200 600 1000 1400 1800 T , K S , 1 0 1 6 cm -2 2 1 Fig. 3. Spectra of deuterium and helium thermo- desorption from the tungsten coating of the com- posite structure (SSt.+ W(µm)) that were sequen- tially irradiated by:(He + – D + ) – curve 1; (D + – He + ) – curve 2; D + (10 keV, 2.0×10 17 cm -2 ); He + (20 keV, 2.0×10 17 cm -2 ); α = 0.8 K∙s -1 ISSN 1562-6016. ВАНТ. 2016. №6(106) 75 As followed from the results, pre-implantation of heli- um to different doses did not change the values of CD and ηD for deuterium (see the dependences CD = ƒ(ФHe+) (curve 1) and ηD = ƒ(ФHe+) (curve 2) in Fig. 6). Deuterium pre-implantation to different doses also did not change the values of CHe and ηHe for helium (see the dependences CHe = ƒ(ФD+) (curve 1') and ηHe = ƒ(ФD+) (curve 2') in Fig. 6. In the works of other authors [4-6] for W foil there was shown the influence of pre-implantation of He + ions with the scheme (He + – D + ) on the capture of deuterium. Pre-irradiation of He + ions (8…10 keV) at 0.3  ФHe+  1.0×10 17 cm -2 , did not change the retention of D + ions, implanted at ФD+ =(1–2)×10 17 cm -2 [4] and increased it by 3 times, when the dose of He + ions reached ФHe+ = 2.0×10 17 cm -2 [5]. The authors connect- ed these facts with the capture of D particles in radiation defects of matrix in the first case [4] and the influence of a field of strong tension around individual helium bubbles in the second [5]. According to [6], with a fur- ther increase of the dose of He + ions (3 keV) up to ФHe+ = 1.0×10 19 cm -2 , the capture of deuterium de- creased in the result of the influence of the formed net- work of helium bubbles on the accumulation of deuteri- um. Authors [6] noted a decrease of deuterium capture in sequential implantation (D + –Не + ) (ФD+ = 1×10 17 cm 2 ), ФHe+ = 1.0×10 17 cm -2 ) in the result of radiation enhanced diffusion of weakly retained deu- terium atoms to the surface of the sample and released in the vacuum at the further irradiation by He + ions. TEM studies of the authors of this paper [2, 3] of tungsten coatings single irradiated at room temperature by He + (ФHe+  2.0×10 17 cm -2 ) or D + (ФD+ ≤ 6×10 18 cm -2 ) ions showed that deuterium and helium bubbles did not formed in the grains of the crystal structure. Helium bubbles were visible at ФHe+ ≥ 7×10 17 cm -2 , they have the average diameter and density 2.5 nm and 5×10 12 cm -2 respectively at ФHe+ = 7×10 17 cm -2 . It was also observed the formation of interstitial dislocation loops and dislo- cation networks with an average diameter > 5 nm and a density greater than 3.2×10 12 сm -2 . On the obtained data the following types of radiation defects, formed in the volumes of tungsten coatings under sequential irradia- tion by He + and D + ions, were proposed: vacancy-type defects, interstitial dislocation loops, gas-vacancy complexes HemVn , DmVn . CONCLUSIONS The radiation resistance of tungsten coatings compo- site structure (SSt + W (µm)) to the sequential irradia- tion by D + and He + ions of medium energies up to doses ФD+  4,0×10 17 cm -2 and ФHe+  4,7×10 17 cm -2 at the room temperature was studied. The spectra of the ther- mal desorption of deuterium and helium from the sam- ple in vacuum was analyzed; capture coefficients for these gases in the coatings were determined. At single and sequential implantation of D + and He + ions in tung- sten coatings such regularities were established: deuter- ium was accumulated in tungsten coatings at lower concentrations compared with helium, and its capture coefficient was about one order of magnitude lower. Fig. 4. Dependences of the concentration CHe (1) and capture coefficient ηHe (2) of helium particles in the tungsten coating of the composite structure on ФHe+ fluency for different ways of irradiation: ●, ▲–He + ions; ×, ж– (D + – He + ) ions; ○, ∆ – (He + – D + ) ions; D + (10 keV, 2.0×10 17 cm -2 ); He + (20 keV) 0 0.4 0.8 1.2 1.6 0 1 2 3 4 5 6 Ф D+, 10 17 cm -2 C D,10 17 cm -2 0 0.04 0.08 0.12 0.16 η D 1 2 Fig. 5. Dependences of the concentration CD (1) and capture coefficient ηD (2) of deuterium particles in the tungsten coating of the composite structure on the ФD+ fluency for different ways of irradiation: ●, ▲ – D + ions; ×, ж – (D + – He + ) ions; ○, ∆ – (He + – D + ) ions; He + (20 keV, 2.0×10 17 cm -2 ); D + (10 keV) 0 1 2 3 4 0 1 2 3 4 5 ФHe+, 10 17 cm -2 , ФD+, 10 17 cm -2 C D, 10 17 cm -2 C He,10 17 cm -2 0 0.2 0.4 0.6 0.8 η D η He 1 2 1' 2' Fig. 6. Dependences of CD = ƒ(ФHe+) (curve 1) and CHe = ƒ(ФD+) (curve 1'), ηD = ƒ(ФHe+) ( curve 2) and ηHe = ƒ(ФD+) (curve 2') for D2 and He in the tungsten coating irradiated: single D + or He + ions – ●, ▲; (He + – D + ) sequentially – ○, ∆; (D + – He + ) sequentially – ×, ж .The curves 1, 2 for ФD+ = 2.0×10 17 cm -2 and the curves 1', 2' – for ФHe+ = 2.0×10 17 cm -2 0 2 4 6 8 0 2 4 6 8 Ф He+, 10 17 cm -2 C He,10 17 cm -2 0 0.2 0.4 0.6 0.8 η He 1 2 76 ISSN 1562-6016. ВАНТ. 2016. №6(106) At sequential implantations of these ions the tempera- ture range of deuterium or helium release and the tem- peratures of the peaks maxima in the spectra of thermal desorption were the same as in the single implantation; accumulation of deuterium (helium) was independent of He + (D + ) ion pre-implantation. It was suggested that into tungsten coatings under sequential irradiations the fol- lowing types of radiation damage were formed: defects of the vacancy type, interstitial dislocation loops, gas – vacancy complexes HemVn , DmVn . REFERENCES 1. V.V. Bobkov, A.V. Onishchenko, et al. Ion- Implanted Deuterium Accumulation in a Deposited Tungsten Coating // J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2010, v. 4, № 5, p. 852-858. 2. V.V. Bobkov, L.P. Tishchenko, et al. Implantation of Helium and Deuterium Ions into Tungsten-Coated Composite Structures // J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2011, v. 5, № 4, p. 806-811. 3. V.V. Bobkov, R.I. Starovoitov, et al. Deuterium-Ion Implantation into Composite Structures with Tungsten Coatings // J. Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 2014, v. 8, № 5, p. 853-858. 4. S. Nagata, K. Takahiro. Effect of Helium Irradiation on Trapping and Thermal Release of Deuterium Im- planted in Tungsten // J. Nucl. Mater. 2001, v. 290-293, p. 135–139. 5. H. Iwakiri, K. Morishita, N. Yoshida. Effects of Heli- um Bombardment on the Deuterium Behavior in Tung- sten // J. Nucl. Mater. 2002, v. 307-311, p. 135-138. 6. Y. Sakoi, M. Miyamoto, et al. Helium Irradiation Effects on Deuterium Retention in Tungsten // J. Nucl. Mater. 2013, v. 442, p. S715-S718. 7. J.F. Ziegler, J.P. Biersack., and M.D. Ziegler. The Stopping and Range of Ions in Solids, available from www.SRIM. org (2008.04). 8. B.M. Smirnov. Atomnye stolknovenija i elementarnye processy v plazme. M.: “Atomizdat”, 1968 (in Russian). 9. L.P. Tishchenko, T.I. Peregon, et al. Issledovanie processov zahvata i gazovydelenija ionno-implantirovan nogo dejterija iz plenok vol'frama // Izv. RAN. Ser. fiz. 2006, v. 70, № 8, p. 1197-1200 (in Russian). Article received 21.10.2016 ПОСЛЕДОВАТЕЛЬНАЯ ИМПЛАНТАЦИЯ ИОНОВ ДЕЙТЕРИЯ И ГЕЛИЯ В ВОЛЬФРАМОВЫЕ ПОКРЫТИЯ КОМПОЗИЦИОННЫХ СТРУКТУР Н.А. Азаренков, В.В. Бобков, Л.П. Тищенко, Р.И. Старовойтов, Ю.И. Ковтуненко, Ю.Е. Логачёв, Л.А. Гамаюнова Изучены процессы захвата и термической десорбции дейтерия и гелия, имплантированных в компози- ционные структуры с вольфрамовым покрытием. Количества накопленных дейтерия и гелия и вид спек- тров термической десорбции показаны в зависимости от схемы облучения ионами D + и He + : по отдельно- сти или последовательно в разной очерёдности. Предложены возможные механизмы этих процессов. ПОСЛІДОВНА ІМПЛАНТАЦІЯ ІОНІВ ДЕЙТЕРІЮ ТА ГЕЛІЮ У ВОЛЬФРАМОВІ ПОКРИТТЯ КОМПОЗИЦІЙНИХ СТРУКТУР М.О. Азаренков, В.В. Бобков, Л.П. Тищенко, Р.І. Старовойтов, Ю.І. Ковтуненко, Ю.Є. Логачов, Л.О. Гамаюнова Вивчено процеси захоплювання та термічної десорбції дейтерію та гелію, імплантованих у компози- ційні структури з вольфрамовим покриттям. Кількості накопичених дейтерію та гелію та вигляд спектрів термічної десорбції показано в залежності від схеми опромінення іонами D + та He + : окремо або послідов- но в різній черговості. Запропоновані можливі механізми цих процесів.