Optimal initial value control for the multi-term time-fractional diffusion equation

In this paper an initial value control problem with a quadratic cost function is considered for a system governed by a diffusion equation with a linear combination of Caputo time-fractional derivatives in an open bounded domain. We show the existence of the optimal solution by proving the existenc...

Full description

Saved in:
Bibliographic Details
Date:2016
Main Authors: Veklych, R.A., Semenov, V.V., Lyashko, S.I.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Series:Вопросы атомной науки и техники
Subjects:
Online Access:http://dspace.nbuv.gov.ua/handle/123456789/115327
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Optimal initial value control for the multi-term time-fractional diffusion equation / R.A. Veklych, V.V. Semenov, S.I. Lyashko // Вопросы атомной науки и техники. — 2016. — № 6. — С. 100-103. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:In this paper an initial value control problem with a quadratic cost function is considered for a system governed by a diffusion equation with a linear combination of Caputo time-fractional derivatives in an open bounded domain. We show the existence of the optimal solution by proving the existence of the weakly convergent minimization sequence satisfying the state equation. The uniqueness follows directly from the strong convexity of the cost function.