Optimal initial value control for the multi-term time-fractional diffusion equation
In this paper an initial value control problem with a quadratic cost function is considered for a system governed by a diffusion equation with a linear combination of Caputo time-fractional derivatives in an open bounded domain. We show the existence of the optimal solution by proving the existenc...
Saved in:
Date: | 2016 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Series: | Вопросы атомной науки и техники |
Subjects: | |
Online Access: | http://dspace.nbuv.gov.ua/handle/123456789/115327 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Cite this: | Optimal initial value control for the multi-term time-fractional diffusion equation / R.A. Veklych, V.V. Semenov, S.I. Lyashko // Вопросы атомной науки и техники. — 2016. — № 6. — С. 100-103. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSummary: | In this paper an initial value control problem with a quadratic cost function is considered for a system governed
by a diffusion equation with a linear combination of Caputo time-fractional derivatives in an open bounded domain.
We show the existence of the optimal solution by proving the existence of the weakly convergent minimization
sequence satisfying the state equation. The uniqueness follows directly from the strong convexity of the cost
function. |
---|