The usage of Maxwell fractional equations for the investigation of the waveguide processes

By means of nabla operator written down with using both of some differential operators with integer orders and fractional differential Caputo operators, gradient, divergence and rotor operators are determined, it is checked up the fulfillment of vector relations in fractional vector analysis, fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2016
Hauptverfasser: Maksyuta, M.V., Slinchenko, Yu.A., Grygoruk, V.I.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2016
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:http://dspace.nbuv.gov.ua/handle/123456789/115329
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The usage of Maxwell fractional equations for the investigation of the waveguide processes / M.V. Maksyuta, Yu.A. Slinchenko, V.I. Grygoruk // Вопросы атомной науки и техники. — 2016. — № 6. — С. 108-111. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:By means of nabla operator written down with using both of some differential operators with integer orders and fractional differential Caputo operators, gradient, divergence and rotor operators are determined, it is checked up the fulfillment of vector relations in fractional vector analysis, fractional Green’s, Stocks’ and Ostrogradsky-Gauss’ formulas. For a specific expression of nabla operator (nabla components along х and у axes have a unit order and along z axis, correspondingly, a fractional value in the interval from zero till unit) Maxwell’s fractional equations are written down. Based on the following from them some fractional wave equations, dissipative and polarization processes at electromagnetic waves distribution both in rectangular (planar) and in cylindrical waveguide structures are analyzed.