The usage of Maxwell fractional equations for the investigation of the waveguide processes
By means of nabla operator written down with using both of some differential operators with integer orders and fractional differential Caputo operators, gradient, divergence and rotor operators are determined, it is checked up the fulfillment of vector relations in fractional vector analysis, fr...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/115329 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | The usage of Maxwell fractional equations for the investigation of the waveguide processes / M.V. Maksyuta, Yu.A. Slinchenko, V.I. Grygoruk // Вопросы атомной науки и техники. — 2016. — № 6. — С. 108-111. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-115329 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1153292017-04-03T03:02:25Z The usage of Maxwell fractional equations for the investigation of the waveguide processes Maksyuta, M.V. Slinchenko, Yu.A. Grygoruk, V.I. Basic plasma By means of nabla operator written down with using both of some differential operators with integer orders and fractional differential Caputo operators, gradient, divergence and rotor operators are determined, it is checked up the fulfillment of vector relations in fractional vector analysis, fractional Green’s, Stocks’ and Ostrogradsky-Gauss’ formulas. For a specific expression of nabla operator (nabla components along х and у axes have a unit order and along z axis, correspondingly, a fractional value in the interval from zero till unit) Maxwell’s fractional equations are written down. Based on the following from them some fractional wave equations, dissipative and polarization processes at electromagnetic waves distribution both in rectangular (planar) and in cylindrical waveguide structures are analyzed. С помощью оператора набла, записанного с одновременным использованием как дифференциальных операторов с целочисленными порядками, так и дробных дифференциальных операторов Капуто, определяются операторы градиента, дивергенции и ротора, проверяется выполнимость векторных соотношений дробного векторного анализа, дробных формул Грина, Стокса и Остроградского-Гаусса. Для конкретного выражения оператора наблы (компоненты наблы вдоль осей х и у имеют единичный порядок, а вдоль оси z, соответственно, дробное значение в интервале от нуля до единицы) записываются дробные уравнения Максвелла. На основе следующих из них дробных волновых уравнений анализируются диссипативные и поляризационные процессы при распространении электромагнитных волн как в прямоугольных (планарных), так и в цилиндрических волноводных структурах. За допомогою оператора набли, записаного за одночасного використання як диференціальних операторів з цілочисельними порядками, так і дробових диференціальних операторів Капуто, визначаються оператори градієнта, дивергенції та ротора, перевіряється виконуваність векторних співвідношень дробового векторного аналізу, дробових формул Гріна, Стокса та Остроградського-Гауса. Для конкретного виразу оператора набли (складові набли уздовж осей х та у мають одиничний порядок, а уздовж осі z, відповідно, дробове значення в інтервалі від нуля до одиниці) записуються дробові рівняння Максвелла. На основі випливаючих із них дробових хвильових рівнянь аналізуються дисипативні та поляризаційні процеси при розповсюдженні електромагнітних хвиль як у прямокутних (планарних), так і в циліндричних хвилеводних структурах. 2016 Article The usage of Maxwell fractional equations for the investigation of the waveguide processes / M.V. Maksyuta, Yu.A. Slinchenko, V.I. Grygoruk // Вопросы атомной науки и техники. — 2016. — № 6. — С. 108-111. — Бібліогр.: 11 назв. — англ. 1562-6016 PACS: 02.30.Jr; 41.20.Jb; 42.82.Et; 84.40.Az http://dspace.nbuv.gov.ua/handle/123456789/115329 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Basic plasma Basic plasma |
spellingShingle |
Basic plasma Basic plasma Maksyuta, M.V. Slinchenko, Yu.A. Grygoruk, V.I. The usage of Maxwell fractional equations for the investigation of the waveguide processes Вопросы атомной науки и техники |
description |
By means of nabla operator written down with using both of some differential operators with integer orders and
fractional differential Caputo operators, gradient, divergence and rotor operators are determined, it is checked up the
fulfillment of vector relations in fractional vector analysis, fractional Green’s, Stocks’ and Ostrogradsky-Gauss’
formulas. For a specific expression of nabla operator (nabla components along х and у axes have a unit order and
along z axis, correspondingly, a fractional value in the interval from zero till unit) Maxwell’s fractional equations are written down. Based on the following from them some fractional wave equations, dissipative and polarization processes at electromagnetic waves distribution both in rectangular (planar) and in cylindrical waveguide structures are analyzed. |
format |
Article |
author |
Maksyuta, M.V. Slinchenko, Yu.A. Grygoruk, V.I. |
author_facet |
Maksyuta, M.V. Slinchenko, Yu.A. Grygoruk, V.I. |
author_sort |
Maksyuta, M.V. |
title |
The usage of Maxwell fractional equations for the investigation of the waveguide processes |
title_short |
The usage of Maxwell fractional equations for the investigation of the waveguide processes |
title_full |
The usage of Maxwell fractional equations for the investigation of the waveguide processes |
title_fullStr |
The usage of Maxwell fractional equations for the investigation of the waveguide processes |
title_full_unstemmed |
The usage of Maxwell fractional equations for the investigation of the waveguide processes |
title_sort |
usage of maxwell fractional equations for the investigation of the waveguide processes |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2016 |
topic_facet |
Basic plasma |
url |
http://dspace.nbuv.gov.ua/handle/123456789/115329 |
citation_txt |
The usage of Maxwell fractional equations for the investigation of the waveguide processes / M.V. Maksyuta, Yu.A. Slinchenko, V.I. Grygoruk // Вопросы атомной науки и техники. — 2016. — № 6. — С. 108-111. — Бібліогр.: 11 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT maksyutamv theusageofmaxwellfractionalequationsfortheinvestigationofthewaveguideprocesses AT slinchenkoyua theusageofmaxwellfractionalequationsfortheinvestigationofthewaveguideprocesses AT grygorukvi theusageofmaxwellfractionalequationsfortheinvestigationofthewaveguideprocesses AT maksyutamv usageofmaxwellfractionalequationsfortheinvestigationofthewaveguideprocesses AT slinchenkoyua usageofmaxwellfractionalequationsfortheinvestigationofthewaveguideprocesses AT grygorukvi usageofmaxwellfractionalequationsfortheinvestigationofthewaveguideprocesses |
first_indexed |
2025-07-08T08:36:12Z |
last_indexed |
2025-07-08T08:36:12Z |
_version_ |
1837067165649338368 |
fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
108 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 108-111.
THE USAGE OF MAXWELL FRACTIONAL EQUATIONS FOR THE
INVESTIGATION OF THE WAVEGUIDE PROCESSES
M.V. Maksyuta, Yu.A. Slinchenko, V.I. Grygoruk
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
E-mail: maksyuta@univ.kiev.ua
By means of nabla operator written down with using both of some differential operators with integer orders and
fractional differential Caputo operators, gradient, divergence and rotor operators are determined, it is checked up the
fulfillment of vector relations in fractional vector analysis, fractional Green’s, Stocks’ and Ostrogradsky-Gauss’
formulas. For a specific expression of nabla operator (nabla components along х and у axes have a unit order and
along z axis, correspondingly, a fractional value in the interval from zero till unit) Maxwell’s fractional equations
are written down. Based on the following from them some fractional wave equations, dissipative and polarization
processes at electromagnetic waves distribution both in rectangular (planar) and in cylindrical waveguide structures
are analyzed.
PACS: 02.30.Jr; 41.20.Jb; 42.82.Et; 84.40.Az
INTRODUCTION
Some physical investigations last time often use the
methods of fractional integro-differentiation (see, for
example, [1]). Particularly, in periodic press there are
various electrodynamics problems. For example, in [2]
some polarization properties of fractional electric and
magnetic fields are considered, in [3] microwaves
distribution in rectangular waveguides is investigated,
in [4] by means of a fractional wave equation it is made
a theoretical and experimental prove of the fractality of
the propagation of electromagnetic radiation in
absorbing media.
Evidently, these problems (and many others) have to
assume the existence of fractional Maxwell’s equations
which were introduced by Tarasov V.E. (see, for
example, [5]). They may be written down in
parallelepiped : , ,W a x b c y d g z h in
the following way:
1 2
,
rot , , div , 0,W W
H r t
E r t E r t
c t
(1a)
3 4
,
rot , , div , 0,W W
E r t
H r t H r t
c t
(1b)
where the orders k 1,2,3,4k may be both integer
and fractional, , – are correspondingly dielectric and
magnetic permeability. Besides, divW
and rotW
operators are determined in a general way but with the
help of the following nabla operator [5]:
C C C
W x a x y c y z g ze D e D e D , 1n n , (2)
where , , , ,
C
a c g x y zD
– is left-side operators of Caputo’s
fractional derivatives which action on real-value
function of , ,f x y z is written down, for example, by
the value х in the following way [6, 7]:
1
, ,1
, ,
n
xC
a x na
f t y z dt
D f x y z
n x t
. (3)
Note that functions , ,f x y z should have continuous
derivatives up to 1n order and 1n derivatives
should be absolutely continuous, i.е.
, , nf x y z AC W [1, 5].
The given paper shows that the further
generalization of Maxwell equations on the basis of
nabla operator proposed in [8] of so-called mixed orders
can be carry out and the direct consideration of which
follows.
1. NABLA OPERATOR OF MIXED ORDERS
As it was supposed in [8], we write down nabla
operator of so-called mixed orders in the following way:
, ,
,
1 , 1 , 1 .
C C C
x a x y c y z g zW e D e D e D
m m n n p p
(4)
From formula (4) it follows that unlike the
expression (2) the orders of derivatives by the variables
of x, y, z may have unequal arbitrary numerical values
that significantly increase the possibilities of Maxwell’s
equations (1a, b) for receiving different fractional
differential equations. It is also evidently that using
Caputo’s operators in formula (4) in the form of (3), the
scalar functions , ,f x y z (and vector functions of
, ,F x y z as well) should belong to the class of the
functions
max , ,m n p
AC W .
It can be shown that there are following main vector
relations:
, , , ,
Div Grad , ,W W f x y z
ISSN 1562-6016. ВАНТ. 2016. №6(106) 109
2 2 2
, , ,C C C
a x c y g zD D D f x y z
(5a)
, , , ,
Rot Grad , , 0,W W f x y z
(5b)
, , , ,
Div Rot , , 0,W W F x y z
(5c)
, , , , , , , ,
Rot Rot , , Grad Div , ,W W W WF x y z F x y z
2 2 2
, , .C C C
a x c y g zD D D F x y z
(5d).
Let’s define the following integral vector operators
of mixed orders:
, ,
x L y L zL LI e I x e I y e I z
, (6а)
, , , , ,
, , ,x y zS S S SI e I y z e I z x e I x y
. (6b)
Further, analogous to [5] we shall determine with (6а) a
fractional circulation in the form of a fractional linear
integral of the vector field of F along curve L
, ,
L x L y zL LF I x F I y F I z F
, (7а)
a fractional flux of a vector field of F through the
surface S by the help of (6b)
, , , , ,
, , ,x y zS S S SF I y z F I z x F I x y F
, (7b)
triple fractional integral on W region from the scalar
function f :
, ,
, ,L LW LV f I x I y I z f x y z
. (7c)
Note, that in the formulas (7а, b, c) the integral
operators act on the Lebesgue’s measured functions, i.е.
3
1,f F L R [1].
At last, by means of the formulas of (7а, b, c) one
may consequently formulate and prove (similarly to [5])
the fractional theorems of Green, Stocks and
Ostrogradsky-Gauss.
Thus, in the frames of a fractional vector analysis it
was shown that the generalization of nabla operator in
the form (4) is mathematically correct.
2. THE ANALYSIS OF THE PROCESSES IN
RECTANGULAR WAVEGUIDE
STRUCTURES BY USING OF MAXWELL’s
FRACTIONAL EQUATIONS
Let rewrite Maxwell’s equation of (1а, b) for the
case when 2 3 1 , and curl and divergence
operators, correspondingly, in the first and the forth
equations are determined with nabla operator in the
form of
1,1,
0
C
W x y zW e e e D
x y
(here
z , where – is a constant of the propagation,
0 ,0 ,0W x a y b z c ), i.е.
,
rot , , div , 0,W
H r t
E r t E r t
c t
(8a)
,
rot , , div , 0.W
E r t
H r t H r t
c t
(8b)
Acting the operator rot on the first equation of (8а) and
taking into account the second equation of (8а), we get
the following wave equations for Cartesian components
of vector of the electric field intensity , , , ;E x y :
2 2 2
2 2 2
0 , ,2 2 2
0C
x y x yD E n k E
x y
, (9а)
2 2 2
2 2 2
02 2 2
0C
z zD E n k E
x y
, (9b)
where t , k c – a wave number, n –
an indicator of medium refraction.
Now proceed to the solution of the equations (9а,b).
To separate the derivatives of x and y and eliminate a
measureless time , we’ll look for the solution of such
equations in the form
, , , ,, , , ; , expx y z x y zE x y e x y f i
. (10)
After substituting of (10) in (9а, b), we get, first,
Helmholtz equation for ,e x y functions
2
, , , 0x ye x y e x y , methods of solution of
which for the rectangular (in particular, planar)
waveguides with account of various boundary
conditions are set, for example, in [9]. Second, we get
the following fractional wave equations for
, ,x y zf
functions:
0 ,1 0C
x yD f
, (11а)
1 1 0zD f
, (11b)
at solution of which a dispersion equality of
2 2 2 2n k is used (see [9]), and also in (11b) it is
taken into account that 1
0 0
C CD D
[5].
By using of initial conditions
0 1zf
and
0zf i
, that follow from the solution
expzf i of the equation (11b) at 1 , then
the solution (11b) may be presented in the form (see
[10])
1 1
1,1 1,2zf E i E
, (12)
where ,
0
k
k
E x x k
– a Mittag-Leffler
function (see [1]).
110 ISSN 1562-6016. ВАНТ. 2016. №6(106)
One can show that the equation (11а) for functions
,x yf
is equivalent the following nonhomogeneous
Cauchy’s problem for functions
, ,
0
x y x yg f d
:
1
0 ,
, ,
1 ,
0 0, 0 1.
C
x y
x y x y
D g i
g g
(13)
The solution of (13) problem is given by the following
formula [10]:
1
, 1, 1
0
x yg i t E t dt
1
1,2E
. (14)
After integrating in (14) and further differentiation by
, we get:
1 1
, 1,1 1, 1x yf E i E
. (15)
It is easy to prove that at 1 the solutions of (12) and
(15) transit into the function of exp i .
Note that for the magnetic field a z-component is
proportional to the function of (15), and х- and у-
components correspondingly to the function of (12).
1
0
1.0
0.5
0.0
(), a. u.
5 10 , a. u.
2
3
-0.5
0.0
(), rad
5 10
, a. u.
1
2
3
-0.4
-0.3
-0.2
-0.1
a b
The dependences of a relative coordinate of at
0,8;0,9;1 of the coefficient of a power fading
of – (a), phases difference of between a
longitudinal and a transverse components of electric
and magnetic fields – (b)
Let’s use now the obtained solutions for the
investigation of dissipative and polarization processes.
As it follows from Umov-Pointing theorem the
expression for a mean flux of an active power going
through cut S of a rectangular waveguide structure
equals [9]
Re ,
8 S z
c
P E H dS
,0 Re x y zP f f
, (16)
i.e. a power fading coefficient with a distance is
determined by the following formula:
2 1
1,1
0
P
E
P
1 1 1
1,2 1, 1E E
. (17)
In Figure there are graphs the function (17) at
0,8;0,9;1 . Besides, in Fig. 1b there are graphs of
phase shifts of ,arg argz x yf f
between longitudinal and transverse components of
electric and magnetic fields (it means that by means of
fractional fields one may study some polarization
phenomena).
3. THE INVESTIGATION OF
ELECTROMAGNETIC RADIATION
DISTRIBUTION IN CYLINDRICAL
WAVEGUIDE STRUCTURES BY MEANS OF
A FRACTIONAL WAVE EQUATION
Based on the fact that nabla operator W
in a
cylindrical coordinate system is written down as
1,1,
0
C
W zW e e e D
, (18)
one may get the following wave equations for the
transverse , ,, , , ;E H and longitudinal
, , , ;z zE H components of electric and
magnetic fields:
2
2 2 2
0 ,2 2
1
, 0C
zD n k E H
,(19а)
2
2 1 2 2
0 ,2
, 0C
zD n k E H
, (19b)
where – a radial part of Laplacе’s
operator in cylindrical coordinates (equations (19а, b)
are written down for the case of axis symmetric modes
distribution in a cylindrical region of
: ,0W a z с ).
Evidently that solution of (19а, b) equations are
found in accordance with an algorithm used in previous
paragraph. Writing down the solutions of these
equations in the form
, ,, , , ; , expz zE H e h r i
,
, ,, , , ; , expz zE H e h s i
,
we get that r function is given by the expression
(15) and s function by the expression (12),
accordingly. It means that the fading function in this
case coincides with the expression (17) (polarization
characteristics are analyzed analogically as well).
In the conclusion note that by means of this
mathematical formalism in [11] it was studied the
distribution of electromagnetic radiation in optical
waveguides.
ISSN 1562-6016. ВАНТ. 2016. №6(106) 111
CONCLUSIONS
Thus, on the basis of introducing a new nabla
operator of so-called mixed orders (as it was shown, not
contradicting a fractional vector analysis) there were got
mathematically strict fractional wave equations of
fractional Maxwell equations. It was shown that using
of these equations to rectangular and cylindrical
waveguide structures allows to study their dissipative
and polarization characteristics.
At last, one may do the assumption that there must
be some geometric ways of a fractional derivative
indicator definition (then the problems of similar type
will be mathematically and physically closed).
REFERENCES
1. S.G. Samko, А.А. Kilbas, O.I. Marichev. The
integrals and derivatives of an arbitrary fractional
order and some of their applications. Minsk: “Nauka i
tekhnika”. 1987 (in Russian).
2. M.V. Ivakhnichenko. Polarization properties of
fractional fields // Radiopfysics and Electronics. 2007,
v. 12, № 2, p. 328-334.
3. A. Hussain, S. Ishfaq, and Q.A. Naqvi. Fractional
curl operator and fractional waveguides // PIER. 2006,
v. 63, p. 319-335.
4. N.V. Maksyuta, O.I Barchuk, T.V. Rodionova,
L.N. Maksyuta. Theoretical and experimental grounds
of electromagnetic radiation fractality // Poverkhnost.
2008, № 4, p. 1-7 (in Russian).
5. V.E. Tarasov. The models of theoretical physics with
an integro-differentiation of a fractional order.
Мoscow: “Izhevsk”: Izhevsky Institute of computer
investigations, 2011 (in Russian).
6. M. Caputo, F. Mainardi. Linear models of dissipation
in inelastic solids. Riv Nuovo Cimento, Ser II. 1971,
v. 1, p. 161-198.
7. K.B. Oldham, J. Spanier. The fractional calculus.
New York: “London”, Academic Press. 1974.
8. M.V. Мaksyuta, V.I. Grygoruk, Yu.A. Slinchenko.
Mexed order Maxwell equations in electrodynamics
// Proceedings of the VIII International Conference
“Electronics and applied physics”, Taras Shevchenko
National University of Kyiv Faculty of Radio Physics,
24-27 October, Kyiv (Ukraine). 2012, p. 183-184.
9. A. Snider, J. Lav. The theory of optical waveguides.
Moscow: “Radio i svyaz”, 1987, p. 656 (in Russian).
10. A.A. Kilbas, H.M. Srivastav, J.J. Trujillo. Theory
and applications of fractional differential equations.
Amsterdam: “Elsevier”, 2006.
11. Yu.A. Slinchenko. The usage of Helmholtz equation
of fractional order for the description of electromagnetic
radiation distribution in optical waveguides // Visnyk of
Taras Shevchenko National University of Kyiv. 2013,
Issue 4, p. 197-200 (in Ukrainian).
Article received 30.09.2016
ИСПОЛЬЗОВАНИЕ ДРОБНЫХ УРАВНЕНИЙ МАКСВЕЛЛА ДЛЯ ИССЛЕДОВАНИЯ
ВОЛНОВОДНЫХ ПРОЦЕССОВ
Н.В. Максюта, Ю.А. Слинченко, В.И. Григорук
С помощью оператора набла, записанного с одновременным использованием как дифференциальных
операторов с целочисленными порядками, так и дробных дифференциальных операторов Капуто,
определяются операторы градиента, дивергенции и ротора, проверяется выполнимость векторных
соотношений дробного векторного анализа, дробных формул Грина, Стокса и Остроградского-Гаусса. Для
конкретного выражения оператора наблы (компоненты наблы вдоль осей х и у имеют единичный порядок, а
вдоль оси z, соответственно, дробное значение в интервале от нуля до единицы) записываются дробные
уравнения Максвелла. На основе следующих из них дробных волновых уравнений анализируются
диссипативные и поляризационные процессы при распространении электромагнитных волн как в
прямоугольных (планарных), так и в цилиндрических волноводных структурах.
ВИКОРИСТАННЯ ДРОБОВИХ РІВНЯНЬ МАКСВЕЛЛА ДЛЯ ДОСЛІДЖЕННЯ ХВИЛЕВОДНИХ
ПРОЦЕСІВ
М.В. Максюта, Ю.А. Слінченко, В.І. Григорук
За допомогою оператора набли, записаного за одночасного використання як диференціальних операторів
з цілочисельними порядками, так і дробових диференціальних операторів Капуто, визначаються оператори
градієнта, дивергенції та ротора, перевіряється виконуваність векторних співвідношень дробового
векторного аналізу, дробових формул Гріна, Стокса та Остроградського-Гауса. Для конкретного виразу
оператора набли (складові набли уздовж осей х та у мають одиничний порядок, а уздовж осі z, відповідно,
дробове значення в інтервалі від нуля до одиниці) записуються дробові рівняння Максвелла. На основі
випливаючих із них дробових хвильових рівнянь аналізуються дисипативні та поляризаційні процеси при
розповсюдженні електромагнітних хвиль як у прямокутних (планарних), так і в циліндричних хвилеводних
структурах.
|