Normal mode of dc discharge in argon, hydrogen and oxygen
This paper reports the current-voltage characteristics and the j/p²similarity parameter determination in argon, hydrogen and oxygen in the pressure range from 0.1 to 10 Torr. Experiments have been performed in the discharge tube of 56 mm inner diameter and with stainless steel electrodes. Anode diam...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/115434 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Normal mode of dc discharge in argon, hydrogen and oxygen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 223-226. — Бібліогр.: 21 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-115434 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1154342017-04-05T03:02:24Z Normal mode of dc discharge in argon, hydrogen and oxygen Lisovskiy, V.A. Artushenko, K.P. Yegorenkov, V.D. Low temperature plasma and plasma technologies This paper reports the current-voltage characteristics and the j/p²similarity parameter determination in argon, hydrogen and oxygen in the pressure range from 0.1 to 10 Torr. Experiments have been performed in the discharge tube of 56 mm inner diameter and with stainless steel electrodes. Anode diameter was 55 mm whereas the diameters of the cathodes employed were 55 and 12 mm. The j/² parameter has been shown to remain constant only at the gas pressure above 1 Torr. Its values comprise j/p²= (0.092 ±0.02) mA/(cm² ∙Torr² ) for argon, j/p²= (0.072 ±0.02) mA/(cm² ∙Torr² ) for hydrogen and j/p ² = (0.33 ±0.05) mA/(cm² ∙Torr² ) for oxygen. On lowering the pressure (below 1 Torr) the j/p²parameter grows fast and at the pressure of 0.1 Torr it may be two orders of magnitude higher than one at 1 Torr. Были измерены вольт-амперные характеристики и определены величины параметра подобия j/p² в аргоне, водороде и кислороде в диапазоне давлений газа 0,1…10 Торр. Эксперименты проведены в разрядной трубке с внутренним диаметром 56 мм и электродами из нержавеющей стали. Диаметр анода был 55 мм, в то время как диаметры используемых катодов были равны 55 и 12 мм. Показано, что j/p ²сохраняется постоянным только при давлениях газа выше 1 Торр. При этом j/p 2 = (0,092 ±0,02) мА/(cм² ∙Toрр²) для аргона, j/p² = (0,072 ±0,02) мA/(cм² ∙Toрр²) для водорода и j/p² = (0,33 ±0,05) мA/(cм²∙Toрр² ) для кислорода. При понижении давления (ниже 1 Toрр) j/p² быстро возрастает, и при давлении 0,1 Toрр j/p² может быть на два порядка выше, чем при 1 Toрр. Були виміряні вольт-амперні характеристики та визначено величини параметра подібності j/p² в аргоні, водні та кисні в діапазоні тиску газу 0,1…10 Торр. Експерименти проведені в розрядної трубці з внутрішнім діаметром 56 мм і електродами з нержавіючої сталі. Діаметр анода був 55 мм, в той час як діаметри катодів, що використовуються, були рівні 55 і 12 мм. Показано, що j/p 2 зберігається постійним тільки при тиску газу вище 1 Торр. При цьому j/p² = (0,092 ±0,02) мА/( cм²∙Toрр²) для аргону, j/p² = (0,072 ±0,02) мA/( cм²∙Toрр²) для водню j/p² = (0,33 ±0,05) мA/(cм² ∙Toрр² ) для кисню. При зниженні тиску (нижче 1 Toрр) j/p² швидко зростає, і при тиску 0,1 Toрр j/p² може бути на два порядки вище, ніж при 1 Toрр. Нормальний режим тліючого розряду в аргоні, водні та кисні. 2016 Article Normal mode of dc discharge in argon, hydrogen and oxygen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 223-226. — Бібліогр.: 21 назв. — англ. 1562-6016 PACS: 52.80.Hc http://dspace.nbuv.gov.ua/handle/123456789/115434 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Lisovskiy, V.A. Artushenko, K.P. Yegorenkov, V.D. Normal mode of dc discharge in argon, hydrogen and oxygen Вопросы атомной науки и техники |
description |
This paper reports the current-voltage characteristics and the j/p²similarity parameter determination in argon, hydrogen and oxygen in the pressure range from 0.1 to 10 Torr. Experiments have been performed in the discharge tube of 56 mm inner diameter and with stainless steel electrodes. Anode diameter was 55 mm whereas the diameters of the cathodes employed were 55 and 12 mm. The j/² parameter has been shown to remain constant only at the gas pressure above 1 Torr. Its values comprise j/p²= (0.092 ±0.02) mA/(cm² ∙Torr² ) for argon, j/p²= (0.072 ±0.02) mA/(cm² ∙Torr² ) for hydrogen and j/p ² = (0.33 ±0.05) mA/(cm² ∙Torr² ) for oxygen. On lowering the pressure (below 1 Torr) the j/p²parameter grows fast and at the pressure of 0.1 Torr it may be two orders of magnitude higher than one at 1 Torr. |
format |
Article |
author |
Lisovskiy, V.A. Artushenko, K.P. Yegorenkov, V.D. |
author_facet |
Lisovskiy, V.A. Artushenko, K.P. Yegorenkov, V.D. |
author_sort |
Lisovskiy, V.A. |
title |
Normal mode of dc discharge in argon, hydrogen and oxygen |
title_short |
Normal mode of dc discharge in argon, hydrogen and oxygen |
title_full |
Normal mode of dc discharge in argon, hydrogen and oxygen |
title_fullStr |
Normal mode of dc discharge in argon, hydrogen and oxygen |
title_full_unstemmed |
Normal mode of dc discharge in argon, hydrogen and oxygen |
title_sort |
normal mode of dc discharge in argon, hydrogen and oxygen |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2016 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/115434 |
citation_txt |
Normal mode of dc discharge in argon, hydrogen and oxygen / V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 223-226. — Бібліогр.: 21 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT lisovskiyva normalmodeofdcdischargeinargonhydrogenandoxygen AT artushenkokp normalmodeofdcdischargeinargonhydrogenandoxygen AT yegorenkovvd normalmodeofdcdischargeinargonhydrogenandoxygen |
first_indexed |
2025-07-08T08:46:12Z |
last_indexed |
2025-07-08T08:46:12Z |
_version_ |
1837067802631995392 |
fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 223-226. 223
NORMAL MODE OF DC DISCHARGE IN ARGON, HYDROGEN
AND OXYGEN
V.A. Lisovskiy
1,2
, K.P. Artushenko
1
, V.D. Yegorenkov
1
1
V.N. Karazin Kharkiv National University, Kharkov, Ukraine;
2
Scientific Center of Physical Technologies, Kharkov, Ukraine
E-mail: lisovskiy@yahoo.com
This paper reports the current-voltage characteristics and the j/p
2
similarity parameter determination in argon,
hydrogen and oxygen in the pressure range from 0.1 to 10 Torr. Experiments have been performed in the discharge
tube of 56 mm inner diameter and with stainless steel electrodes. Anode diameter was 55 mm whereas the diameters
of the cathodes employed were 55 and 12 mm. The j/p
2
parameter has been shown to remain constant only at the gas
pressure above 1 Torr. Its values comprise j/p
2
= (0.092 0.02) mA/(cm
2
∙Torr
2
) for argon,
j/p
2
= (0.072 0.02) mA/(cm
2
∙Torr
2
) for hydrogen and j/p
2
= (0.33 0.05) mA/(cm
2
∙Torr
2
) for oxygen. On lowering
the pressure (below 1 Torr) the j/p
2
parameter grows fast and at the pressure of 0.1 Torr it may be two orders of
magnitude higher than one at 1 Torr.
PACS: 52.80.Hc
INTRODUCTION
Direct current glow discharge is widely employed in
a multitude of technological processes and devices, e.g.
for pumping gas discharge lasers [1], in the processes of
plasma nitriding [2], in xenon and mercury high
pressure lamps [3], surge protectors / transient voltage
surge suppressors [4], for plasma sterilization of
medical instruments and equipment [5] etc. Therefore a
considerable attention is devoted to studying the modes
of existence and the processes in different parts of the
discharge [6-15].
The dc glow discharge may exist in two different
modes [6, 7, 16-21]. In the normal mode the discharge
spot occupies only a part of the cathode surface (Fig. 1),
and increasing the current is accompanied by the growth
of the area occupied by the discharge on the cathode.
Conventionally it is assumed that the ratio of the current
density to the gas pressure squared j/p
2
and the voltage
drop across the cathode sheath remain constant in the
normal mode [6, 7]. When the cathode surface is
completely covered with the plasma the discharge
experiences a transition to the abnormal mode in which
the current through the discharge and the voltage drop
across the electrodes increase simultaneously.
However it has been demonstrated in experiment in
papers [19, 20] that the similarity parameter j/p
2
in the
normal mode experiences weak changes only at the
sufficiently high gas pressure whereas lowering the
pressure entails the remarkable j/p
2
growth. Note that
these data have been obtained for nitrogen [19] and N2O
[20]. It is of interest to study the j/p
2
similarity
parameter behavior in other gases in low as well as high
pressure values.
In this paper we report the current voltage
characteristics (CVC) measurements and the similarity
parameter j/p
2
determination in argon, hydrogen and
oxygen in a wide range of gas pressure values.
1. EXPERIMENTAL
Experiments have been performed in the discharge tube
of 56 mm inner diameter equipped with the stainless
steel electrodes. The anode diameter was 55 mm
whereas the diameter of the cathodes used were equal
to 55 and 12 mm. The cathode of larger diameter has
permitted to study the normal mode of the glow
discharge at low pressure from 0.1 Torr to several Torr.
The cathode of smaller diameter has been employed
with the gas pressure above 1 Torr. The inter-electrode
distance amounted to 10 mm. The discharge chamber
design is shown in Fig. 2. Experiments have been
performed at the pressure of argon, hydrogen and
oxygen p = 0.05…10 Torr in the range of constant
voltage U 3000 V. The gas pressure has been
measured with the capacitive manometer-baratron with
the maximum registered value of 10 Torr.
2. EXPERIMENTAL RESULTS
One clearly observes on the current-voltage
characteristics we have measured the part with the
negative tilt corresponding to the normal mode of the
glow discharge (Fig. 3). After the discharge have
covered the total cathode surface a further current
Fig. 1. The image of the glow discharge in the normal
mode
224 ISSN 1562-6016. ВАНТ. 2016. №6(106)
400 500 600 700 800 900
1
10
100
I,
m
A
U, V
2 Torr
I
n
Fig. 4. Current-voltage characteristics of the discharge
in hydrogen at the pressure of 2 Torr
growth is possible only under a higher ionization in the
cathode sheath, therefore the current-voltage
characteristic assumes a positive tilt, i.e. the growth of
the discharge current is accompanied by the increase of
the voltage across the electrodes. A transition between
the parts with a negative and a positive tilt (namely, the
transition from the normal model to the abnormal one)
is observed at the moment of the complete covering the
cathode surface by the discharge in the normal mode. In
this case we know the area the normal discharge
occupies on the cathode and we can determine the
normal current density dividing the magnitude of the
total current In (shown in Fig. 4) by the cathode area.
Fig. 3 shows quite clear that in the total gas pressure
range studied the current-voltage characteristics contain
a part with the normal mode when the cathode surface is
partially covered by the discharge. At low pressure the
discharge consists only of the cathode sheath and the
negative glow (across which the voltage drop is small),
therefore almost all voltage drop applied across the
electrodes is concentrated in the cathode sheath. From
Fig.3 it follows that at low pressure the voltage drop
across the cathode sheath in the normal mode is large
and it decreases with the gas pressure growing. At the
same time it is not conserved what is in contradiction
with the notion of the constancy of the normal cathode
voltage drop. At the hydrogen pressure of 3 Torr the
normal cathode voltage drop achieves the minimum
value of 424 V. Further increasing the gas pressure
leads to the appearance of the additional new parts of
the glow discharge, namely, the dark Faraday space
(with the small voltage drop across it) аs well as the
anode glow and the positive column across which the
voltage drop may achieve considerable values.
Therefore at high gas pressure values one can no longer
claim that the voltage drop across the cathode sheath is
approximately equal to the voltage across the electrodes.
Respectively, the smallest voltage at which the
discharge burning is possible increases with the gas
pressure growth.
Conventional textbook on gas discharge [6, 7] claim
that with the gas pressure fixed the normal current
density has to be conserved and the ratio of the normal
current density to the gas pressure squared j/p
2
is one of
the similarity parameters that also has to be constant.
However the present paper demonstrates that the j/p
2
ratio remains to be constant only at sufficiently high gas
pressure values (Fig. 5). At the hydrogen pressure
values above 1.5 Torr we obtain for the normal mode
j/p
2
= (0.072 0.02) mA/(cm
2
∙Torr
2
). But with the
pressure lowering (below 1 Torr) the quantity j/p
2
experiences a fast growth and at the pressure of 0.3 Torr
this quantity j/p
2
approaches 26 mA/(cm
2
∙Torr
2
), and
this value is almost 400 times higher that the similarity
parameter j/p
2
for high hydrogen pressure. Such a
behavior of the similarity parameter j/p
2
may be
attributed to the charged particles loss from the plasma
column in the normal mode due to ambipolar diffusion
as well as to the enhanced escape of fast electrons
(having left the cathode surface or produced in the
cathode sheath and acquired a considerable energy
while moving in this sheath) to the anode in the case of
narrow gaps between the electrodes and low gas
pressure. The ambipolar diffusion coefficient as well as
the length of electron flight through a gas (the
relaxation length of the energy of fast electrons) are
inversely proportional to its pressure. Therefore at low
pressure the ambipolar escape of charged particles and
sweeping of fast electrons to the anode are large, and
for supporting a stationary discharge burning both the
voltage across the electrodes and the current density
grow. At high pressure the loss of charged particles
decreases, the similarity parameter j/p
2
approaches
saturation and ceases to depend on gas pressure.
Fig. 2. The design of the experimental device
500 1000 1500 2000 25003000
1
10
100
I,
m
A
U, V
P0.3Torr
P0.4Torr
P0.5Torr
P0.6Torr
P0.8Torr
P1Torr
P1.5Torr
P3Torr
P5Torr
P10Torr
Fig. 3. Current-voltage characteristics of the discharge in
hydrogen at different gas pressure values with the cathode
of 55 mm in diameter
ISSN 1562-6016. ВАНТ. 2016. №6(106) 225
A similar behavior of the normal current density has
been observed also for other gases we studied. So for
the pressure above 1 Torr the similarity ratio is
j/p
2
= (0.33 0.05( mA/(cm
2
∙Torr
2
) for oxygen (Fig. 6),
and for argon we get j/p
2
= (0.092 0.02) mA/(cm
2
∙Torr
2
)
(Fig. 7). But at still lower pressure the similarity
parameter j/p
2
becomes tens and hundreds times higher
than one at high pressure.
CONCLUSIONS
This paper is devoted to studying the normal mode
of the glow discharge in hydrogen, oxygen and argon.
The current-voltage characteristics have been measured
from which the ratio of the current density to the gas
pressure squared j/p
2
has been determined. It has been
found that the j/p
2
ratio is conserved only at a
sufficiently high gas pressure (approximately above 1
Torr). At such pressure values the similarity parameter
for the normal mode is equal to
j/p
2
= (0.092 0.02) mA/(cm
2
∙Torr
2
) for argon,
j/p
2
= (0.072 0.02) mA/(cm
2
∙Torr
2
) for hydrogen and
j/p
2
= (0.33 0.05) mA/(cm
2
∙Torr
2
) for oxygen.
However at lower pressure values the j/p
2
parameter
experiences a fast increase and it approaches the values
tens and hundreds of times higher than those for high
pressure. This phenomenon may be caused by an
enhanced escape of fast electrons to the anode for the
case of low gas pressure and narrow gaps as well as by
the loss of charged particles out of the normal mode
plasma column due to ambipolar diffusion.
REFERENCES
1. M. Endo, R.F. Walter. Gas lasers / Edited by CRC
Press: “Taylor & Francis Group”, Boca Raton, FL.
2007, 556 p.
2. M. Berg, C.V. Budtz-Jørgensen, H. Reitz,
K.O. Schweitz, J. Chevallier, P. Kringhøj, J. Bøttiger.
On plasma nitriding of steels // Surface and Coatings
Technology. 2000, v. 124, № 1, p. 25-31.
3. S. Kitsinelis Light sources: technologies and
applications. CRC Press: “Taylor and Francis Group”,
Boca Raton, FL. 2011, 234 p.
4. C. David Miller. Surge protector. US Patent 9190829
B2, 2015.
5. I.A. Soloshenko, V.V. Tsiolko, V.A. Khomich,
V.Yu. Bazhenov, A.V. Ryabtsev, A.I. Schedrin,
I.L. Mikhno. Features of sterilization using low-pressure
DC-discharge hydrogen-peroxide plasma // IEEE
Transactions on Plasma Science. 2002, v. 30, № 4,
p. 1440-1444.
6. Y.P. Raizer. Gas Discharge Physics. Berlin:
„Springer“, 1991.
7. M.A. Lieberman, A.J. Lichtenberg. Principles of
Plasma Discharges and Materials Processing / Second
Edition. Hoboken. NJ: “Wiley”, 2005.
8. V.A. Lisovskiy, S.D. Yakovin. A modified Paschen
law for the initiation of a DC glow discharge in inert
gases // Technical Physics. 2000, v. 45, p. 727.
9. V.A. Lisovskiy, S.D. Yakovin. Scaling Law for a
Low-Pressure Gas Breakdown in a Homogeneous DC
Electric Field // JETP Letters, 2000, v. 72, № 2, p. 34-
37.
10. V.A. Lisovskiy, V.A. Koval, V.D. Yegorenkov. Dc
breakdown of low pressure gas in long tubes // Physics
Letters A. 2011, v. 375, № 19, p. 1986-1989.
11. V.A. Lisovskiy, K.P. Artushenko, V.D. Yegorenkov.
Inter-electrode distance effect on dc discharge
characteristics in nitrogen // Problems of Atomic Science
and Technology. 2015, №4, p. 202-205.
0,1 1 10
0,01
0,1
1
10 H
2
D
c
= 12 mm
D
c
= 55 mm
J/
p
2
,
m
A
/(
cm
2
T
o
rr
2
)
p, Torr
Fig. 5. Similarity parameter j/p
2
versus hydrogen
pressure p with the cathodes of 55 and 12 mm
in diameter
0,1 1 10
0,1
1
10
100
J/
p
2
,
m
A
/(
cm
2
T
o
rr
2
)
p, Torr
O
2
D
e
= 55 mm
D
e
= 12 mm
Fig. 6. Similarity parameter j/p
2
versus oxygen
pressure p with the cathodes of 55 and 12 mm
in diameter
0,1 1 10
0,01
0,1
1
10
J/
p
2
,
m
A
/c
m
2
T
o
rr
2
p, Torr
Ar, L = 10 mm
D
c
= 55 mm
D
c
= 12 mm
Fig. 7. Similarity parameter j/p
2
versus argon
pressure p with the cathodes of 55 and 12 mm
in diameter
226 ISSN 1562-6016. ВАНТ. 2016. №6(106)
12. V.A. Lisovskiy, E.P. Artushenko, V.D. Yegorenkov.
Calculating reduced electric field in diffusion regime of
dc discharge positive column // Problems of Atomic
Science and Technology. 2015, № 1, p. 205-208.
13. V.A. Lisovskiy, K.P. Artushenko, and
V.D. Yegorenkov. Reduced electric field in the positive
column of the glow discharge in argon // Vacuum. 2015,
v. 122, p. 75-81 (in Russian).
14. V.A. Lisovskiy, E.P. Artushenko and
V.D. Yegorenkov. Simple model of reduced electric
field in ambipolar regime of dc discharge positive
column in hydrogen // J. Plasma Physics. 2015, v. 81,
p. 905810312.
15. E.A. Bogdanov, S.F. Adams, V.I. Demidov,
A.A. Kudryavtsev, J.M. Williamson. Influence of the
transverse dimension on the structure and properties of
dc glow discharges // Physics of Plasmas. 2010, v. 17,
№ 10, p. 103502.
16. A. Engel, K.G. Emeleus, M. Kennedy. Radial
coherence of the normal glow discharge / A. Engel,
K.G. Emeleus, M. Kennedy // Physics Letters A. 1972,
v. 42, № 3, p. 191-192.
17. V.A. Lisovskiy, S.D. Yakovin. Experimental Study
of a Low-Pressure Glow Discharge in Air in Large-
Diameter Discharge Tubes // Plasma Physics Reports.
2000, v. 26, № 12, p 1066-1075.
18. V.A. Lisovskiy, S.D. Yakovin. Cathode Layer
Characteristics of a Low-Pressure Glow Discharge in
Argon and Nitrogen // Technical Physics Letters. 2000,
v. 26, № 10, p. 891-893.
19. V.A. Lisovskiy, N.D. Kharchenko, R.N. Fateev.
Normal mode of the dc discharge in low pressure
nitrogen // The Journal of Kharkov National University.
Series: "Nuclei, Particles, Fields". 2009, № 4, p. 75-83.
20. V.A. Lisovskiy, E.P. Artushenko, V.A. Derevyanko,
V.D. Yegorenkov. Normal and abnormal regimes of dc
discharge burning in N2O // Problems of Atomic Science
and Technology. 2013, № 1 (83), p. 210-212.
21. G. Cicala, E. Tommaso, A.S. Raino,
Yu.A. Lebedev, V.A. Shakhatov. Study of positive
column of glow discharge in nitrogen by optical
emission spectroscopy and numerical simulation //
Plasma Sourses Sci. Technol. 2009, v. 18, № 2,
p. 025032.
Article recived 28.09.2016
НОРМАЛЬНЫЙ РЕЖИМ ТЛЕЮЩЕГО РАЗРЯДА В АРГОНЕ, ВОДОРОДЕ И КИСЛОРОДЕ
В.А. Лисовский, Е.П. Артюшенко, В.Д. Егоренков
Были измерены вольт-амперные характеристики и определены величины параметра подобия j/p
2
в
аргоне, водороде и кислороде в диапазоне давлений газа 0,1…10 Торр. Эксперименты проведены в
разрядной трубке с внутренним диаметром 56 мм и электродами из нержавеющей стали. Диаметр анода был
55 мм, в то время как диаметры используемых катодов были равны 55 и 12 мм. Показано, что j/p
2
сохраняется постоянным только при давлениях газа выше 1 Торр. При этом
j/p
2
= (0,092 0,02) мА/(cм
2
∙Toрр
2
) для аргона, j/p
2
= (0,072 0,02) мA/(cм
2
∙Toрр
2
) для водорода и
j/p
2
= (0,33 0,05) мA/(cм
2
∙Toрр
2
) для кислорода. При понижении давления (ниже 1 Toрр) j/p
2
быстро
возрастает, и при давлении 0,1 Toрр j/p
2
может быть на два порядка выше, чем при 1 Toрр.
НОРМАЛЬНИЙ РЕЖИМ ТЛІЮЧОГО РОЗРЯДУ В АРГОНІ, ВОДНІ ТА КИСНІ
В.О. Лісовський, К.П. Артюшенко, В.Д. Єгоренков
Були виміряні вольт-амперні характеристики та визначено величини параметра подібності j/p
2
в аргоні,
водні та кисні в діапазоні тиску газу 0,1…10 Торр. Експерименти проведені в розрядної трубці з внутрішнім
діаметром 56 мм і електродами з нержавіючої сталі. Діаметр анода був 55 мм, в той час як діаметри катодів,
що використовуються, були рівні 55 і 12 мм. Показано, що j/p
2
зберігається постійним тільки при тиску газу
вище 1 Торр. При цьому j/p
2
= (0,092 0,02) мА/(cм
2
∙Toрр
2
) для аргону, j/p
2
= (0,072 0,02) мA/(cм
2
∙Toрр
2
)
для водню та j/p
2
= (0,33 0,05) мA/(cм
2
∙Toрр
2
) для кисню. При зниженні тиску (нижче 1 Toрр) j/p
2
швидко
зростає, і при тиску 0,1 Toрр j/p
2
може бути на два порядки вище, ніж при 1 Toрр.
|