Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method
Cr-Al-N coatings deposited from the vacuum-arc plasma source with rectilinear macroparticle filter were investigated. Influence of the amplitude of pulsed substrate bias potential in the range of 0…2500 V on the structure and mechanical properties of the coatings was studied. It is found that in a...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , , , , , , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/115454 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method / V.V. Vasyliev, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strel’nitskij, B. Lorentz,S. Reichert, V. Zavaleyev, J. Walkowicz, M. Sawczak // Вопросы атомной науки и техники. — 2016. — № 6. — С. 244-247. — Бібліогр.: 9 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-115454 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1154542017-04-06T03:02:38Z Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method Vasyliev, V.V. Luchaninov, A.A. Reshetnyak, E.N. Strel’nitskij, V.E. Lorentz, B. Reichert, S. Zavaleyev, V. Walkowicz, J. Sawczak, M. Low temperature plasma and plasma technologies Cr-Al-N coatings deposited from the vacuum-arc plasma source with rectilinear macroparticle filter were investigated. Influence of the amplitude of pulsed substrate bias potential in the range of 0…2500 V on the structure and mechanical properties of the coatings was studied. It is found that in all coatings formed solid solution of (Cr, Al)N with a cubic structure type NaCl. High voltage pulsed potential bias causes formation of the coatings structure with fine grains (6…7 nm) and strong axial texture [110]. Residual compressive stress varies nonmonotonously from 2 to 7 GPa when the amplitude of the pulses increases. The coatings are characterized by high hardness 30…36 GPa, the surface roughness at the level of 40…50 nm and a low friction coefficient, which allows their use as protective coatings for tools and friction units Исследованы Cr-Al-N-покрытия, осаждённые из источника вакуумно-дуговой плазмы с прямолинейным фильтром. Изучено влияние амплитуды импульсного потенциала подложки в диапазоне 0…2500 В на структуру и механические характеристики покрытий. Установлено, что во всех покрытиях формируется твёрдый раствор (Cr, Al)N с кубической структурой типа NaCl. Подача высоковольтного импульсного по- тенциала смещения вызывает формирование структуры покрытий с мелкими зёрнами 6…7 нм и сильной аксиальной текстурой [110]. С ростом амплитуды импульсов остаточные напряжения сжатия немонотонно изменяются в пределах от 2 до 7 ГПа. Покрытия характеризуются высокой твёрдостью 30…36 ГПа, шерохо- ватостью поверхности на уровне 40…50 нм и низким коэффициентом трения, что позволяет использовать их в качестве защитных покрытий для инструмента и узлов трения. Досліджено Cr-Al-N-покриття, осаджені з джерела вакуумно-дугової плазми з прямолінійним фільтром. Вивчено вплив амплітуди імпульсного потенціалу підкладки в діапазоні 0…2500 В на структуру та механіч- ні характеристики покриттів. Встановлено, що в усіх покриттях формується твердий розчин (Cr, Al)N з кубі- чної структурою типу NaCl. Подача високовольтного імпульсного потенціалу зміщення викликає форму- вання структури покриттів з дрібними зернами 6…7 нм і сильною аксиальной текстурою [110]. З ростом амплітуди імпульсів залишкові напруження стиску немонотонно змінюються в межах від 2 до 7 ГПа. Пок- риття характеризуються високою твердістю 30…36 ГПа, шорсткістю поверхні на рівні 40…50 нм і низьким коефіцієнтом тертя, що дозволяє використовувати їх в якості захисних покриттів для інструменту і вузлів тертя. 2016 Article Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method / V.V. Vasyliev, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strel’nitskij, B. Lorentz,S. Reichert, V. Zavaleyev, J. Walkowicz, M. Sawczak // Вопросы атомной науки и техники. — 2016. — № 6. — С. 244-247. — Бібліогр.: 9 назв. — англ. 1562-6016 PACS: 81.15.-z, 81.05.uj http://dspace.nbuv.gov.ua/handle/123456789/115454 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Vasyliev, V.V. Luchaninov, A.A. Reshetnyak, E.N. Strel’nitskij, V.E. Lorentz, B. Reichert, S. Zavaleyev, V. Walkowicz, J. Sawczak, M. Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method Вопросы атомной науки и техники |
description |
Cr-Al-N coatings deposited from the vacuum-arc plasma source with rectilinear macroparticle filter were investigated.
Influence of the amplitude of pulsed substrate bias potential in the range of 0…2500 V on the structure and
mechanical properties of the coatings was studied. It is found that in all coatings formed solid solution of (Cr, Al)N
with a cubic structure type NaCl. High voltage pulsed potential bias causes formation of the coatings structure
with fine grains (6…7 nm) and strong axial texture [110]. Residual compressive stress varies nonmonotonously
from 2 to 7 GPa when the amplitude of the pulses increases. The coatings are characterized by high hardness
30…36 GPa, the surface roughness at the level of 40…50 nm and a low friction coefficient, which allows their
use as protective coatings for tools and friction units |
format |
Article |
author |
Vasyliev, V.V. Luchaninov, A.A. Reshetnyak, E.N. Strel’nitskij, V.E. Lorentz, B. Reichert, S. Zavaleyev, V. Walkowicz, J. Sawczak, M. |
author_facet |
Vasyliev, V.V. Luchaninov, A.A. Reshetnyak, E.N. Strel’nitskij, V.E. Lorentz, B. Reichert, S. Zavaleyev, V. Walkowicz, J. Sawczak, M. |
author_sort |
Vasyliev, V.V. |
title |
Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method |
title_short |
Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method |
title_full |
Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method |
title_fullStr |
Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method |
title_full_unstemmed |
Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method |
title_sort |
structure and properties of the (cr, al)n coatings deposited by piii&d method |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2016 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/115454 |
citation_txt |
Structure and properties of the (Cr, Al)N coatings deposited by PIII&D method / V.V. Vasyliev, A.A. Luchaninov, E.N. Reshetnyak, V.E. Strel’nitskij, B. Lorentz,S. Reichert, V. Zavaleyev, J. Walkowicz, M. Sawczak // Вопросы атомной науки и техники. — 2016. — № 6. — С. 244-247. — Бібліогр.: 9 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT vasylievvv structureandpropertiesofthecralncoatingsdepositedbypiiidmethod AT luchaninovaa structureandpropertiesofthecralncoatingsdepositedbypiiidmethod AT reshetnyaken structureandpropertiesofthecralncoatingsdepositedbypiiidmethod AT strelnitskijve structureandpropertiesofthecralncoatingsdepositedbypiiidmethod AT lorentzb structureandpropertiesofthecralncoatingsdepositedbypiiidmethod AT reicherts structureandpropertiesofthecralncoatingsdepositedbypiiidmethod AT zavaleyevv structureandpropertiesofthecralncoatingsdepositedbypiiidmethod AT walkowiczj structureandpropertiesofthecralncoatingsdepositedbypiiidmethod AT sawczakm structureandpropertiesofthecralncoatingsdepositedbypiiidmethod |
first_indexed |
2025-07-08T08:48:21Z |
last_indexed |
2025-07-08T08:48:21Z |
_version_ |
1837067929570508800 |
fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
244 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 244-247.
STRUCTURE AND PROPERTIES OF THE (Cr, Al)N COATINGS
DEPOSITED BY PIII&D METHOD
V.V. Vasyliev
1
, A.A. Luchaninov
1
, E.N. Reshetnyak
1
, V.E. Strel’nitskij
1
, B. Lorentz
2
,
S. Reichert
2
, V. Zavaleyev
3
, J. Walkowicz
3
, M. Sawczak
4
1
National Science Centre “Kharkov Institute of Physics and Technology”, Kharkov, Ukraine;
2
Institute of Product Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany;
3
Faculty of Technology and Education, Koszalin University of Technology, Koszalin, Poland;
4
Institute of Fluid-Flow Machinery, Gdansk, Poland
Cr-Al-N coatings deposited from the vacuum-arc plasma source with rectilinear macroparticle filter were investi-
gated. Influence of the amplitude of pulsed substrate bias potential in the range of 0…2500 V on the structure and
mechanical properties of the coatings was studied. It is found that in all coatings formed solid solution of (Cr, Al)N
with a cubic structure type NaCl. High voltage pulsed potential bias causes formation of the coatings structure
with fine grains (6…7 nm) and strong axial texture [110]. Residual compressive stress varies nonmonotonously
from 2 to 7 GPa when the amplitude of the pulses increases. The coatings are characterized by high hardness
30…36 GPa, the surface roughness at the level of 40…50 nm and a low friction coefficient, which allows their
use as protective coatings for tools and friction units.
PACS: 81.15.-z, 81.05.uj
INTRODUCTION
Multicomponent nitride vacuum-arc coatings have
high hardness, thermal stability and oxidation resistance
[1]. Deposition from the filtered vacuum-arc plasma by
PIII&D (Plasma immersion ion implantation and depo-
sition) method under high voltage pulsed substrate bias
allows to improve coatings characteristics [2-4]. To im-
plement this method, the sources of filtered cathodic-arc
plasma are usually used, and a negative pulsed bias po-
tential with amplitude from a few hundred to several
thousand volts is applied to the substrate during coatings
deposition. Unlike the DC offset, in such conditions it is
possible to minimize the effects associated with the
sputtering of the coating surface. Furthermore, under
bombardment at low substrate temperature the coating
structure can be controlled, the level of residual stresses
therein, and hence their properties.
The aim of the present work was to study the struc-
ture and mechanical properties of Cr-Al-N coatings,
deposited from filtered vacuum-arc plasma by PIII&D
method, as well as to study the influence of the value of
the substrate bias potential amplitude on the coatings
characteristics.
EXPERIMENTAL METHODS
Deposition of nitride coatings system Cr-Al-N was
performed by vacuum arc process using Cr0,5Al0,5 cath-
odes made by powder metallurgy. About 2 microns
thick coatings were deposited on polished substrates
X6Cr17 steel with size 17 × 20 mm and 1.5 mm thick.
The distance from the outlet of the filter to the samples
was 210 mm. The coatings were deposited at an arc
current of 100 A in the conditions of supply pulsed bias
potential on the substrate. The high-voltage pulsed gen-
erator with the parameters: amplitude (AU) in the range
(0…2.5) kV, pulse duration 12 μs, repetition rate
12 kHz was used as the source of pulsed substrate bias
potential. In the intervals between pulses substrate was
at a potential of -100 V. Coating deposition time was
30 minutes. The reaction gas (nitrogen) was introduced
into the vacuum chamber through a plasma source. The
nitrogen pressure in the chamber was 0.1 Pa.
The coating composition was monitored by X-ray
fluorescence analysis (XRF) on the vacuum scanning
crystal diffraction spectrometer SPRUT. The phase
composition, texture, substructure and the stress state of
the coatings were studied by X-ray diffractometer
DRON-3 in the Cu-Kα radiation. Along with X-ray, the
Raman spectra of the coatings were investigated, excit-
ing radiation wavelength was 514 nm.
The morphology of the coating surface was exam-
ined using an optical microscope Leica MTU 253 and
3D optical profilometer FRT. Hardness (H) and Young's
modulus (E) coatings were measured by
G200 nanoindenter by CSM method. The values of H
and E were taken at a depth of indentation of 10 % of
the film thickness. Adhesion properties were studied by
means of a scratch tester REVETEST, a diamond in-
denter radius of 200 nm.
RESULTS AND DISCUSSION
The characteristics of the Cr-Al-N coatings, synthe-
sized at different values amplitude AU of the pulsed po-
tential bias, are listed in Table 1. It is seen that the val-
ues of the Al concentration CAl in metal sublattice (ex-
cluding nitrogen) indicate fairly good reproducibility of
the cathode composition in coatings. The Al content in
the cathode is 50 at.%, and in the coating Cr-Al-N, ac-
cording to the results of XRF analysis, it varies within
CAl 49…51 at.%. This is significantly different from the
results obtained for the vacuum-arc coating system Ti-
Si-N [5], in which the composition of the cathode was
reproduced not very satisfactorily in the coatings, the
silicon content in the Ti-Si-N coatings are several times
lower than in the cathode. This is mainly due to the se-
lective silicon sputtering as a result of bombardment of
the growing film surface by energetic ions. With in-
creasing amplitude of the pulses the Al concentration in
the Cr-Al-N coatings tends to decrease, but significant
sputtering of aluminum is not observed. These data are
consistent with those for known similar system, Ti-Al-
N [6].
ISSN 1562-6016. ВАНТ. 2016. №6(106) 245
Table 1
Characteristics of Cr-Al-N coatings, synthesized at different values of the amplitude of the pulsed bias
potential on the substrate
№ AU, кV
XRA Nanoindentation XRD FRT Revetest
CAl, % H, GPa E, GPa Н/E σ, GPa L,nm Ra, nm LC1, Н LC2, Н µ
1 0 51.4 29.6 404 0.073 2.0 18.0 38 9.0 12.4 0.15
2 0.5 51.3 33.4 390 0.087 6.1 9.2 36 5.5 7.6 0.10
3 1.0 49.2 33.1 385 0.086 7.0 6.5 56 6.5 9.8 0.10
4 1.5 49.0 36.2 436 0.083 6.1 6.0 45 5.9 10.2 0.10
5 2.0 49.2 30.5 385 0.079 3.9 6.1 50 4.0 6.8 0.10
6 2.5 49.0 30.2 373 0.071 5.3 7.2 52 1.2 2.2 0.10
Nanoindentation results indicate that all coatings are
characterized by relatively high hardness in the range
(30…36) GPa and a Young's modulus of about
400 GPa. High values of H / E parameter of 0.08…0.09
indicate a good stability of the coating material to plas-
tic deformation.
Microscopic examination of coatings showed that
their surface is sufficiently homogeneous with minimum
amount of defects, which indicates high quality filtra-
tion of the cathodic-arc plasma flow. The area occupied
by the defects does not exceed 3 % of the surface coat-
ing, and the size of the majority (~ 90 %) not greater
than 1.4 microns.
According to the optical profilometry (FRT), the
coatings has a cellular surface with mesh size of a few
micrometers. At low values of the amplitude of poten-
tial the coatings roughness is at a level of 35…40 nm,
and increases with increasing amplitude to 50 nm.
X-ray diffraction patterns of coatings are shown in
Fig. 1. In all patterns except the narrow diffraction α-Fe
substrate lines revealed well sufficient broad peaks of
(Cr, Al)N solid solution formed by the substitution
chromium by aluminum in the lattice of the chromium
nitride, which has a cubic structure of the type NaCl.
Wurtzite crystalline AlN phase or phase containing less
nitrogen is not formed.
Line intensity ratio of the diffraction patterns indi-
cates the formation of texture in the coatings. The calcu-
lated texture coefficients are shown in Fig. 2. At a DC
bias potential (no pulses) predominates crystallite orien-
tation with planes (111) or (200) parallel to the film
surface. The size L of coherent scattering zone (CSZ) of
nitride is 18 nm. When the amplitude of pulsed bias
potential grows up to 1.5 kV a strong axial texture [110]
is formed, and the size of the CSZ decreases to 6 nm.
With further increase of the pulse amplitude to
(2…2.5) kV the reflection (200) appears in the diffrac-
tion patterns along with (220). Such change of preferred
orientation we observed earlier for coatings based on
(Ti, Al)N [6].
An important characteristic of the coating affecting
their performance properties is the level of residual
stresses σ. The resulting stress values calculated from
X-ray strain measurements are shown in Fig. 3. It is
seen that with increasing amplitude of the potential in
the range of 0…2 kV the stress changes non monoton-
ically: first increase and then decrease, which corre-
sponds to the Davis formula [2-4]. This behavior of
(Cr, Al)N coatings is different from TiN, where the
maximum stress value is 10 GPa as well as the
(Ti, Al)N, where the residual stress level is almost con-
stant in this range of amplitudes of bias potential [6].
20 30 40 50 60 70 80
S
S
0 кV
2,5 кV
2 кV
1,5 кV
1 кV
0,5 кV
(C
r,
A
l)
N
(
2
2
2
)
(C
r,
A
l)
N
(
3
1
1
)
(C
r,
A
l)
N
(
2
0
0
)
(C
r,
A
l)
N
(
1
1
1
)
(C
r,
A
l)
N
(
2
2
0
)
S
2degree
In
te
n
si
ty
,
ar
b
.u
n
it
s.
Fig. 1. X-ray diffraction patterns of coatings Cr-Al-N,
deposited at different amplitude values of the pulsed
bias potential on the substrate (s - substrate lines)
With further increase of the amplitude up to 2.5 kV,
increase of stress is observed, which is accompanied by
a decrease in the hardness of the coating.
0,0 0,5 1,0 1,5 2,0 2,5
0
1
2
3
T
ex
tu
re
c
o
ef
fi
ci
en
t
A
U
, кV
(111)
(200)
(220)
Fig. 2. The texture coefficients for the reflections (111),
(200), (220) nitride (Cr,Al)N
Such changes in the system (Ti, Al)N were ex-
plained earlear by partial decomposition of the super-
saturated solid solution with the cubic structure and
formation of AlN hexagonal phase in the coatings.
246 ISSN 1562-6016. ВАНТ. 2016. №6(106)
It should be noted that the compressive stress level
in the synthesized coatings (Cr, Al)N reaches high but
not critical values. Usually the best operating properties
show nitride coating, the stress level in which does not
exceed 5 GPa [7].
0,0 0,5 1,0 1,5 2,0 2,5 3,0
2
4
6
8
10
A
U
, кV
,
G
P
a
Fig. 3. The residual compressive stresses in the coatings
(Cr, Al)N (XRD data)
Adhesion of the coating to the substrate was evalu-
ated by the results of the scratch test (Revetest). The
Table 1 shows the values of LC1 and LC2 loads, at which
the first crack arise in the coating and delamination oc-
curs, respectively. Coatings begin to break down at rela-
tively low values of load (several Newtons), i.e. the ad-
hesion to the substrate is low. This is due to the softness
of the substrate steel (hardness of 2.5 GPa), on which
enough thin coatings are greatly deformed even at low
loads. Correlations between the adhesion of the coating
and the level of residual compressive stress in it was not
observed.
This test also gives information on the friction coef-
ficient μ of the friction pair: diamond-coating material.
The μ value 0.10…0.15 corresponds to the load lower
than LC1 until the coating retains its integrity. At higher
loads coating begins to break down, the friction coeffi-
cient increases somewhat, but does not exceed 0.3.
Additional information about the structure of
(Cr, Al)N coatings, deposited under different values of
the amplitude of the pulse bias potential to the substrate
in the range of 0…2.5 kV, was obtained from the results
of the study of Raman spectra. Typical Raman spectrum
in a range of 100…2000 cm
-1
is shown in Fig. 4. De-
convolution and identification of relevant phonon
modes was carried out taking into account the literature
data on the Raman spectra of CrAlN [8]. The peak posi-
tions were determined using the ORIGIN package with
Gaussian peak shapes. The spectrum peaks detected are
corresponded to the first order acoustic transverse TA
mode and longitudinal LA mode in the range of
222…242 cm
-1
, first order optical transverse TO mode
and longitudinal LO mode in the range of 670…680 cm
-1
along with second order peaks (2A, A + O, 2O), whose
positions are listed in Table 2. It is known that in the
perfect crystal structure of the cubic NaCl type the first
order Raman scattering by phonons is not possible due
to inversion symmetry of each lattice site. The presence
of Raman peaks of the first order indicates the presence
of defects in the crystalline structure of the coating
(symmetry breaking).
Fig. 4. Raman spectrum of (Cr,Al)N coating
Table 2
Raman peak positions (cm
-1
) corresponding to different
phonon modes of (Cr, Al)N coatings
U,
kV
TA/LA 2A TO/LO A+O 2O
0 241.9 454.0 672.8 734.1 1375.2
0.5 220.2 445.9 676.7 715.8 1276.1
1.0 226.2 484.1 683.9 715.1 1320.4
1.5 219.5 448.8 685.0 708.9 1293.9
2 220.3 464.4 659.1 715.8 1330.7
2.5 222.4 468.5 681.8 717.6 1314.8
The spectra of all studied (Cr, Al)N coatings are
similar and contain Raman peaks corresponding to the
cubic crystal structure. Peaks corresponding wurtzite
structure are not found in the spectra, consistent with the
results of the X-ray diffraction measurements.
0,0 0,5 1,0 1,5 2,0 2,5 3,0
640
660
680
700
A
U
, кV
R
am
an
s
h
if
t,
s
m
-1
Fig. 5. The dependence of the Raman shift of the phonon
mode TO / LO lattice vibrations (Cr,Al)N on the ampli-
tude of the pulsed substrate bias potential
Raman spectra of the coatings contain information
on the degree of ordering of the crystal lattice, defect
density and elemental composition. In addition, certain
frequency bands corresponding to the interaction with
optical phonons, are sensitive to the level of residual
stress in the coating. Based on this effect, the authors [9]
determined the stress value in TiAlN coatings based on
measurements of Raman peak position corresponding to
the optical phonon mode in the vicinity 650 cm
-1
.
In the Raman spectra of the investigated CrAlN
coatings the position of the peak, identified as the
LO/TO in the range (660…85) cm
-1
, depends on the
amplitude of the pulsed bias potential on the substrate
during deposition, and is similar to the dependence ob-
tained from X-ray measurements (see Figs. 3,5)
ISSN 1562-6016. ВАНТ. 2016. №6(106) 247
Thus, the results of X-ray and Raman measurements
of structural characteristics of the (Cr, Al)N coatings are
correlated with each other.
CONCLUSIONS
Using powder Cr0.5Al0.5 cathodes in a filtered vacu-
um-arc plasma source the (Cr, Al)N coatings with a cubic
NaCl type structure were synthesized by PIIID method.
The ratio of the metal components in the coatings corre-
sponds well the cathode elemental composition.
The coatings are characterized by high hardness
(30…36) GPa, the surface roughness at the level of
(40…50) nm and a low friction coefficient, which allows
their use for protection the tools and friction units.
High voltage pulsed bias potential with amplitude
up to 2.5 kV causes formation of the coatings structure
with fine grains (6…7 nm) and strong axial texture
[110]. Residual compressive stress varies nonmonoto-
nously from 2 to 7 GPa when the amplitude of the
pulses increases. It is shown that the results of Raman
spectroscopy measurements correlate well with x-ray
analysis.
ACKNOWLEDGEMENTS
This work was supported by IMBeing-FP7-
PEOPLE-2013-IRSES-612593 Project.
REFERENCES
1. P. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens.
Microstructural design of hard coatings // Progress in
Materials Science. 2006, v. 51, p. 1032-1114.
2. M.M. Bilek, D.R. McKenzie, W. Moeller. Use of low
energy and high frequency PBII during thin film deposi-
tion to achieve relief of intrinsic stress and microstruc-
tural changes // Surface & Coatings Technology. 2004,
v. 186, p. 21-28.
3. G.P. Zhang, G.J. Gao, X.Q. Wang, G.H. Lv,
L. Zhou, H. Chen, H. Pang, S.Z. Yang. Influence of
pulsed substrate bias on the structure and properties of
Ti-Al-N films deposited by cathodic vacuum arc // Ap-
plied Surface Science. 2012, v. 258, p. 7274-7279.
4. S. Mukherjee, F. Prokert, E. Richter, W. Möller
Comparison of TiN and Ti1-xAlxN coatings deposited on
Al using plasma immersion ion implantation assisted
deposition // Surface & Coatings Technology. 2005,
v. 200, p. 2459-2464.
5. V. Vasyliev, A. Luchaninov, V. Marinin,
E. Reshetnyak, V. Strel’nitskij et al. Application of
powder cathodes for Ti-Si-N coatings deposition from
the filtered vacuum-arc plasma // Surface Physics and
Engineering. 2015, v. 13, № 2, p. 148-163.
6. E.N. Reshetnyak. Structure and stress state of TiN
and Ti0.5-xAl0.5YxN coatings prepared by the PIII&D
technique from filtered vacuum-arc plasma // Problems
of Atomic Science and Technology. 2014, № 1(20),
p. 159-162.
7. V. Belous, V. Vasyliev, A. Luchaninov, V. Marinin,
et al. Cavitation and abrasion resistance of Ti-Al-Y-N
coatings prepared by the PIII&D technique from filtered
vacuum-arc plasma // Surface & Coatings Technology.
2013, v. 223, p. 68-74.
8. R. Kaindl et al. Structural investigations of alumi-
num-chromium-nitride hard coatings by Raman micro-
spectroscopy// Thin Solid Films. 2006, v. 515, p. 2197-
2202.
9. C.P. Constable et al. Raman microscopic studies of
stress in PVD hard ceramic coatings // Surface & Coat-
ings Technology. 2004, v. 184, p. 291-297.
Article received 20.09.2016
СТРУКТУРА И СВОЙСТВА ПОКРЫТИЙ (Cr, Al)N, ОСАЖДЁННЫХ РIII И D-МЕТОДОМ
В.В. Васильев, А.А. Лучанинов, Е.Н. Решетняк, В.Е. Стрельницкий,
B. Lorentz, S. Reichert, V. Zavaleyev, J. Walkowicz, M. Sawczak
Исследованы Cr-Al-N-покрытия, осаждённые из источника вакуумно-дуговой плазмы с прямолинейным
фильтром. Изучено влияние амплитуды импульсного потенциала подложки в диапазоне 0…2500 В на
структуру и механические характеристики покрытий. Установлено, что во всех покрытиях формируется
твёрдый раствор (Cr, Al)N с кубической структурой типа NaCl. Подача высоковольтного импульсного по-
тенциала смещения вызывает формирование структуры покрытий с мелкими зёрнами 6…7 нм и сильной
аксиальной текстурой [110]. С ростом амплитуды импульсов остаточные напряжения сжатия немонотонно
изменяются в пределах от 2 до 7 ГПа. Покрытия характеризуются высокой твёрдостью 30…36 ГПа, шерохо-
ватостью поверхности на уровне 40…50 нм и низким коэффициентом трения, что позволяет использовать их
в качестве защитных покрытий для инструмента и узлов трения.
СТРУКТУРА ТА ВЛАСТИВОСТІ ПОКРИТТІВ (Cr, Al)N, ОСАДЖЕНИХ
РIII І D-МЕТОДОМ
В.В. Васильєв, О.А. Лучанінов, О.М. Решетняк, В.Є. Стрельницький,
B. Lorentz, S. Reichert, V. Zavaleyev, J. Walkowicz, M. Sawczak
Досліджено Cr-Al-N-покриття, осаджені з джерела вакуумно-дугової плазми з прямолінійним фільтром.
Вивчено вплив амплітуди імпульсного потенціалу підкладки в діапазоні 0…2500 В на структуру та механіч-
ні характеристики покриттів. Встановлено, що в усіх покриттях формується твердий розчин (Cr, Al)N з кубі-
чної структурою типу NaCl. Подача високовольтного імпульсного потенціалу зміщення викликає форму-
вання структури покриттів з дрібними зернами 6…7 нм і сильною аксиальной текстурою [110]. З ростом
амплітуди імпульсів залишкові напруження стиску немонотонно змінюються в межах від 2 до 7 ГПа. Пок-
риття характеризуються високою твердістю 30…36 ГПа, шорсткістю поверхні на рівні 40…50 нм і низьким
коефіцієнтом тертя, що дозволяє використовувати їх в якості захисних покриттів для інструменту і вузлів
тертя.
|