New in development of negative hydrogen ion source with combined discharge
The presented work shows a progress in development of the cesiated negative hydrogen ion source with combined discharge. The dependence of Hion beam current on power introduced into the discharge is shown to have a saturation, which enables optimization of the power value. As well, nonlinear beha...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2016
|
Назва видання: | Вопросы атомной науки и техники |
Теми: | |
Онлайн доступ: | http://dspace.nbuv.gov.ua/handle/123456789/115459 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
Цитувати: | New in development of negative hydrogen ion source with combined discharge / A. Dobrovolsky, V. Goretskii, V. Bazhenov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 263-267. — Бібліогр.: 8 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraineid |
irk-123456789-115459 |
---|---|
record_format |
dspace |
spelling |
irk-123456789-1154592017-04-06T03:02:35Z New in development of negative hydrogen ion source with combined discharge Dobrovolsky, A. Goretskii, V. Bazhenov, V. Low temperature plasma and plasma technologies The presented work shows a progress in development of the cesiated negative hydrogen ion source with combined discharge. The dependence of Hion beam current on power introduced into the discharge is shown to have a saturation, which enables optimization of the power value. As well, nonlinear behavior is exhibited by the dependence of the beam current on anode hole size. One more essential parameter is the accompanying working gas flow from the source anode to the chamber. Further optimization of extracting system design and method of working gas supply can provide additional improvement of operation characteristics of the source. Показан прогресс в разработке источника отрицательных ионов водорода с комбинированным разрядом и цезием. Продемонстрирована зависимость тока отрицательно заряженных частиц от мощности, вкладываемой в разряд, и размера анодного отверстия. Зависимость тока пучка от вкладываемой в разряд мощности имеет насыщение, что позволяет оптимизировать этот параметр. Также нелинейный характер имеет зависимость от размера анодного отверстия. Ещё одним существенным фактором выступает сопутствующая струя рабочего газа, выходящая через анод источника в камеру. Дальнейшая оптимизация конструкции извлекающей системы и метода подачи рабочего газа может дополнительно повысить эксплуатационные характеристики источника. Показано прогрес у розробці джерела від’ємно заряджених іонів водню з комбінованим розрядом та цезієм. Продемонстрована наявність залежності струму від’ємно заряджених частинок від потужності, що вкладається в розряд, та розміру анодного отвору. Залежність струму пучка від потужності, що вкладається до розряду, має насичення, що дозволяє оптимізувати цей параметр. Також нелінійний характер має залежність від розміру анодного отвору. Ще одним суттєвим фактором виступає супутній струмінь робочого газу, що виходить крізь анод джерела до камери. Подальша оптимізація конструкції формуючої системи та методу постачання робочого газу може додатково підвищити експлуатаційні характеристики джерела. 2016 Article New in development of negative hydrogen ion source with combined discharge / A. Dobrovolsky, V. Goretskii, V. Bazhenov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 263-267. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 29.25.Ni, 41.75.Cn, 41.85.Ar http://dspace.nbuv.gov.ua/handle/123456789/115459 en Вопросы атомной науки и техники Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
collection |
DSpace DC |
language |
English |
topic |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies |
spellingShingle |
Low temperature plasma and plasma technologies Low temperature plasma and plasma technologies Dobrovolsky, A. Goretskii, V. Bazhenov, V. New in development of negative hydrogen ion source with combined discharge Вопросы атомной науки и техники |
description |
The presented work shows a progress in development of the cesiated negative hydrogen ion source with
combined discharge. The dependence of Hion
beam current on power introduced into the discharge is shown to
have a saturation, which enables optimization of the power value. As well, nonlinear behavior is exhibited by the
dependence of the beam current on anode hole size. One more essential parameter is the accompanying working gas
flow from the source anode to the chamber. Further optimization of extracting system design and method of working
gas supply can provide additional improvement of operation characteristics of the source. |
format |
Article |
author |
Dobrovolsky, A. Goretskii, V. Bazhenov, V. |
author_facet |
Dobrovolsky, A. Goretskii, V. Bazhenov, V. |
author_sort |
Dobrovolsky, A. |
title |
New in development of negative hydrogen ion source with combined discharge |
title_short |
New in development of negative hydrogen ion source with combined discharge |
title_full |
New in development of negative hydrogen ion source with combined discharge |
title_fullStr |
New in development of negative hydrogen ion source with combined discharge |
title_full_unstemmed |
New in development of negative hydrogen ion source with combined discharge |
title_sort |
new in development of negative hydrogen ion source with combined discharge |
publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
publishDate |
2016 |
topic_facet |
Low temperature plasma and plasma technologies |
url |
http://dspace.nbuv.gov.ua/handle/123456789/115459 |
citation_txt |
New in development of negative hydrogen ion source with combined discharge / A. Dobrovolsky, V. Goretskii, V. Bazhenov // Вопросы атомной науки и техники. — 2016. — № 6. — С. 263-267. — Бібліогр.: 8 назв. — англ. |
series |
Вопросы атомной науки и техники |
work_keys_str_mv |
AT dobrovolskya newindevelopmentofnegativehydrogenionsourcewithcombineddischarge AT goretskiiv newindevelopmentofnegativehydrogenionsourcewithcombineddischarge AT bazhenovv newindevelopmentofnegativehydrogenionsourcewithcombineddischarge |
first_indexed |
2025-07-08T08:48:50Z |
last_indexed |
2025-07-08T08:48:50Z |
_version_ |
1837067960692244480 |
fulltext |
ISSN 1562-6016. ВАНТ. 2016. №6(106)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2016, № 6. Series: Plasma Physics (22), p. 263-267. 263
NEW IN DEVELOPMENT OF NEGATIVE HYDROGEN ION SOURCE
WITH COMBINED DISCHARGE
A. Dobrovolsky, V. Goretskii, V. Bazhenov
Institute of Physics, NAS of Ukraine, Kiev, Ukraine
E-mail: dobr@iop.kiev.ua
The presented work shows a progress in development of the cesiated negative hydrogen ion source with
combined discharge. The dependence of H
-
ion beam current on power introduced into the discharge is shown to
have a saturation, which enables optimization of the power value. As well, nonlinear behavior is exhibited by the
dependence of the beam current on anode hole size. One more essential parameter is the accompanying working gas
flow from the source anode to the chamber. Further optimization of extracting system design and method of working
gas supply can provide additional improvement of operation characteristics of the source.
PACS: 29.25.Ni, 41.75.Cn, 41.85.Ar
INTRODUCTION
Investigation of the negative ion sources have a long
story [1, 2]. For different applications there are different
requirements for particle source, so that wide range of
the devices exists. In negative hydrogen ion sources
different mechanisms of ion formation [2-5] are used.
We proposed in [6] and reported in [7, 8] the
peculiarities of negative particle cesiated source of our
design. Now we describe the last results in advances of
the source.
As we reported earlier, the source enables formation
of the stream of negatively charged particles with high
brightness in energy range up to several tens kilovolt
and axially-symmetric beam profile. However, the beam
divergence angle remained very wide, which resulted in
significant loss of the beam current at the walls of
transport section. The research task consisted in
optimization of ion-optical extracting system of the
source aimed to formation of the beam with limited
spread, and in comparison of characteristics of extracted
negative charged particles beam at different power
introduced into the discharge.
1. EXPERIMENTAL SETUP
The experimental setup was described in detail in [6-
8]. The setup includes particle beam source and
diagnostic tools. The residual pressure is 3×10
-5
Torr.
The negative charged particles source has the composite
anode electrode 1 mm longer than before. Fig. 1 shows
ion optics system of the source. The anode assembly 1
has replaceable insert with anode hole. Now we make
emission hole with 3.5 mm diameter. It is 0.5 mm less
than extractor diameter in [8]. The discharge in the
source was ignited in pulse-periodical regime. For that
purpose, voltages from respective pulsed power supply
units were applied with 1…3 Hz repetition rate to
hydrogen supply valve and electrodes of the source.
During the discharge glow, cesium was emerged from
cesium dichromate tablets located inside the source.
Cesium was deposited onto the anode and promoted
creation of hydrogen negative ions in vicinity of
emission slit. For extraction and acceleration of
hydrogen negative ions, up to 10 kV voltage was
applied between the source anode and extracting
electrode with 4 mm aperture diameter located at 2 mm
distance from the anode. The beam was detected by
means of collectors, which were modernized, as
compared to those used in [7, 8]. Signals from the
collectors were supplied to oscilloscope input, which
registered current values of negatively charged particles.
As well as in previous researches, two different schemes
of the beam detection were used. In the first one the
beam current was detected at 50 cm distance from the
source by means of collector having 10 cm diameter [6].
At that, portion of the beam propagating inside a cone
with about 12
0
angle was detected. In the second
scheme multi-collector electrode [7, 8] with added
system of two parallel slits was used, which promoted
improved separation of hydrogen negative ion beam
with the use of transverse magnetic field.
Fig. 1. Scheme of the ion optics system of the source:
1 composite anode; 2 insulator; 3 composite
cathode
Combined modernized collector for measurements of
angular distribution of the beam current, as well as total
one, is shown in Fig. 2. It differs from previously used
one by presence of additional electrode 9. The electrode
is composed of two parallel plates separated by 3 cm
spacing. Two slits are cut out in them, each having 1 cm
width, which enable separation of long stripe from the
beam of charged particles. With magnetic field being
turned on and varied, such arrangement provides better
264 ISSN 1562-6016. ВАНТ. 2016. №6(106)
separation of electron stream from negative ion flow. At
that, flows of the particles come to surfaces of the
collectors 1-5 limited by the slits of additional electrode.
By values of these currents and known areas of the
surfaces, current density values onto each collector are
determined, and total current onto each collector is
calculated, as well as total current into the whole beam
propagation angle embraced by the collector.
Fig. 2. Scheme of hydrogen negative ion beam current
measurement at 8 cm distance from the source aperture:
1-5) collectors for measurements of the beam current
components; 6) hydrogen negative ion beam;
7) extracting electrode of the source; 8) anode of the
source; 9) additional electrode with two parallel slits
2. EXPERIMENTAL RESULTS
It should be noted that shape change of the anode
electrode in the source resulted in certain decrease of
total output current of negatively charged particles, as
well as hydrogen negative ion one. However,
improvement of electric breakdown strength of
extracting gap became an undoubted advantage of this
upgrade. As a result, the source quickly comes to
operation regime without time loss to training for
establishing work regime of the current extraction.
Kinetics of the discharge parameters, as well as those of
extracted current onto central electrode in the
measurement scheme presented in Fig. 2 were studied
by means of oscilloscope. Resulted oscillograms are
presented below in Fig. 3. Oscillograms of the beam
current are obtained both at zero magnetic field when
the beam was composed of electrons and negative ions,
and at transverse magnetic field of 35 Gs strength when
resulted current onto the collector was due to hydrogen
negative ions. Although the oscillograms do not show
essential noise component, one can see that the traces
have finite thickness. On a basis of obtained results, one
can estimate the noise component of the discharge
voltage is about 20 V. It should definitely lead to spread
of the energy value in the beam. Additional contribution
to the beam non-monochromaticity can be provided by
existence of different ways of negative ion formation.
Among those ways, the principal ones produce ions
formed in recharging processes at the cathode surface,
ions formed in the plasma volume, and ions formed at
the anode surface. Current of the first group of ions is
probably small enough since these ions quickly
recombine at their propagation through the dense
plasma layers. By estimations, free run path in such
plasma does not exceed a couple of one tens fractions of
millimeter.
a b c
d e f
g h i
Fig. 3. Oscillograms of the discharge parameters of the
source of negatively charged particles (a-c), and
current values onto central electrode of modernized
collector at turned off (d-f), and on (g-i) transverse
magnetic field. (a-c) the top trace represents the
discharge voltage, 50 V/div (a), 100 V/div (b,c); (a-c)
the bottom trace represents the discharge current, а)
50 A/div (a), 100 A/div (b,c); (d-f) current onto the first
collector at zero magnetic field, 100 mA/div; (g-i)
current onto the first collector at magnetic field strength
35 Gs, 10 mA/div. The discharge voltage is 100 V
(a,d,g), 120 V (b,e,h), and 150 V (c,f,i)
The most concentrated portion of ions of the second
group is located in the near-anode region in the plasma
with potential close to the anode one. With a presence
of ion formation at the surface, contribution of this
group to total negative ion beam current is small [5].
The most essential contribution is given by a group of
negative ions formed by recharging of positive ions at
the anode surface. Particularly, authors of [3] came to
conclusion that resulted outcome of hydrogen negative
ions due to recharging process reaches 80 %. Ions of the
second and the third groups should compose basic
portion of negative ion beam at output aperture of the
source. Following from said above, one can expect that
the main spread of the energy value will be close to
20 eV.
The next Fig. 4 exhibits dependencies of current
density and the total current values onto the collector
lamella shown in Fig. 2 obtained at the measurements
with magnetic field strength variations after the
calculations taking into account lamella area values. The
measurements were performed at 30 A discharge
current and 100 V discharge voltage (3 kW pulsed
power). One can see from the results that at zero
magnetic field strength maximum electron current is
observed at central electrode. Increase of transverse
field up to about 30 Gs results in plateau appearance at
the plots. We suppose that it corresponds to practically
total deflection of electron streams and proceeding to
the measurement of negative ion current value. Already
at 20 Gs field strength, Larmour radius of electron
possessing 10 keV energy is 17 cm, which will deflect
ISSN 1562-6016. ВАНТ. 2016. №6(106) 265
the stream at 8 cm distance for more than one
centimeter that should be sufficient for almost complete
cut off under experimental conditions given in Fig. 4. It
is in a good agreement with the experimental results.
Curiously, the current density to the nearest periphery
electrode is even slightly higher than that onto the
central one.
Considering the total current onto each electrode,
one of the highest values of about 80 mA comes to the
first periphery electrode. Current of just 20 mA comes
to the central electrode (14
0
propagation angle). Also one
can see that the current with sum value of just about
50 mA comes to all other periphery electrodes. That is,
major portion of negative ion current propagates inside
relatively small angle. As one can see from the plots in
Fig. 4,b, with this particular power introduced into the
discharge the overall negative ion current is about
150 mA.
0 25 50 75 100 125 150
0
20
40
60
C
u
rr
e
n
t
d
e
n
s
it
y
,J
(
m
a
/c
m
2
)
Magnetic field,B(Gs)
J1,1collector
J2,2collector
J3,3collector
J4,4collector
a
0 25 50 75 100 125 150
0
50
100
150
200
250
300
C
u
rr
e
n
t(
m
A
)
Manetic field,B (Gs)
I1,1collektor
I2,2collector
I3,3collector
i4,4collector
b
Fig. 4. Dependence of current density onto collectors on
magnetic field strength. The discharge current is
30 A (a); Plot of averaged total current onto lamella
obtained by multiplying the current density by each
lamella area (b)
One can see at the plot that plateau section occupies
relatively small range of magnetic field strength. The
last may be due to appearance of negative space charge
in the beam transport section with sequential locking of
increasing number of electrons thus preventing their
quick escaping onto the walls. As well, it may be due to
penetration of already strong enough magnetic field to a
section of the beam extraction from the source. The last
effect will change the extraction conditions, which
should obligatory influence the extracted current value.
All said above gives evidence to necessity of
replacement of the beam component analysis system for
excluding the analyzer influence on the source.
The next Fig. 5 shows dependencies of the current of
extracted hydrogen negative ions at extracting voltage
of 10 kV to central electrode of combined collector
(14
0
propagation angle) and to the electrode of remote
collector (12
0
propagation angle) on power introduced
into the source discharge.
As one can see, at increase of the discharge power,
negative ion beam current tends to saturation that is
probably due to an increase of the plasma concentration
at the source periphery, which in turn leads to increase
of a rate of negative ion decomposition in processes of
collisions with the plasma particles. The dependencies
of current values onto near and remote collectors exhibit
similar behavior. However, one can note that the current
to remote collector is essentially lower than that to near
one, although propagation angles at that are of about the
same values. Possible reason of such behavior is due to
decomposition of negative ion particles in collisions
with neutral particles of accompanying gas in the beam
transport section.
0 4000 8000 12000 16000
0
20
40
60
N
e
g
a
ti
v
e
i
o
n
s
c
u
rr
e
n
t(
m
A
)
Discharge power (Wt)
a
b
Fig. 5 Dependencies of total negative ion current with
14
0
propagation angle at 8 cm distance from the source
aperture (a) and hydrogen negative ion current with 12
0
propagation angle at 50 cm distance from the source (b)
on power introduced into the discharge
Peculiarity of negative ion beam formation in the
source with emission slit having 3.5 mm diameter, as
compared to one with the slit having 4 mm diameter is
exhibited in Fig. 6. One can see that in the source with
3.5 mm emission aperture negative ion beam is formed
mainly into essentially smaller angle. At that, radial
distribution is uniform. It implies essential advantage of
this version of the source at its combined operation with
focusing device. As one can see from the figure, current
0 4000 8000 12000 16000
0
5
10
15
N
e
g
a
ti
v
e
i
o
n
c
u
rr
e
n
t(
m
A
)
Discharge Power (Wt)
J1 1 collector
J2 2 collector
J3 3 collector
J4 4 collector
I1 1 collector
I2 2 collector
I3 3 collector
I4 4 collector
B (Gs)
(m
A
J
(
m
A
/c
m
2
)
(
m
A
)
(
m
A
)
(
m
A
)
266 ISSN 1562-6016. ВАНТ. 2016. №6(106)
density of electron beam has maximum value in the
center and rapidly decreases towards the periphery.
Fig. 7 presents dependence of negative ion beam
current onto remote collector from emission slit aperture
diameter. One can see that the emission slit surface
increase results in the growth of negative ion current
from the source. At the same time, increase of emission
slit surface leads to significant deterioration of electric
strength of the source extracting gap. The source having
3.5 mm emission aperture diameter seems to be a
reasonable compromise.
0 1 2 3 4
0
25
50
75
100
C
u
rr
e
n
t
d
e
n
s
it
y
(
m
A
/c
m
2
)
Mean ring radius (cm)
Magnetic field 0 Gs
Magnetic field 35Gs
Magnetic field 100Gs
Magnetic field 340Gs
a
0 1 2 3 4
0
25
50
75
100
125
150
C
u
rr
e
n
t
d
e
n
s
it
y
(m
A
/c
m
2
)
mean ring radius (cm)
Zero magnetic field
Magnetic field17Gs
Magnetic field34Gs
Magnetic field68gs
b
Fig. 6. Distributions of negative hydrogen ion beam
current density over the rings of combined collector for
different magnetic field strength and emission slit
aperture 4 mm (a) and 3.5 mm (b). Pulsed discharge
power is 15 kW
0 5 10 15
0
5
10
15
20
25
N
e
g
a
ti
v
e
io
n
c
u
rr
e
n
t
(m
A
)
Slit surface (mm
2
)
Fig. 7. Dependence of current onto remote collector from
the source with anode holes of 2, 3.5, and 4 mm diameter
on output slit surface. Pulsed discharge power is 15 kW
CONCLUSIONS
Thus, improvement of ion-optical system of the
source requires, as a part, finding a compromise
between retaining sufficient electric strength of the gap
between the system and extracting electrodes, and
reaching maximum possible value of extracted beam
current. In case of our source and extracting voltage of
an order of 10 kV such compromise may be provided by
a hole having 3.5 mm diameter. The researches have
also shown existence of saturation in dependence of the
current of extracted negative ions on power introduced
into the discharge. One of the ways of the design
improvement can be solving the problem of negative ion
loss at accompanying working gas flow. At the use of
proposed source only as one of hydrogen negative ions,
considerable increase of magnetic field for deflecting
electrons may also result in deterioration of the
conditions for Н
-
ion beam extraction. The optimum
magnetic field strength may be one of 20…40 Gs value.
ACKNOWLEDGEMENTS
The authors are grateful to Alexey Goncharov for
his participation in the discussions and permanent
attention to accomplishing the researches. This work is
supported in part by the projects ## V168 and VC156 of
the Ukrainian National Academy of Sciences.
REFERENCES
1. P. Moehs et al. Negative Hydrogen Ion Sources for
Accelerators // IEEE Trans. On Pl. Sci. 2005, v. 33,
№ 6, p. 1786-1798.
2. M. Bacal and M. Wada. Negative Hydrogen Ion
Production Mechanisms // Appl. Phys. Rev. 2015, v. 2,
№ 021305, doi:10.1063/1.4921298.
3. Yu.I. Belchenko, G.I. Dimov, V.G. Dudnikov.
Production of an intensive beam of H-ions from
discharge in crossed fielfs // JTF. 1973, v. 43, p. 1720-
1725.
4. Y.V. Kursanov, P.A. Litvinov, V.A. Baturin. H-
Source with the Volume Plasma Formation // 10th
International Symposium on Production and
Neutralization of Negative Ion and Beams. Kiev, 14-17
September, 2004.
5. V.P. Goretskii, A.V. Ryabtsev, et al. Comparative
emission characteristics of hydrogen negative ion source
with Cs and without Cs // JTF. 1999, v. 69, p. 102-109.
6. V.P. Goretskii, A.M. Dobrovolskiy. Peculiarities of
Hydrogen Negative Ion Beams Extraction Axially
Symmetric Source with Crossed Fields// Probl. of
Atomic Sci. and Technol. Series “Plasma Physics”.
2015, № 1, v. 21, p. 73-76.
7. V.P. Goretskii, A.M. Dobrovolskiy. Development of
negative ion source with combined discharge // Probl.
of Atomic Sci. and Technol. 2015, № 4(98), p. 315-318.
8. A.N. Dobrovolsky, V.P. Goretskii, A.A. Goncharov.
Advanced Negative Ion Source //Rev. of Sci. Instr.
2016, v. 87, № 02B114, doi: 10.1063/1.4933121.
Article received 22.10.2016
Gs
(
m
A
/c
m
2
)
ISSN 1562-6016. ВАНТ. 2016. №6(106) 267
ПРОГРЕСС В РАЗРАБОТКЕ ИСТОЧНИКА ОТРИЦАТЕЛЬНЫХ ИОНОВ ВОДОРОДА
С КОМБИНИРОВАННЫМ РАЗРЯДОМ
А. Добровольский, В. Горецкий, В. Баженов
Показан прогресс в разработке источника отрицательных ионов водорода с комбинированным разрядом
и цезием. Продемонстрирована зависимость тока отрицательно заряженных частиц от мощности,
вкладываемой в разряд, и размера анодного отверстия. Зависимость тока пучка от вкладываемой в разряд
мощности имеет насыщение, что позволяет оптимизировать этот параметр. Также нелинейный характер
имеет зависимость от размера анодного отверстия. Ещё одним существенным фактором выступает
сопутствующая струя рабочего газа, выходящая через анод источника в камеру. Дальнейшая оптимизация
конструкции извлекающей системы и метода подачи рабочего газа может дополнительно повысить
эксплуатационные характеристики источника.
ПОДАЛЬША РОЗРОБКА ДЖЕРЕЛА ВІД’ЄМНО ЗАРЯДЖЕНИХ ІОНІВ ВОДНЮ
З КОМБІНОВАНИМ РОЗРЯДОМ
А. Добровольський, В. Горецький, В. Баженов
Показано прогрес у розробці джерела від’ємно заряджених іонів водню з комбінованим розрядом та
цезієм. Продемонстрована наявність залежності струму від’ємно заряджених частинок від потужності, що
вкладається в розряд, та розміру анодного отвору. Залежність струму пучка від потужності, що вкладається
до розряду, має насичення, що дозволяє оптимізувати цей параметр. Також нелінійний характер має
залежність від розміру анодного отвору. Ще одним суттєвим фактором виступає супутній струмінь робочого
газу, що виходить крізь анод джерела до камери. Подальша оптимізація конструкції формуючої системи та
методу постачання робочого газу може додатково підвищити експлуатаційні характеристики джерела.
|